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Introduction

Let $SU(2)$ be the special unitary group of dimension 2 and $SO(3)$ identified with $Ad$

$SU(2)$ , where $Ad:SU(2)\rightarrow 0(3)$ is the adjoint representation. If an $SU(2)$ -action on $CP_{3}$

( $=the$ complex projective 3-space) has $KerAd$ as its ineffective kernel, it induces an
$SO(3)$ -action on $CP_{3}$ . We shall call the action of $SO(3)$ induced by a linear $SU(2)$ -action
on $CP_{3}$ linear action.

In this note we shall prove that possible orbit types of $SO(3)$ actions on $CP_{3}$ are like
those of linear actions. This note also contains a correction of an argument in the paper
[61 ([61, p. 5) of one of the present authors.

We shall use the following notations.

$S=the$ standard maximal torus of $SU(2)$

$T=AdS=\dagger\left\{\begin{array}{lll}cost & sint & 0\\-sint & cost & 0\\0 & 0 & 1\end{array}\right\}t\in R\}$ ; the maximal torus of SO(3).

$a=Ad\left\{\begin{array}{ll}0 & l\\-1 & 0\end{array}\right\}=\left\{\begin{array}{lll}1 & & \\ & -l & -1\end{array}\right\}$ , $b=Ad\left\{\begin{array}{ll}i & 0\\0 & -i\end{array}\right\}=\left\{\begin{array}{ll}-1 & \\-1 & 1\end{array}\right\}$

$N=N(T)=T\cup aT$, the normalizer of $T$ in $SO(3)$

$D_{2}=\{e, a, b, ab\}=Z_{2}+Z_{2}$

$\phi_{r}$ ; the irreducible representation of $SU(2)$ of degree $r+1$

$[z_{1}, z_{2}, z_{3}, z_{4}]$ ; the homogeneous coordinate on $CP_{3}$ .

1. Linear actions on $CP_{3}$

1.1. The action induced by $\phi_{3}$ .
Consider the action of $SU(2)$ on $CP_{3}$ induced by $\phi_{3}$ . Recall that $\phi_{3}$ ; $SU(2)\rightarrow U(4)$

is given by
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$\phi_{3}\left\{\begin{array}{ll}a & \beta\\\gamma & \delta\end{array}\right\}=[\gamma^{3}\sqrt 3a^{2}\gamma\sqrt 3a\gamma^{2}a^{3}$ $a^{2}\delta+2a\beta\gamma\beta\gamma^{2}+2a\gamma\delta\sqrt 3\gamma^{2}\delta\sqrt 3a^{2}\beta a\delta^{2}+2\beta\gamma\delta\beta^{2}\gamma+2a\beta\delta\sqrt 3\gamma\delta^{2}\sqrt 3a\beta^{2}$
$\sqrt{}\sqrt{}\beta^{2}33\delta^{3}\beta\beta^{2}\delta^{2}\delta]$

It is clear that this action induces an $SO(3)\cdot action$ on $CP_{3}$ . By direct computations we
can show that

(i) principal isotropy subgroups are trivial.
(ii) $F(T, CP_{3})=$ {isolated four points}
(iii) $ F(a, CP_{3})\cap F(b, CP_{3})=\beta$

(iv) $SO(3)_{(1,0,1,0)}=D_{3}$ ( $=dihedral$ subgroup).

1.2. The action induced by $\phi_{2}$

Recall that $\phi_{2}$ : $SU(2)\rightarrow U(3)$ is given by

$\phi_{2}\left\{\begin{array}{ll}a & \beta\\\gamma & \delta\end{array}\right\}=[\sqrt 2a\gamma a^{2}\gamma^{2}$ $\sqrt 2a\beta a\delta+\beta\gamma\sqrt 2\gamma\delta\sqrt{}\delta^{2}\beta^{2}2\beta\delta]$

The action of $SU(2)$ on $CP_{3}$ induced by $\phi_{2}+\phi_{0}$ induces an action of $SO(3)$ on $CP_{3}$ .
We can show that

(i) principal isotropy subgroups are trivial.
(ii) $F(T, CP_{3})=union$ of one 2-sphere and isolated two points.
(iii) $F(N, CP_{3})=$ {isolated two points}.
(iv) $F(SO(3), CP_{3})=\{[0,0,0,1]\}$ .
(v) There is a point whose isotropy subgroup is $Z_{2}$ .
(vi) Possible isotropy subgroups are $\{e\},$ $(T),$ $(N),$ $G,$ (&).

