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1.Introduction

Choi and Effros [4] and Kirschberg [10] have proved that the
nuclearity for a C¥*-algebra is equivalent to 'the complete
positive approximation property'. Not all C*-algebras have the
approximation property. In fact, A.Szankowski [14] has proved,
that the algebra of all bounded operators B(H) on an infinite
dimensional Hilbert space H, does not have the approximation
property. It had been believed that every C*-algebra with the
metric approximation property is nuclear. Surprisingly, in 1979,
Uffe Haagerup [7] showed an example of a non-nuclear C;-algebra,
which has the metric approximation property. Haagerup's example
is the reduced group C*-algebra C:(Fz) of the free group F, on
two generators. Following after {7], M.A.Picardello([12] showed
amonyg others that the reduced C*—algebra C:(G) of amalgamated
products G = ﬁ G;» where {Gi;ieI} is any collection of finite
groups and H is a common subgroup, has the metric approximation

property, independently of [5]. In this note, modifying the
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technique of Canniere and Haagerup([2], we shall show that the
reduced group C*-algebras generated by the free product of finite
groups with one amalgamated subgroup have the metric
approximation property by n-positive maps. This improves the
result(Theorem 3 of Picardello(12]) in the case of two factors.
Positive maps on C*-algebras are very important objects and are
investigated by many authors [8],[9],[15]. The contents of this
note are the following. 1In Section 2, we shall give some
notations. In Section 3, we shall consider groups acting on
trees, in particular we shall study length functions on the free
product of finite groups with one amalgamated subgroup. In
Section 4, we shall prove that the group C*-algebra C:(G) has the
metric approximation property by n-positive maps, if G is a free
product of finite groups with one amalgamated subgroup. This is
an improvement of our previous result in [5],which is announced

in {6].

2. Preliminaries

A Banach space E is said to have the metric approximation

property, abbreviated as M.A.P., if there exists a net (Ta)a of
finite rank operators on E such that HTaH £ 1 for all a and
Lim “Tax - x|l = 0 for all x in E. Let G be a countable discrete
group and let A be the left regular representation of G. The
reduced group C*-algebra C:(G) is the C*-algebra generated by

{A(g);g € G}. Following after I.M.Chiswell{3], a length function
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on a group G is a mapping ¥y: G — R satisfying two axioms

proposed by Lyndon [11]:
A2. ¥(x) = ¥(x') for all x in G.

A4. d(x,y) > d(x,z) implies that d(x,z) = d(y,z) for all
x,y and z in G, where a(x,y) = (W(x)+?(y)—W(xy-1))/2-

Throughout this paper we shall assume that our length

functions are integer valued, and normalized, that is, they

satisfy the axiom
Al'. v(1) = 0.
By Lyndon [11], the following axiom CO is also considered:
Co. a(x,y) is always an integer.

By a graph X we understand a pair of disjoint sets, V(X),
E(X) with V(X) non-empty, together with a mapping
E(X)— V(X) x V(X), y — (r(y),s(y)), and a mapping
E(X)— E(X), y — ¥ satisfying y #y , y =y -and s(y) = r(y)
for all y in E(X). The elements of V(X) are called Veftices, and
those of E(X) are called edges. We call a pair of edges

{ y, ¥y} an unoriented edge of X, and an orientation of X is a

set consisting of exactly one member of each unoriented edge

{y, ¥y 1. For definitions of path,tree,etc. see [l3]. For
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P,Q € V(X) we denote the distance from P to Q by d(P,Q). A more
general example of a length function satisfying CO is given by
I.M.Chiswell [3] as follows: Let G be a group acting on a tree X,
and let P, be a vertex of X. For g in G, define

Y(g)= d(Po,gPO) to be the distance from PO to gPO . Then
g — Y(g) is a length function on G satisfying CO. We give some

examples about length functions.

Example 1. Let Fn be the free group of n generators and
|g| the length of the unique reduced words representing g in F
in these generators. Then the function g — |g| 1is- a length

function.

