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1. Introduction

Let M be a 4-dimensional connected Einstein space with the Ricci tensor S=7ig,
where g is the Riemannian metric of M and 2 is a constant.
In this paper, we show the following theorem

THEOREM 1.1 Let M be a 4-dimensional connected Einstein space. Assume that
(1.1) R(X, Y)R=0 for all tangent vectors X and Y.

Then, VR=0, that is, M is locally symmetric.

Now, we can see that there is an orthonormal basis {ej, e, ¢3, €s} at each tangent space of
M such that

Rys12=a, Riz13=b, Risuu=c,
a.2) Raynn=c, Rasp=b, R3y=a,
Ryoss=f, Rizse=h, Rum=—(f+h),

otherwise zero. Where, Rijri=g(R(ei, ejder, e1), 1<i,j, kb, [,<4.
And, as M is an Einstein space with the Ricci curvature 2, the relation

(1.3) a+t+b+c=—12, holds good.

As the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each
point of M, (1. 1) implies

(1. 4) [ RCei, e;), R(er, er) 1=R(R(ei, e;)er, e1)+R(er, R(ei, ej)er)

2. Proof of theorem

First we state a lemma
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LemMma 2.1  (Lichnerowicz [4) In a Riemannian manifold we have
- A(Rijr1Riik) =2(VrRijriVhRiik) — 4 RiikI7; (V£Sj1—V1Siz)
—A4 Riik Hk gy pi

where Hijr',stXsYt are components of R(X, Y)+R.
Now, from (1. 2), we have

R(er, e =aez/\e1+Sfes/\es,
R(ey, e3)=bes/\er+hea/\es
R(e1, ex)=cesN\er+(f+h)ex/\es,
R(es, em) =cez\ex+ (f+h)eiN\ey
R(es, ep) =bey/\ex+hey/\es,
R(es, e =aes\ez+fez/\ey,

2.1)

where, in general, XA Y denotes the endomorphism which maps Z upon g(Z, Y)X
- —&(Z, X)Y.
Thus, from (1. 4), by using (2. 1) we have

2.2) a(b—e) +f(f+2h) =0,
2.3) f(b—c)+a(f+2h)=0,
XY h(a—c)+b(h+2f)=0,
(2.5) bla—c)+h(h+21)=0,
(2.6) cCa—b)+(f+h)(h—f)=0,
.7 c(f—h)+(f+h)(b—a)=0.
Thus, from (2. 2) and (2. 3), we have
2.8 (a?—f2)(b—c)=0,

and similarly we have

2.9 (B2—h%(a—c)=0,

2.10) - c((a—b)2—(f—hr)»=0.

Therefore, we can see that following four cases are possible and essential.
That is, ’

I a2%12 252 and c==0.
Then, by (2. 8), (2. 9) and (2. 10), we have a=b=c, and f=h.
Thus, by (2. 2), we have f=h=0.
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Therefore, from (1. 3), we have a:b:c:——g—#o, f=h=0.

II. a2%3=f2 b2=h2 and c==0.
Then, by (2. 8), we have b=c. Thus, by (2. 2) and (2. 3), we have f=—2kh. And, then
from (2. 10), we have (a@+2b)(a—4b)=0.
Then, we have a=4b.
Therefore, from (1. 3), we have a= ——23L, b=c=———'é—~, f=%—, h= —%
f=——%~, h=—é~. Where 22=0.

IIT. a@2?==f2, b2=h2 and c=0.
Then, by (2. 8), we have b=c=0. And, from (2. 6), we have f=h=0.
Therefore, from (1. 3), we have a=—2, b=c=0, f=h=0. Where 2==0.

IV. a?=r2, bp2=h% and c=0.
Then, by (2. 2) and (2. 7), we have a=b=c=0, f=h=0.
Therefore, we can see that the length of the curvature tensor in each case is constant.
Thus, from lemma 2. 1., we have VR=0.
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