1.3. The action induced by $\phi_{1}+\phi_{1}$

Recall that $\phi_{1}$ ; $SU(2)\rightarrow U(2)$ is given by

$\phi_{1}\left\{\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right\}=\left\{\begin{array}{ll}a & \beta\\\gamma & \delta\end{array}\right\}$

This action also induces an action of $SO(3)$ on $CP_{3}$ . For this action, we have
(i) principal isotropy subgroups are trivial.
(ii) $F(T, CP_{3})=F(b, CP_{3})=union$ of two 2-spheres
(iii) $ F(D_{2}, CP_{3})=\beta$

(iv) Possible isotropy subgroups are $\{e\}$ and $(T)$ .

2. $SO(3)$ -action on homotopy complex projective 3-space

Let $M$ be a homotopy complex projective 3-space and $SO(3)$ act on $M$. We can show
the following



A note on $SO(3)$ -action on $CP_{3}$ 43

PROPOSITION (2. 1) There is a point $x$ in $M$ such that $SO(3)_{x}$ is a maximal torus.

PROOF. Assume the contrary. Then for every point $x\in M,$ $H^{*}(SO(3)(x);Q)=H^{*}$

$(pt., Q)$ or $H^{*}(S^{3}; Q)$ . By Vietoris-Beagle theorem, the orbit map $\pi;M\rightarrow M/SO(3)$ in-
duces an isomorphism $\pi^{*};$ $H^{2}(M/SO(3);Q)\rightarrow H^{2}(M;Q)$ , and hence any generator of $H^{*}$

$(M, Q)$ is in the image of $\pi^{*}$. Since $\dim M/SO(3)\leqq 4$, this contradicts to the structure of
$H^{*}(M;Q)$ . This completes the proof.

From results in [2] and [4], it follows that possible types of $F(T, M)$ are
Case 1. $F(T, M)=union$ of two 2-spheres
Case 2. $F(T, M)=union$ of one 2-sphere and two isolated points
Case 3. $F(T, M)=union$ of isolated four points.

We shall consider the case 1. Denote $F(T, M)=S_{1}^{2}US^{2}$. It is clear that $F(d, M)=$

$F(T, M)$ for every element $d$ of $T$ of finite order. This implies that principal isotropy
subgroup are trivial. We prove the following

PROPOSITION (2. 2) $ F(D_{2}, M)=\beta$

PROOF. Assume the contrary. By the same arguments as in [6] ([6], p. 5) is follows
that $F(D_{2}, M)$ consists of just four points; put $F(D_{2}, M)=\{x_{1}, x_{2}, x_{3}, x_{4}\}$ . Since $F(N, M)$

$=F(a, F(T, M)),$ $F(b, M)=F(T, M)$ and $F(a, M)\cap F(b, M)=F(D_{2}, M)$ , we have $F(N$,
$M)=F(D_{2}, M)$ . From a result in [31 ( $(3.7)$ in [31) it follows that

$G(x_{1})\cap F(D_{2}, M)=\left\{\begin{array}{ll}\{three points\} & if G_{x_{1}}=N\\\{one point\} & if G_{x_{1}}=G.\end{array}\right.$

Here $G$ denotes $SO(3)$ . If $F(G, M)=\beta,$ $G(x_{1})=G(xt)$ for some $i=2,3,4$ and hence $x;=gx_{1}$

for some $g\in G$. Hence we have $N=gNg-1$ and hence $g\in N$, which implies $x;=x_{1}$ . Thus
we have $ F(G, M)\neq\beta$ . By similar arguments we can prove that it is not the case in
which,$\emptyset\neq F(G, M)\subsetneq F(N, M)$ . Thus we have proved that $F(G, M)=F(N, M)$ . We
may assume that $\{x_{1}, x_{2}\}\subseteq S_{1^{2}}$ and {$x_{3},$ $x_{4}I\subset S_{2^{2}}$. Let $\pi;S^{7}\rightarrow M$ be a principal $S^{1}$-bundle.
By a result in [4] the action of $SU(2)$ on $M$ define by $Ad$ can be lifted on $S^{7}$. Then $F(S$,
$S^{7})$ is connected. Since $\pi^{-1}F(G, M)\subset F(SU(2), S^{7})\subset F(S, S^{7})$ , we have $F(G, M)\subset\pi F$

$(SU(2), S^{7})\subset\pi F(S, S)\subset F(T, M)$ . Thus $F(G, M)$ is contained in $\pi F(S, S^{7})$ which is a
component of $F(T, M)$ . This is a contradiction. This completes the proof of the pro-
position.

