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1. Introduction

R. A. Hirschfeld and B. E. Johnson [2] studied those $C^{*}$-algebras of which every self-
adjoint element has a finite spectrum. T. Ogasawara and K. Yoshinaga [4] proved that a
$C^{*}$-algebra is dual if and only if every $self\cdot adjoint$ element has a spectrum without limit
points other than zero. In this paper we present conditions on a $C^{*}\cdot algebra$ under which
every self-adjoint element has a countable spectrum.

2. Preliminaries

We state at first the definition of a dual $C^{*}$-algebra.
A $C^{*}$-algebra $A$ is called dual if there is a Hilbert space $H$ such that $A$ is $\cdot isomorphic$

to a $C^{*}$-algebra of the $C^{*}$-algebra of all compact operators on $H$.
A $C^{*}$-algebra $A$ is called liminal if for every irreducible representation $\pi$ of $A,$ $\pi(a)$ is

compact for each $a\in A$ .
If $A$ is a $C^{*}$-algebra, $A^{*}$ denotes its conjugate space and $A^{**}$ denotes its second con-

jugate space. Assuming $A$ is in its universal representation, then the a-weak closure of
$A$ can be identified with $A^{**}$ .

If $A$ and $B$ are $C^{*}$-algebras, $A\otimes.B$ denotes their spaitial $C^{*}$-tensor product, $A^{**}\otimes^{-}P^{*}$

denotes the $W^{*}$ -tensor product of $A^{**}$ and $B^{**}$ , and $A^{*}\otimes_{a^{\prime}}B^{k}$ denotes the norm closure of
the algebraic tensor product of $A^{*}$ and $p$ in $(A\otimes_{\alpha}B)^{*}$ .

If $X$ is a compact Hausdorff space, $C(X)$ denotes the $C^{*}$-algebra of all continuous
functions on $X$, and $C(X)^{*+}$ denotes the set of all positive linear functionals on $C(X)$ . By
the Riesz representation theorem we can identify $C(X)^{*}$ with the space of all bounded
complex regular Borel measures on $X$. We recall that a pure atomic functional $\phi$ on $C(X)$

is of the form:

$\phi=\Sigma_{i-1}^{\infty}\alpha_{i}\delta_{t;}$ ,

where $\{\alpha i\}$ is a sequence in the complex field with $\Sigma_{i-1}^{\infty}|ai|<\infty,$ $\{h\}$ is a sequence in $X$,

and $\delta_{t}$ denotes the evaluation functional of a point $t\in X$.
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The following lemma is obtained by a method similar to [3, Lemma].

LEMMA 1. Let $X$ be a compact Hausdorff space. Suppose that $(C(X)\otimes_{a}C(X))^{*}$

$=C(X)^{*}\otimes_{\alpha^{\prime}}C(X)^{*}$ . Then every self-adioint element of $C(X)$ has a countable spectrum.

PROOF. For $\phi\in C(X\times X)^{*}$ , define $\phi_{\Delta}\in C(X\times X)^{*}$ by

$\phi_{\Delta}(a)=\int\int_{XxX}\chi_{\Delta}(s, t)a(s, t)d\phi(s, t)$

where $\chi_{\Delta}$ denotes the characteristic function of the diagonal set $\Delta=\{(t, t):t\in X\}$ . Let $\mu$ ,
$\nu\in C(X)^{*}$ . By the Fubini theorem, we have

$(\mu\times\nu)_{\Delta}(a)=\int\int_{XxX}\chi_{\Delta}(s, t)a(s, t)d\mu(s)d\nu(t)$

$=\int_{X}(\int_{X}\chi_{\Delta}(s, t)a(s, t)d\mu(s))d\nu(t)$

$=\int_{X}a(t, t)\mu(\{t\})d\nu(t)$ .

Since $\{t\in X:\mu(\{t\})\neq 0\}$ is at most countable, $(\mu\times\nu)_{\Delta}$ is purely atomic. Now, $C(X)\otimes_{a}$

$C(X)$ can be identified with $C(X\times X)$. Hence each element of $\{\phi_{\Delta} : \phi\in C(X\times X^{*}\}$ is
purely atomic since the subspace of all purely atomic functionals on $C(X\times X)$ is closed.