Example 2. Let G = A é B be the free product of two groups
A and B with one amalgamated subgroup C( cf.[13)). Then there is

a tree X on which G acts as follows: Put

V(X) = G/AU G/B (disjoint union),
E(X) = G/c U (G/O) (disjoint union ), s: G/C — G/A and

r: G/C — G/B being induced by the inclusions

C — A and C — B.

An action of G on the tree X is given by
g(xA) = (gx)A € V(X), g(xB) = (gx)B € V(X)
and g(xC) = (gx)C € E(X) for all g,x in G.
Put P0 = A € V(X). For g in G, define Y(g) = d(PO,gPO) to be

the distance from P0 to gPO . Then Y 1is a length function on

— 164 —



G such that ¥(g) is even integer for all g € G. Note that edges

of X consists of

XA {xC, xC} xB x e G

If d(PO,Q ) is even (resp. odd) for Q ¢ V(X) , then Q = gA = gPo
(resp. Q = gB ) for some g ¢ G. The following is the tree for
G = SL(2,Z) = Z4 % Z6 defined above:

The tree of ZA 5 Z6 s

3. Length functions

The following lemma 1 is proved by Haagerup [7].

Lemma 1(Haagerup). Let ¢ be a positive definite function on

a discrete group G. Then there is a unique , completely positive

map M¢:Ci(G) —_— C:(G) such that M¢A(s) = ¢(s)A(s), and the norm

of this map is HM¢“ = ¢(1).

A function V¥ on a group G is negative definite if
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- -1

h| b
for all g1,---:8, € G, Zys---52, € C » Or equivalently,
v(1) 2 0, ¥(g'l) = ¥(@ and z, ® . v(g.g. 1)2.57 < 0 for all
z U, g 24 i,j=1 gigj i%y =
81,+--184 € Gy Z7,...,2 € €Cwith 3] _,z. =0, (cf.[1]).

U.Haagerupp [7] proved that the natural length function
g — |gl on the free group is negative definite. This is

generalized in [16] as follows:

Lemma 2. Let Y be an integer valued length function on a

rou G satisfying Co. Then Y 1is a negative definite

function on G. Moreover, for A >0 , the function
e-AW(s)

s — is a positive definite function on G.

In the following, we assume that a countable group G acts
on a tree X. For a vertex P0 of X, define

¥Y(s) = d(Po, sPO) for s in G. TFor s in G and integer k,% 2 0,

put
Y(s;k,2) = {(t,u) ¢ G x G ; s = tu, ¥(t) = k and V¥(u) = 2}
Z(s;k,2) = {(t,u) € G x G ; s = t tu, ¥(t) = k and ¥(u) = 2}.

We shall denote the cardinality of a set S by #S and the

set {Q € V(X);d(P,Q) = p} by S,(P).

Lemma 3. The following statements hold.
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(1) fzessk, 0 = Fy(ssk, ).

(2) If v¥(s) = kt &- 2p for p=0,1,... , then
- # . =

Y(s;k,2) < SuleeSP(E,) {g e G5 8Q;=Qy for some Q, ¢ Sp(PO)}.
Proof. (1) Since ¥(t™ 1) = w(ty , fv(sik,0) = fz(sik,0).
(2) If s = tu for s,t,u € G, then we have the following

diagram(cf.[3]), where the lines represent geodesics, and a,b,c

represent lengths:

| 0
/
Q
a
PO'
Cc
-1
e e,

and Q is the point at which the two paths diverge. Translating

the diagram by t, we obtain

tuP0=sP0

tP

0"

VA

I1f ¥(t) = k, ¥Y(u) = & , then k = at+c, & = atb, ¥(s) = btc .
Thus 2p = kt+ &-¥(s) = (atc)+(atb)-(b+c) = 2a, so that p = a.

Suppose that (tl,ul) and (t2,u2) are in Y(s;k,%). Then we have
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™~
b b
a= =a
t1Pp P £ Q P t,P)
$Q,
C C
Py

Since the geodesic from P0 to sP0 in the tree X is unique, we

-1
have that tlQl = t2Q2’ so that t, tlQl = QZ' Remember that

. Ql
P
P

Q,

-1 -1 -1, -1_ -1
Put g = ty, "ty Then t, = ty8 and u =t; s =g S =g u,.