It is easy to conclude that possible isotropy subgroup types are $\{e\}$ and $\{T\}$ .
Next we shall consider the case 2. Denote $F(T, M)=s_{1^{2}}u\{x_{1}, x_{2}\}$ . Assume that $\dim$

$F(b, M)=4$ . We may assume $F(b, M)=FU\{x\}$ , where $F$ is a manifold of dimension 4
(see [21 Chap. VII). Since $F(b, M)$ is invariant under $a,$ $x$ lies in $F(a, F(b, M))=F(D_{2}$,
$M)$ . Since $x$ is an isolated point of $F(b, M)F(a, M)$ and $F(ab, M)$ , the Borel formula at
$x$ ([1]) leads a contradiction. Denote $F(b, M)=S_{1^{2}}US_{2^{2}}$ and assume $\{x_{1}, x_{2}\}\subset S_{2^{2}}$. By a
similar argument in [6], we can show that $F(D_{2}, M)$ consists of just four points; put
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$F(D_{2}, M)=\{y_{1}, h, y_{3}, y_{4}\}$ and assume $\{y_{1}, h\}\subset S_{1}^{2}$ and $\{Jb, y_{4}\}\subset S_{2^{2}}$. Since $F(N, M)=$

($a,$ $F(T, M)=F(a, S_{1}^{2})UF(a, \{x_{1}, x_{2}\})$ , we have $F(N, M)=\{y_{1}, g\mathfrak{y}\}$ or $F(N, M)=\{\lambda Jb$ ,
$y_{3},$ $y_{4}$}.

Now we shall prove the following

PROPOSITION (2. 3) $F(N, M)=\{y_{1}, y_{2}\}$ and $\beta\neq F(G, M)\subsetneq F(N, M)$ .
PROOF. By completely similar arguments as in [6], we can prove that $F(N, M)=$

$F(D_{2}, M)$ . If $F(G, M)=\beta,$ $G(yi)nF(D_{2}, M)$ consists of just three points for $i=1,2$ and
hence $G(y_{1})=G(y_{2})$ which leads a contradiction. Thus $ F(G, M)\neq\beta$ . Assume $F(G, M)$

$=F(N, M)$ . Then $G(y_{3})$ is 3-dimensional. From a result in [41, it follows that $ G(y_{3})\cap$

$F(D_{2}, M)$ consists of just six points or three points, which is clearly impossible. This
completes the proof of the proposition.

Consider the local representation at the unique fixed point and the action of $SO(3)$

on $S^{5}$ induced by the representation. Since the action has $S^{2}$ as an orbit, a result in [7]

shows that principal isotropy subgroups are trivial.
Moreover we can prove the following

PROPOSITION (2. 4) There exists a point whose isotropy subgroup is a cyclic group of
order 2.

