On C*-algebras Associated with Factors of Type II₁ Having Property Γ

By Kengo Матѕимото

(Received October 2, 1986) (Revised December 8, 1986)

Abstract

Let M be a factor of type II_1 on the standard Hilbert space H. We prove that if M has property Γ , there exists a larger C^* -algebra on H than the C^* -algebra $C^*(M, M')$ which has trivial intersection with C(H), the algebra of all compact operators on H.

Lat M be a factor of type Π_1 with the faithful normal normalized trace τ . Let M act standardly on the Hibert space $H = L^2(M, \tau)$. We denote by $\operatorname{Aut}(M)$ (resp. $\operatorname{Int}(M)$) the set of all automorphisms (resp. inner automorphisms) of M. For an automorphism $\theta \in \operatorname{Aut}(M)$, we define the unitary operator $u(\theta)$ on H by $u(\theta)\eta(x) = \eta(\theta(x))$, $x \in M$, where η is the canonical imbedding of M into H. Following [1], for a subset $G \subset \operatorname{Aut}(M)$, we write the C^* -algebra generated by the unitaries $u(\theta)$, $\theta \in G$, and M as $C^*(M, G)$. We denote by $C^*(M, M')$ the C^* -algebra generated by M and its commutant M' on H and by C(H) the algebra of all compact operators on H.

The author is indebted to Professor J. Tomiyama for his helpful suggestions.

In [3], A. Connes has shown that a factor M of type II₁ has property Γ in the sense of Murray and von Neumann [4] if and only if $C^*(M, M') \cap C(H) = \{0\}$. In this result, we observe the fact that $C^*(M, M') = C^*(M, \operatorname{Int}(M))$ because in our context we see that $u(\theta) = vJvJ$ if $\theta = \operatorname{Ad}(v) \in \operatorname{Int}(M)$ where J is the canonical unitary involution on H. Let $\operatorname{Cnt}(M)$ be the set of all centrally trivial automorphisms, which clearly contains $\operatorname{Int}(M)$. Here an automorphism θ of M is said to be centrally trivial if for a bounded sequence (x_n) in M, such that $\|x_n a - ax_n\|_2 \to 0$ for all $a \in M$, θ satisfies the condition $\|\theta(x_n) - x_n\|_2 \to 0$, where $\|x\|_2 = \tau(x^*x)^{1/2}$, $x \in M$.

We then prove the following:

THEOREM 1. If M has property Γ , then $C^*(M, \operatorname{Cnt}(M)) \cap C(H) = \{0\}$.

40 K. Matsumoto

In general, for many factors of type II_1 having property Γ , the class of centrally trivial automorphisms of them is exactly wider than that of inner automorphisms. Hence, by the next proposition, for such a factor M the C^* -algebra $C^*(M, \operatorname{Cnt}(M))$ is exactly larger than $C^*(M, M')$. We are interested in the boundary situation of those classes G of automorphisms of M satisfying $C^*(M, G) \cap C(H) = \{0\}$.

PROOF OF THEOREM 1. Put $A = C^*(M, \operatorname{Cnt}(M))$. Since A contains $C^*(M, M')$, A is irreducible. Hence $A \supset C(H)$ or $A \cap C(H) = \{0\}$. Thus if A contains C(H), the algebra A contains the one dimensional projection onto $C\eta(1)$. Then, by the proof of [1], Theorem 4], $\operatorname{Cnt}(M)$ acts strongly ergodically on M. Let (x_n) be a centralizing sequence in M, that is, a bounded sequence such that $\|x_na - ax_n\|_2 \to 0$ for all $a \in M$. Then by definition,we have that $\|\theta(x_n) - x_n\|_2 \to 0$ for an automorphism $\theta \in \operatorname{Cnt}(M)$. It follows that $\|x_n - \tau(x_n)\|_2 \to 0$ by the definition of strong ergodicity. This means that any centralizing sequence is trivial. Hence M does not have property Γ ([2; Corollaries 3.7 and 3.8]). This is a contradiction. Therefore,

$$C*(M, Cnt(M)) \cap C(H) = \{0\},\$$

which completes the proof.

As a consequence, one may easily see with Connes' result cited before that M has property Γ if and only if the above condition holds.

In order to make clear the difference between $C^*(M, Cnt(M))$ and $C^*(M, M')$, we show the following proposition.

Poposition 2. Let θ be an automorphism of M. Then θ is inner if and only if $u(\theta) \in C^*(M, M')$.

PROOF. It suffices to show the if part of the statement. Thus assume $u(\theta) \in C^*(M, M')$. Since M is a factor, the canonical map

$$\sum_{i=1}^{n} a_i b_i \longrightarrow \sum_{i=1}^{n} a_i \otimes b_i, \ a_i \in M, \ b_i \in M', \ i=1, 2, \ldots n$$

from the dense subalgebra of $C^*(M, M')$ to the algebraic tensor product $M \odot M'$ may be extended to a homomorphism π from $C^*(M, M')$ onto the minimal C^* -tensor product $M \otimes_{\min} M'$ (cf. [5]). The action $\operatorname{Ad} u(\theta)$ induces both an automorphism of M and that of M'. Hence $\operatorname{Ad} \pi(u(\theta))$ is of the from $\alpha \otimes \beta$ as an automorphism of $M \otimes_{\min} M'$, where α (resp. β) is an automorphosm of M (resp. M') induced by $\operatorname{Ad} \pi(u(\theta))$. Now, by [6, Theorem 1], the automorphism α is inner, but it is nothing but the original automorphism θ . This completes the proof.

Noticing $C^*(M, M') = C^*(M, Int(M))$, the previous proposition means the fact that the condition $Cnt(M) \supseteq Int(M)$ is equivalent to $C^*(M, Cnt(M)) \supseteq C^*(M, M')$. With this result, we know that in many examples of factors of type II_1 having property Γ the

C*-algebra $C^*(M, \operatorname{Cnt}(M))$ is exactly larger than $C^*(M, M')$. For instance, let $R(F_2)$ be the left group von Neumann algebra constructed by the free group on 2 generators F_2 and consider an outer automorphism θ on $R(F_2)$ exchanging the 2 generators. Since $R(F_2)$ is without property Γ , θ is centrally trivial (cf. [3]). Put $M = R(F_2) \otimes R_0$ where R_0 is the hyperfinite factor of type II₁. Then M has property Γ . On the other hand, the automorphism $\theta \otimes \operatorname{id}$ of M is in $\operatorname{Cnt}(M)$ but it is not in $\operatorname{Int}(M)$. This shows that $C^*(M, \operatorname{Cnt}(M)) \supseteq C^*(M, M')$.

On the contrary, in case of the hyperfinite factor of type II_1 , R_0 , it is well known that $Cnt(R_0) = Int(R_0)$, so that $C*(R_0, Cnt(R_0)) = C*(R_0, R_0')$, and R_0 has property Γ .

References

- [1] M. Choda, Strong ergodicity and compact operators, Math. Japon., 27 (1982), 634-643.
- [2] A. Connes, Almost periodic states and factors of type III₁, J. Funct. Analysis, 16 (1974), 415-444.
- [3] A. Connes, Classification of injective factors, Ann. Math., 104 (1976), 73–116.
- [4] F. J. Murray and J. von Neumann, On rings of operators IV, Ann. Math., 44 (1943), 716–808.
- [5] M. Takesaki, Theory of operator algebras I, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [6] S. Wassermann, Tensor products of *-automorphisms of C*-algebras, Bull. London Math. Soc., 7 (1975), 65–70.

Kengo Matsumoto
Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-21
Japan