)
Since ng = Q2, d(PO’Ql) P and d(PO’Qz) = p, we have that

#Y(s;k,ﬁ)

< supQlES (Po)#{g e G; gQ;=Q, for some Q, ¢ SP(PO)}. Q.E.D.

P

In the following we assume that G = A E B is the free

product of two groups A and B with one amalgamated subgroup C and
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X is the associated tree for G = A é B as in example 2.
Put P0=A e V(X). Then Y(g) = d(PO,gPO), g €t G, is the

length function in example 2.

Lemma 4. If G=A E B is the amalgamated free product.

Then for s e G, integers k,% 2 0 with V¥(s) = k+2 or
Y(s) = k+2 -2,

Fy(s;k,0) < *ats.

Proof. If ¥(s) = k+z , then '¥(s;k,0) = *{g ¢ G; gP =P}
~#{g ¢ Gigh = A} = fa 5 *a?B, by Lemma 3. Let
¥(s) = kt 2 -2. Take Ql’QZ € V(X) such that
d(PO,Ql) = d(PO,QZ) = 1. Then Ql = alB and Q2 = azB for some

aj,a,; € A. Moreover we have that

~

g € G; gQ; = Q) for some Q, « Sl(PO)}

]

{g ¢ G;gaiB = a,B for some a, € A}

= {g € G; az_lga1= b for some a, € A and some b € B}
= {geG; g-= azbal-1 for some a, € A and some b € B}.
Therefore, by Lemma 3, we have that

#Y(S;k,l)

# -
$,SupQ1€Sl(Eb) {g € G; gQ; = Q, for some Q, ¢ Sl(PO)}.
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- # Lo = -1
= SuPaleA {g € G;g a,ba; for some a, ¢ A and some b ¢ B }

fatg, Q.E.D.

A

Next we shall show a lemma about a decomposition of an

element in G.

Lemma 5. Let G=A é B be the amalgamated free product.

Suppose that s = tu and V¥(s) = ¥(t)+¥(u)-2p for s,t,u e G

and an integer p 2 0.

(1) If p is even, then there exist t' , u', v e G such

that t=t¢t'v, u-= v'lu', ¥(t') = ¥Y(t)-p, ¥(u') = ¥(u)-p and

Y(v) = p.

(2) If p 1is odd, then there exist t',u',v € G such that

t=t'v,u = v'lu', ¥(t') = ¥(t)-p-1, V¥(u')= ¥(u)-p+l and

¥Y(v) = p+l.

Proof. We have the following diagram:

uP

0
q
p Q
Py
r
-1
t PO
where Py = A e V(X), ¥(u) =ptq and ¥(t) = W(t-l) = p+r.
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1

(1) If p is even, then Q = v "A € V(X) for some v e G. Since

-1 1

P, = A, Q=v "A=v PO, so that Y(v) = d(PO,vPO)

p. Put t' = tev'l and  u'= vu. Translating the

0
= -1
- d(PO,V Po)

il

tree X by v, we have the following diagram:

vuP0=u P0

vX: vP P P,

-1 1

vt PO=(t') P

0

1

Then  ¥(t') = d(P,,t'Py) = d(PO,(t')_ Py) =t = ¥(t)-p,

and ¥Y(u') = d(PO,u'PO) = q = ¥(u)-p. Obviously we have that
|

t = t'v and u = v-lu'.

(2) If p is odd, then Q = gB € V(X) for some g € G. Let Q1
be the vertex in the path from Q to t—lPO such  that
d(Q,Q;)=1: Then there exists v € G such that Q1=v—1PO. Thus we

have the following diagram:

uP

0

Q=¢B
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Put t'= tv and v' = vu. Translating the tree X by v, we

have the following diagram vX:

vuPo=u P0
q
. P
vX: vP0
-1 — (] -1
vt Po—(t ) P0
Then ¥(t') = r-1 = ¥(t)-p-1, ¥(u') = q+l = ¥(u)-p+l  and
¥(v) = p+l. Obviously we have t = t'v and u = v-lu'. Q.E.D.
Put E_ = {s € G; ¥(s) = n} and X the characteristic

n n

function for En In the following we assume that A and B are

finite groups.