Let $\Psi\in C(X)^{*}$ . For $a\in C(X\times X)$, define $\Psi^{-}\in C(X\times X)^{*+}$ by

$\Psi^{-}(a)=\int_{X}a(t, t)d\Psi(t)$ .

Since a contains the support of $\Psi_{\Delta}^{-}=\Psi^{-}$ . Thus, $\Psi^{-}$ is of the form:

$\Psi^{-}=\Sigma_{i-1}^{\infty}a;\delta_{(t;}ti)$ .
For a positive element $a\in C(X)$, the function $a^{-}$ : $(s, t)\rightarrow a(s)^{1/2}a(t)^{1/2}$ is in $C(X\times X)$.
Then we have

$\Psi(a)=\Psi^{-}(a^{-})=\Sigma_{i-1}^{\infty}a(ti)^{1/2}a(t;)^{1/2}=(\Sigma_{i-1}^{\infty}a\iota\delta_{ti})(a)$ .
Therefore, $\Psi$ is purely atomic. It follows from [5, Theorem] that every $self\cdot adjoint$ ele-
ment of $C(X)$ has a countable spectrum.

LEMMA 2. Let $A$ be a $C^{*}$-algebra. Suppose that ( $ A\otimes\alpha\otimes^{*}=A^{*}\otimes_{\alpha^{\prime}}\theta$ for an arbitary
$C^{*}$-algebra B. Then every self-adioint element of $A$ has a countable spectrum.

PROOF. Let $h$ be a self-adjoint element of $A$ and $C$ be a maximal commutative self-
adjoint subalgebra of $A$ which contains $h$ . It is easy to see that

$(C\otimes\alpha C)^{*}=C^{*}\otimes\alpha\prime C^{*}$ .
By Lemma 1, $h$ has a countable spectrum. This completes the proof.

LEMMA 3. Let $A$ be a $C^{*}$-algebra. Suppose that $A$ contains a minimal projection. Then
$A$ contains a non-zero dual closed two-sided ideal.

PROOF. Let $J$ be the closed two-sided ideal generated by a minimal projection. Then
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$J$ is a minimal ideal. Since $J$ is simple and contains a minimal projection, the image of an
irreducible representation of $J$ is $*$-isomorphic to the $c*$-algebra of all compact operators
on the representation space. Hence $J$ is dual.

3. Theorem

We are in the position to state and prove our theorem.
THOEREM. Let $A$ be a $C^{*}$-algebra. Then the following statements are equivalent:
(1) Every self-adioint element of $A$ has a countabe spectrum.
(2) $A$ has a composition series $(I_{\rho})_{0\leq\rho\leq\alpha}$ such that $I_{\rho+1}/I_{\rho}$ is dual.
(3) The second coniugate space ofA is atomic, that is, it isasum offactors of type I.
PROOF. If $A$ has no identity element, $A_{1}$ denotes the $C^{*}$-algebra obtained by adjoin-

ing an identity element to $A$ . It is easy to see that each of the three statements holds if
it holds with $A_{1}$ in place of $A$ . Thus there is no loss of generality in assuming that $A$ has
an identity element.

(1) $\rightarrow(2)$ . The proof is a modification of the method used by J. Tomiyama [7]. We
first show that there is a minimal projection in $A$ . Let $C$ be a maximal commutative
self-adjoint subalgebra of $A$ and let $X$ be the carrier space of $C$. Since $C$ has an identity
element, $X$ is compact. Then the Gelfand transformation: $x\rightarrow x\wedge isa^{*}\cdot isomorphism$ of
Conto C$(X)$ . Let x’ beareal function of C(X). Then we havea unique elementx of C
such that $x\wedge=x^{\prime}$ . The range of $x^{\prime}$ is the spectrum of $x$, which is countable. By [5,

Theoroml, $X$ has no perfect set. Therefore, there is at least one isolated point $x_{0}$ in $X$,
and so the characteristic function $p$ of $\{x_{0}\}$ is a minimal projection in $C(X)$ .

