On 4-dimensional connected Einstein spaces satisfying the condition $R(X, Y) \cdot R = 0$

By

Kouei SEKIGAWA

(Received March 10, 1969)

1. Introduction

Let M be a 4-dimensional connected Einstein space with the Ricci tensor $S=\lambda g$, where g is the Riemannian metric of M and λ is a constant.

In this paper, we show the following theorem

THEOREM 1. 1 Let M be a 4-dimensional connected Einstein space. Assume that

(1.1)
$$R(X, Y) \cdot R = 0$$
 for all tangent vectors X and Y.

Then, $\nabla R = 0$, that is, M is locally symmetric.

Now, we can see that there is an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ at each tangent space of M such that

$$R_{1212}=a,$$
 $R_{1313}=b,$ $R_{1414}=c,$ (1.2) $R_{2323}=c,$ $R_{2424}=b,$ $R_{3434}=a,$ $R_{1234}=f,$ $R_{1342}=h,$ $R_{1423}=-(f+h),$

otherwise zero. Where, $R_{ijkl} = g(R(e_i, e_j)e_k, e_l)$, $1 \le i, j, k, l, \le 4$. And, as M is an Einstein space with the Ricci curvature λ , the relation

$$(1.3) a+b+c=-\lambda, holds good.$$

As the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M, (1. 1) implies

$$[R(e_i, e_j), R(e_k, e_l)] = R(R(e_i, e_j)e_k, e_l) + R(e_k, R(e_i, e_j)e_l)$$

2. Proof of theorem

First we state a lemma

Lemma 2. 1 (Lichnerowicz [4]) In a Riemannian manifold we have

$$\Delta(R_{ijkl}R^{ijkl}) = 2(\nabla_h R_{ijkl}\nabla^h R^{ijkl}) - 4R^{ijkl}\nabla_i(\nabla_k S_{jl} - \nabla_l S_{jk}) - 4R^{ijkl}H^h_{jkl,hi}$$

where H_{ijk}^l st X^sY^t are components of $R(X, Y) \cdot R$.

Now, from (1.2), we have

$$R(e_{1}, e_{2}) = ae_{2} \wedge e_{1} + fe_{4} \wedge e_{3},$$

$$R(e_{1}, e_{3}) = be_{3} \wedge e_{1} + he_{2} \wedge e_{4},$$

$$R(e_{1}, e_{4}) = ce_{4} \wedge e_{1} + (f+h)e_{2} \wedge e_{3},$$

$$R(e_{2}, e_{3}) = ce_{3} \wedge e_{2} + (f+h)e_{1} \wedge e_{4},$$

$$R(e_{2}, e_{4}) = be_{4} \wedge e_{2} + he_{1} \wedge e_{3},$$

$$R(e_{3}, e_{4}) = ae_{4} \wedge e_{3} + fe_{2} \wedge e_{1},$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z, Y)X - g(Z, X)Y.

Thus, from (1.4), by using (2.1) we have

(2.2)
$$a(b-c)+f(f+2h)=0$$
,

(2.3)
$$f(b-c)+a(f+2h)=0$$
,

(2.4)
$$h(a-c)+b(h+2f)=0$$
,

(2.5)
$$b(a-c)+h(h+2f)=0$$
,

(2.6)
$$c(a-b)+(f+h)(h-f)=0$$
,

(2.7)
$$c(f-h)+(f+h)(b-a)=0.$$

Thus, from (2.2) and (2.3), we have

$$(2.8) (a^2-f^2)(b-c)=0,$$

and similarly we have

$$(2.9) (b^2-h^2)(a-c)=0,$$

(2.10)
$$c((a-b)^2-(f-h)^2)=0.$$

Therefore, we can see that following four cases are possible and essential. That is,

I.
$$a^2 + f^2$$
, $b^2 + h^2$, and $c + 0$.

Then, by (2. 8), (2. 9) and (2. 10), we have a=b=c, and f=h

Thus, by (2. 2), we have f=h=0.

Therefore, from (1.3), we have $a=b=c=-\frac{\lambda}{3}\pm 0$, f=h=0.

II. $a^2 + f^2$, $b^2 = h^2$, and c + 0.

Then, by (2. 8), we have b=c. Thus, by (2. 2) and (2. 3), we have f=-2h. And, then from (2. 10), we have (a+2b)(a-4b)=0.

Then, we have a=4b.

Therefore, from (1. 3), we have $a=-\frac{2\lambda}{3}$, $b=c=-\frac{\lambda}{6}$, $f=\frac{\lambda}{3}$, $h=-\frac{\lambda}{6}$, or $f=-\frac{\lambda}{3}$, $h=\frac{\lambda}{6}$. Where $\lambda \neq 0$.

III. $a^2 + f^2$, $b^2 = h^2$, and c = 0.

Then, by (2. 8), we have b=c=0. And, from (2. 6), we have f=h=0.

Therefore, from (1.3), we have $a=-\lambda$, b=c=0, f=h=0. Where $\lambda \neq 0$.

IV. $a^2=f^2$, $b^2=h^2$, and c=0.

Then, by (2. 2) and (2. 7), we have a=b=c=0, f=h=0.

Therefore, we can see that the length of the curvature tensor in each case is constant.

Thus, from lemma 2. 1., we have $\nabla R = 0$.

NIIGATA UNIVERSITY

References

- 1. K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J., 20 (1968), 46-59.
- 2. K. Sekigawa: On complex hypersurfaces of spaces of constant holomorphic sectional curvature satisfying a certain condition on the curvature tensor, Sci. Rep. Niigata Univ. Ser. A, 6 (1968), 51-57.
- 3. B. SMYTH: Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967), 246-266.
- 4. K. Yano: Differential geometry on complex and almost complex spaces, Vol. 49, Pergamon Press, 1965.