Lemma 6. Let G=A é B be the free product of finite groups

A and B with one amalgamated subgroup C. Then we have the

following:

(L) #En is finite for any non-negative integer n. (2) If G

is infinite, then for any positive integer k, there exists a

positive integer N 2 k such that EN is not empty.
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Proof. (1) If there exist g1:89 € G such that

-1
glP0 = g2P0 = Q for some Q € V(X), then g9 g1P0=PO, so tha?

-1
=Y

g € {g € G; gPy = Po}. Therefore
Flg c 6 gpyp = Qt s Fig e 6; gpy = Py} = PA. 1f n is odd, then
E is empty. If n is even, then n = 2m for some non-negative

integer m. We have that

fe = Hg e 6 ¥(g =n)

_ fo _
= Iqes, (py) (8 € G5 gFp = QU

#a

N

zQesn<Po)

#a#
A Sn(PO)

1A

farctaren™ Tt ren® + (FareH)®B/0)H)™ ) < 4o

(2) Suppose that there exists a non-negative integer k such that

by

E n

N is empty for all integer N 2 k. Then G =k}§=0Ei‘ Since
is finite for any non-negative integer n by (1), G is finite.

This contradicts that G is infinite. Q.E.D.

4. Metric approximation property

Proofs of the following lemmas are similar to the ones given

by U.Haagerup(7].
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Lemma 7. Let G be a free product of finite groups A and B

with one amalgamated subgroup C. Let k,% and m be non-negative

integers and f,g be two functions on G with supports in Ek

and E_  respectively. Then

L
I cxedxgll, = (fafsy3/2 g, lgl,

IN

yif |k-2] £ m £ k+t and k+&-m even

and ”(fXg)meZ = 0 if not.

Proof. Take ¢t,u € G such that V¥(t) = k and ¥(u) = %.
Then we have the following diagram.

uP;

It follows that k = ¥(t) ptr and & = ¥(u) = p+q. Translating

X by t,
tuP0

tX: tP p tQ

Then ¥Y(teu) = q+r = (&-p)+(k-p) = 2+k-2p,

where 0 < p £ min(k,%).
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Therefore y(tu) takes one of the following numbers,
|k-2] ,|k-2]|+2, ... ,k+2-2, k+&.

On the other hand, we have

-
(fxg) (s) = Z(t,u)eY(s;k,Q)f(t)g(u) ,because supp(f) = E; and

N

supp(g) = ER’

Hence Il (£xg)xp, o = 0 ,when m is not one of these numbers. In

the following, according to the property of p, we consider three

cases separately. The first case where p is zero, the second one

where p is positive even and the third one where p is-odd.
Case(l) p = 0, that is, m = k+X&.

Then

ICEx e X ll3 = Zgegl (Ex8) xp(s) |2

_ ey 12
= Isek, | E(e,wev(s;k, 0 E(OBMW]

’ 2
s ZseEmIZ(t,u)eY(s;k,!Z,)If(t)l’g(u)Il ’

2y

IN

2 2
Zoer, E(e,wev(s;k, o) | FOTIB@IND e yyeyissk, 0l
(by the Schwartz inequality )

2, 2.ty ..
ZSEEM(Z<t,u)eY(s;k,z)|f(t)| lg(u) [9)*Y(s;k, )

IA

EN 2 2
A steEmz(t,u)gY(S;k’Q)|f(t)‘ g (u) |

Since we have that Y(s;k, )N\ Y(s';k,)=¢ for s # s',
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2
= #A#Bz(t,u)lf(t)lzlg(u)l

(where (t,u)eGxG such that Y(tu)=m=k+2,¥Y(t)=k,¥(u)=2)
stalsz b 1E 01D Gy g lew )
‘ K L
2 2
=fats €113 llg 112
Hence we have
2 2 2
IcExgd) xplly < Fa?B £ |2 g 112

Case (2) p is positive even. Put p=2m. We define functions

f' and g' with supports in Ek-p and E,__ respectively by

p
£ (t)=(Z, | £(t'v) [$)1/2 (uhere v ¢ E, with £'v € Ey)
,if ¥(t')=k-p

and £'(t')=0 otherwise.

g'(u')=(£vlg(v-1u')|2)1/2 (where v ¢ Ep with v 1u' ¢ E,)

,if ¥Y(u')=2-p

and g'(u')=0 otherwise.