Identifying $C$ with $C(X)$ , we may assume that $p$ belongs to $C$. Let $q$ be a non-zero
positive element of $A$ such that $q\leqq p$ . For each $a\in C$, we have $ap=pa=\gamma p$ for some com-
plex number $\gamma$ . Then $aq=apq=\gamma q=qa$ . Since $C$ is a maximal commutative self-adjoint
subalgebra of $A,$ $q$ belongs to $C$ and $q=\delta p$ for some positive real number $\delta$. Thus there is
a minimal projection in $A$ . It follows from Lemma 3 that $A$ contains a non-zero dual
closed two-sided ideal.

Finally, let $J$ be an arbitrary closed two-sided ideal in $A$ . Then every $self\cdot adjoint$

element of $A/J$ has a countable spectrum. By the above argument, $A/J$ has a $non\cdot zero$

dual closed two-sided ideal. By transfinite induction there is a composition series $(I_{\rho})_{0\leqq}$

$\rho\leqq a$ such that $I_{\rho+1}/I_{\rho}$ is dual.
(2) $\rightarrow(3)$. Let $I_{\overline{\rho}}$ be the a-weak closure of $I_{\rho}$ in $A^{**}$ . Since $I_{\overline{\rho}}$ is a $\sigma$-weakly closed

two-sided ideal in $A^{**}$ , there is a central projection $z_{\rho}$ such that $I_{\overline{\rho}}=A^{**}z_{\rho}$ . Then
$A^{**}(z_{\rho+1}-z_{\rho})$ is the a-weak closure of the image of representation of $I_{\rho+1}/I_{\rho}$. Since the
second conjugate space of a dual $C^{*}$ -algebra is atomic, so is $A^{**}(z_{\rho+1}-z_{\rho})$. Then we have
that $A^{**}=\Sigma_{\rho}A^{**}(z_{\rho+1}-z_{\rho})$ . Thus, $A^{**}$ is also atomic.

(3) $\rightarrow(1)$ . Let $f$ be a state on $A\otimes_{a}B$, and let $\pi$ be the representation of $A\otimes.B$ cor-
responding to $f$. By [1, Proposition 1] there are representations $\pi A$ and $\pi B$ of $A$ and $B$,
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respectively, such that $\pi(x\otimes y)=\pi A(x)\pi B(y)=\pi B(y)\pi A(x)$ for $x\in A$ and $y\in B$. Since $A^{**}$

is atomic, the $\sigma\cdot weak$ closure of $\pi A(A)$ is atomic. Hence, the map: $\pi A(x)\otimes\pi B(y)\rightarrow\pi(x$

$\otimes y)$ extends to a normal homomorphism of $\pi A(A)^{-}\otimes\pi B(\otimes^{-}$ . Thus, $ f\in A^{*}\otimes_{\alpha^{\prime}}\theta$ , and so
$(A\otimes_{a}B)^{*}=A^{*}\otimes_{a^{\prime}}B^{*}$ . Then Lemma 2 implies (1). This completes the proof

REMARK 1. P. Wojtaszczyk [8] considered other conditions in the separable case.
REMARK 2. Let $A$ and $B$ be $c*$-algebras. By [9, Theoreme 1] there is a canonical

$*.isomorphism\pi$ of $A\otimes_{a}B$ into $A^{**}\otimes^{-}\theta^{*}$ . Then $\pi$ has a unique normal extension $\pi^{-}$ to
$(A\otimes_{a}B)^{**};$ $\pi^{-}$ is $a^{*}\cdot homomorphism$ of $(A\otimes_{a}B)^{**}$ onto $A^{**}\otimes^{-}B^{**}$. If $\pi^{-}$ is $a^{*}- isomor$.
phism, we shall say that $(A\otimes_{a}B)^{**}$ is canonically $\cdot isomorphic$ to $A^{**}\otimes^{-}B^{**}$ . It is easy
to see that $(A\otimes_{a}B)^{**}$ is canonically $*$-isomorphic to $A^{**}\otimes^{-}B^{**}$ if and only if $(A\otimes_{a}B)^{*}$

$=A^{*}\otimes_{a^{\prime}}\theta$ (see [6, pp. $6\Re 67]$ ). Thus, each of the three statements of the Theorem is
equivalent to the following:

(4) For an arbitrary $c*$-algebra $B,$ $(A\otimes_{a}B)^{**}$ is canonically $\cdot isomorphic$ to $A^{**}\otimes^{-}$

$p*$.
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