Then we have
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M2 oZ vty |2
€5 = Zt'aEk_Pif (")

= I z

2
teE, > ( y [ ECE) |

t',v)eY(t,k-p,p

= zteEk#Y(t;k-P,P)lf(t)lz

#atpy

1A}

2
teEklf(t)l

tatB gl

Hence we obtain le 1 2sfatnyg) 3.

Similarly we have the following.

'y 2 ety 12
lg'l; = Z g 18" ()]

. -1l 2 . -
Zu'95b1>zv|&(v u )] (where v ¢ Ep with v

- 2
- ZueELz(v,u')eZ(u;p,Q,_p)|g(u)|

2
Pueg, | £(UiP, 1) [g(w) |

A

Hence we obtain "g'ugs#A#Bng%.
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For s € G such that ¥(s) = m = k+2-2p, where p is positive even,

I(fXg)(S)|=|Z(t’u)EY(s;k’Q)f(t)g(u)I
using lemma 5(1),

] -1 ]
= Z(e,u)e¥( s;k,sL)‘T‘(t',v,u')If(t v)||g(v "u")|

(where (t',v,u')eGxGxG such that t=t‘v,u=v_1

u',¥(v)=p,
¥(t')=k-p,¥(u')=2-p)

' "1 ]
= Z(t',v,u')lf(t V)Hg(V u )I ’ '
(where (t',v,u') € GxGxG such that ¥(v)=p, ¥(t')=k-p,

W(u')=2-p,?(t'v)=k,w(v-lu')=2,s=t'u')

using the Schwartz inequality with respect to v,

2)1/2

I

' -1 +,12,1/2
Z(t',u')eY(s;k-p,z-p)(zvlf(t v | (Zvlg(v u') %) ,

(where v € G such that ¥(v)=p,¥(t'v)=k, ,W(v_lu')=l)

A

Z(t',u')eY(s;k-P,R-P)f'(t')g.(u')=(f'*g')(s)
therefore | (£xg) (s) |s(£'%g') (s).

Since k,f% and m are fixed, p is always even. Therefore

If*glxm s (f'xg‘)xm . Since (k-p)+(&-p)=m, it follows
the case (1) that [[(£'%xg")xyll5 s*a?B|er|2|ig' |2
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Hence

ICExg)x I5 s NCExg ) xg Iz stafBierile 1
fatetats)c| 2¥atn)g) 5 = fats)d)£)5lIels.

IA

At last, we consider the case (3) where p is odd. We define

functions f' and g' with supports in E, _ and E

p-1
represented by

£1(e") = (g, [£e'n|H/?

(where v € Ep+1 with t'v ¢ Ek)’
Jif w(t') = k-p-1
/

and £f'(t') =0 otherwise.

1

g'(u') = (Zvlg(v"lu')lz)ll2 (where v ¢ Ep+l with v "u' ¢ Eg)
Jif ¥Y(u') = f-p+l,
and g'(u') =0 otherwise.
Then we have
2 2
NE'l5 = Zoo [£' (e 7,
2 t €EkﬁP-1
2 . .
zt‘aEKrp{ (Zvlf(t'v)l ), (where Vv ¢ Ep+1 with t'v ¢ Ek)
=z z |f(t)|2
teEK (t',v)eY(t;k-p-1,ptl)
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#Y(t;k—p-l,p+1)|f(t)lz
K

- zteE

A

2
#A#BZCEEK|f(t)| , by lemma 4,

fateg? |
Hence, we obtain "f'ﬂ% < #A#Bﬂf”%.

Similarly

] 2 L ] 2
lg'ly = Eu-eEﬁ_P+1Ig (u')|

1 1

(z,lg(v" u'

u')|2) (where v e E_,, with v~
" P+l P

= zu'eEl

Sy 2
z:uz‘:E‘,’z(V,u')sZ(u;p-}-l,;g,_.p.|.1)|8(V u') |

2
= ZuEEL#Z(u;p+1,2—p+1)|g(u)|

fa#py

A

2
g(u)

fatplgll.

Hence we obtain Ig'l% < #A#Bﬂg"%.

For s € G such that ¥(s) = m = k+2-2p ,where p is odd,

IR S| = 12 yyev(s;k, 1) ECEIBW |

using lemma 5(2),
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g(v tuy |

Z(t,u)eY(s;k,R)z(t',V,U')|f(,t v)
(where (t',v,u') € GxGxG such that t = t'v, u

IA

¥Y(v) = ptl, y(t') = k-p-1,¥(u') = L-p+l),

] '1 '
= Z(t',v,u')|f(t v)|+|lg(v "u")|,
(where (t',v,u')eGxGxG such that ¥(v)=p+l,¥(t')=k

W(u')=2—p+1,W(t'v)=k,W(v-lu')=l,s=t'u'),

Using the Schwartz inequality with respect to v,

2)1/2

A

] _]-l
z(t',u')s:Y(s;k-p-l,JL—p+1)(Zvlf(t V)| (Zv|8(V u'y |

(where v € G such that ¥(v) = p+l, ¥(t'v) = k,W(v_lu'

2)1/2

A

] "1|
Vlf(t v) | (Zvlg(v u') |

Z(t',u')e:Y(s;k-p—l,iZ,-p+1)(Z
(where the former v € G such that ¥(v) =p+l,¥(t'v) =

1

the latter v € G such that Y¥(v) =-p+l, ¥(v "u') = ),

— T 1 L ] — LINW ]

= Z(t',u')eY(s;k-p-l,z-p+l)f (te")g'(u') = (£'%g')(s).
Since k,%,m are fixed ,p is always odd.

Therefore IfXglxm S (£'% 8" )Xy

Since (k-p-1)+(%-p+l) = m, it follows from the case (1)

e 'xg x5 = *afBie |3l 13-
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2)1/2,

) = %),

2)1/2’

k, and

that



Hence [I(£xg)xplls = II(E'xg"dxyll3 s *atBlie ) 2g )2
s fatefatn)g) 2¥atn)gl s - (fats)3 512 gl 2.

So, for all of the possible cases about p, we have

IcExe)xgIb s (FafBy3 |13 )gli2. Q.E.D.

For a function f ¢ Rl(G) we put as usual

A(E) = ¢ f(s)Aa(s).

seG

Lemma 8. Let f be a function on G with a finite support.

Then

Ixce)) s (fafpy3/2g>

n

IA

=0(n+l)“an“2-

Proof. Since f = 5*

n=0fx

n » 1t is enough to show that when f has

support in E_, then (RYE I (#A#B)3/2(n+l)”f“2. Thus let £ be
a function with support in E and let g be an arbitrary
Rz-function on G. Put 8 = &°Xg- Then 2o has support in Ek and
HgN% = 2:=0Hgkﬂg. Put h = fxg = I;_fxg, and h_ = hy,. Note

that h ¢ RZ(G) and "h"% = Z;=0“hm" . From lemma 7 we get

2 .
IcExgxgly, s FafBy3/2£l,lg ll, if |k-n| $m s kén and kin-m
" even and H(fkgk)xmuz =0 if not.
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Therefore,

“hmuz = NZ§=0(ftgk)me2 s Z:=0H(frgk)xmﬂz

#a#ny3/2 m+n
s (TA"B) “f"22k=|m—n|,m+n—k even“ngZ'

Writing k = m+n-2¢, we get

Ingll, = (Fafpy3/2 g pninammy, o,

WA

#A#B)3/2HfH2(Zmln(m.n)“gm+n 21”2 1/2 mln(m n)1)1/2

Hence _
I3 = =2 olin |5
s (a3 ey 8|20 IR g D)

| 2
= Aty 3 (e DI 132 ol B2/l )

= datey 3l aI2s_ op g D)

IA

*atB)3 (1)) 81520 lell5 = tatB)3 ey 2| 1208l 3

This proves that

3/2

I£xgll, = Inll, s (FafB)3/Znel)|£l,llel, for any g € 22(6),
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3/2

e. IxH| s Faf)3/ 2@y £ ,. Q.E.D.

Lemma 9. Let f be a function on G with finite support. Then

Il s 2?83/ 2z 1£¢s) 12a+ven /2,

Proof. By lemma 8 and the Cauchy Schwartz inequality,we get

that
el s dafey3/ 25" Dy | £x ],

= datp)3/ 25 1/ (@) @D 2 £x )

s dafp)3 27 1/ )Y 257 (e Y £x 12112

= )32/ 16y tx ol £(s) |2 (14¥(sn) /2,

/ 2 <
Since V(m“/6) = 2 ,the assertion follows. Q.E.D.

Let G be a discrete group. We let A(G) denote the Fourier

algebra of G (c£.171), A(G) = {fxg; £,g ¢ 22(G)} ,where

g(s) = g(s7T), s e G. The set A(G) is a Banach algebra with
respect to pointwise multiplication and the norm
"d)“A(G) = inf{ufllzug"23¢’ = fxg , f,g ¢ QZ(G)}.

A complex valued function ¢ on G is called a multiplier of the

Fourier algebra A(G) if ¢y € A(G) for all ¢y € A(G). For every
multiplier ¢ of A(G) the map m¢:¢ — oY , ¢ € A(G). The
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space of all multipliers of A(G) is denoted by MA(G). Cleary
MA(G) 1is a Banach space with the norm “¢”MA(G) = “m¢ﬂ. Recall
that a linear map T from a C*-algebra A to a C¥*-algebra B is

called positive if T(A+)<; B

+ and n-positive for some n € N, if

T®i_  1is positive. A multiplier ¢ of A(G) is n-positive if the
transposition of the map m¢:w — ¢y , v € A(G) is an
n-positive operator on the von Neumann algebra R(G) = A(G)*.

We need the following proposition 10 due to Canniere and

Haagerup(2].

Proposition 10([2]). Let ¢ be a continuous function on a

locally compact group G and let n € N. The following two

conditions are equivalent.

(1) ¢ is a n-positive multiplier of A(G).

(2) any fl,...,fn,gl,...,gn e K(G);
* -~
fG¢(s)zg,j=1(fi *£5) () (g;*84) (s)ds 2 0.

If these two equivalent conditions are fulfilled then

“ ¢”MA(G) = ¢(e).

Lemma 11. Let G = A E B and n € N. Let ¢ be a function on
1) = ¢(s)y for s e G,
*a?B)36(s) | (1+¥(s))* 5 (1/n)¢(e) for s e G- C and

G. If ¢(s”

¢(s) = 0 for s e C- {e}, then

¢ 1is an n-positive multiplier on A(G).

Proof. By proposition 10, it is sufficient to prove, that

any fl""’fn’ B1r--+18, € K(G):
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n *
(*) Zeeg?(8)Zy (finj)(s)E

n
,j=1 i,,j=1

Note that since ¢ = ¢ , the sum is always a

(55x ;) (s)

2 0.

real number.

Assume first, that g1»---,8, are orthogonal with respect to the

inner product in %£2(G). Then (gxg;)(e) = 0 for i # j.

Hence

n * ~
zi,j=1(fi*fj)(e) (g% gj)(e)

n * -
Zi=1(fi%fi)(e)(gixgi)(e)

n 2 2
zi:]_“ fill 2" gi“ 2

By lemma 8, we have that for any £ e K(G);

all2-

IACE| < (#A#B)3/22;=0(m+1)ﬂfx

Since A(G) may be identified with the predual of the von Neumann

algebra R(G), this implies that for any ¢ e A(G),

loxgll, s (fafpy3/2

Obviously f:*fj and gixgj are in A(G), and

A

*
“fixfj“A(G) "fillzllfjllz.

” gi*gj “A(G) s ” gi" 2” gj ” 2°
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Hence for m ¢ N,

n * -

WA

* -~
H¢xmﬂmzi,?=1u(fikfj)meZH(gixgj)xmﬂz

((*atp)3/2y

[I7aY

2(m+1)2H¢memZi,?=1HfiHZHfjHZHgiuzﬂgjﬂz

A

1/2ae1)? FatB)oxl, =g o AEs G legl + 150518505

nmr1)? Fafe)ox ., 25105l

Hence by the assumption on ¢ and the fact that

22:;=1(m-+-1)_2 = (n2/6)—1 < 1, we have that

n ¥* ~
|Zgego (e} ®(8)Ey o1 (£xE5) (8) (g% E5) () |

n ~
ZoeG-ct(S)Zy 521 (Fix£5) () (g xE5) (8) ]

% %

+

H

n * .
IZSEG—C¢(S)Zi,j=1(fi*fj)(S)(gixgj)(s)|

In

n(fats)3 T 5515 eyl 50 2oy b1 Zloxgl.,

2

A

n(tafB)3 T 11385050 - supp 1) Hloxgll ) (2 (1) ™)
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2 2
(Z?=1“fi“2“81”2)¢(e)

A

* ~
S o(e)z; oy (£5xE:) () (g% E5) ()
This proves (*) 1in the special case (gi[gj) =0, 14#73j. The
general case is reduced to the special case, (gilgj) =0, 1+#13]j,

by the usual trick as shown in [2]. So we get this lemma 11.

Q.E.D.

We are now able to prove our main result.

Theorem 12. Let G = A é B be the free product of finite

groups A and B with one amalgamated subgroup C. There exists a

sequence (Ek)kEN of functions with finite support, such that

(1) Each gk is an n-positive multiplier of A(G) and
Ek(e) = 1.

(2) 1imk+wu€k¢ - ¢"A(G) =0 for any ¢ e A(G).

Proof. The proof is a version of the proof of Canniere and

Haagerup([2],Theorem 4.6). Put ¢,(s) = e—AW(s)’

A > 0.
Then ¢y is positive definite. Thus ¢y is a completely
positive multiplier of A(G), and Hm¢ | = ¢,(e) = 1.

A

For A > 0 and m € N, put

1+ ncfa?B)dsup, (1 + 0% MK, if s -
¢§?;(s) = e-k?(s)’ if 0 5 ¥(s) $sm ,s # e
0 if ¥(s) > m
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Then ¢§n& is a function on G with
- 4(n)
check that ¢= ®x.m

s = e,

9(e) = 95 (e) - 9,(e) = 1 + n(tatp)’

= nc*a?B)3sup, (1 + K)te MK

Hence we have

(%) FatBy3|o(s) (1 + ¥(s)? <

For s € G -C, we have VY¥(s) > 0.

have ¢ = 0. For V¥Y(s) > m, we have

For s € C -{e}, we have V¥(s) = 0.

satisfies the assumption of Lemma 11.

an n-positive multiplier on A(G).

For the vrest of the  proof
proposition 10, we <can follow the
Haagerup[2]. So we omit the rest of

Corollary 13.

finite supports. We shall

- 9, is an n-positive multiplier of A(G). For

sup,, (1 + k)™ -1

(IL/n)¢(e) 1if VY¥(s) > m.

Then, for 0 < ¥(s) sm, we
the above inequality (%*).
Thus ¢(s) = 0. So this ¢

As a consequence, ¢A m is
’

of Theorem 12, by using
same line of Cannier and
the proof . Q.E.D.

and n € IN. There

exists a

Let G be as Theorem 12

of n-positive linear maps on_ the

sequence (Tk)keN

*
reduced group C*-algebra Cr(G) of G such that

(1) each. Tk is of finite rank, and

(2) lim _  IT,x - x|| =0
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Proof. Let (wk) be as in Theorem 12, and put Tk =M then

w ?
K
each Ty is n-positive. Moreover Tk has finite dimensional range,

because supp(wk) is finite. The statement (2) can be proved as

in the proof of Canniere and Haagerup[2;3.11 Coronﬁ{y l]. Q.E.D.
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