PROOF. Consider $M=GS_{2}^{2}$ . Put $F(G, M)=\{y_{1}\}$ . Notice that there is an element
$g\in G$ such that $gh=y_{3}$ or $y_{4}$ . In fact one can choose an element $g$ such that $a=gbg-1$ and
$g^{2}=e$ . Then $gy_{2}\in F(D_{2}, M)$ . Assume $gh=y_{2}$ . Then $G_{y_{2}}=gG_{y_{2}}g-1i$. $e$. $N=gNg-1$
which implies $g\in N$. Thus $gg\mathfrak{y}=y_{3}$ or $y_{4}$ . We may assume $ gn=y\S$ . We can show that
$F(T. M)=\{x_{1}, x_{2}, y_{2}\}$ . If $hz(h\in G, z\in S_{2^{2}})$ is in $GS_{2^{2}\cap}F(T, M)$ , then $hz\in S_{1}^{2}U\{x_{1}, x_{2}\}$ .
Assume $hz\in S_{1^{2}}$ and hence $h^{-1}Th\subset G_{z}$ . Since $S_{2^{2}}$ is $N\cdot invariant$ and $hz\in S_{1^{2}},$ $h\in N$. It
follows from the fact that $\dim G_{z}=1$ that $G_{z}=h^{-1}$ Th or $h^{-1}Nh$. Consider the case in
which $G_{z}=h^{-1}$ Th. Since $b\in G_{z},$ $b=h^{-1}$ th $(t\in T)$ . Since $t^{2}=1$ , we have $t=b$, and hence
$h\in N$, which contradicts to the assumption. Thus we have $G_{z}=h^{-1}Nh$ and $b=h^{-1}nh$.
Since $a$ is the unique element in $N$ of order 2, $b=h^{-1}$ $a$ $h$ and hence $h^{2}=e$. Thus we have
$a\in G_{z}$ and $z\in F(D_{2}, M)$ . Since $ha=ah$, we have $ahz=haz=hz$ and hence $hz\in F(D_{2}, M)$

which implies $hz=h$. It is now easy to prove the proposition from the following

PROPOSITION (2. 5) Principal isotropy subgroups of $G\cdot action$ on $M_{0}$ are cyclic of order 2.

PROOF. Let $H$ be principal isotropy subgroup of the action of $G$ on $M_{0}$. Clearly $H$ is
cyclic. Consider the slice representation at $y_{2},$ $\rho_{y_{2}}$ ; $N\rightarrow 0(2)$ . Note that $\dim M_{0}=4$. It
is clear that $\rho_{y_{2}}|T:T\rightarrow 0(2)$ is given by

$(\rho_{y_{2}}|T)\left\{\begin{array}{lll}cost & sint & 0\\-sint & c\oe t & 0\\0 & 0 & 1\end{array}\right\}=\left\{\begin{array}{ll}nc\oe t & sinnt\\-sinnt & cosnt\end{array}\right\}$ .

Let $\beta y_{2}(a)=(Xij)\in O(2)$ . It follows from $at=t^{\prime}a$ ( $t^{\prime}$ is transpose of t) that $x_{11^{2}}+x_{12^{2}}$
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$=1,$ $x_{12}=x_{21}$ and $x_{11}=-x_{22}$ . Thus principal isotropy subgroup of $\rho_{y_{2}}$ is the subgroup

generated by $a$ and $\left\{\begin{array}{ll}cos2\pi/n & sin2\pi/n\\-sin2\pi/n & cos2\pi/n\end{array}\right\}$ which is a dihedral group $D_{n}$ . Since must

be cyclic, we have $n=1$ , which prove the proposition.
It is easy to conclude that possible isotropy subgroup types are $\{e\},$ $(Z_{2}),$ $(T),$ $(N)$ ,

$G$ and (odd dihedral group).

REMARK. We can not determine whether (odd dihedral group) appears as isotropy
subgroup actually.

We shall consider the last case 3. Denote $F(T, M)=\{x_{1}, x_{2}, x_{3}, x_{4}\}$ . We shall prove
the following.

PROPOSITION (2. 6) $F(b, M)$ is $2\cdot dimensional$ and $ F(D_{2}, M)=\beta$ .
PROOF. Assume $F(b, M)$ is 4-dimensional. Put $F(b, M)=F_{0^{U}}x_{1}$ . Since $F(b, M)$ is

invariant under $a,$ $x_{1}\in F(a, M)$ and hence $ F(D_{2}, M)\neq\emptyset$ . But the same arguments as in
case 2 show a contradiction. Thus we may put $F(b, M)=S_{1^{2}}US_{2^{2}}$ and assume $\{x_{1}, x_{2}\}\subset$

$S_{1^{2}}$. Assume $ F(D_{2}, M)\neq\beta$ . Then $F(D_{2}, M)$ consists of four points $y_{1},$ $y_{2},$ $y_{3}$ and $y_{4}$ .
We assume that $y_{1},$ $y_{2}\in S_{1^{2}}$ and $y_{3},$ $y_{4}\in S_{2^{2}}$. If $ F(N, M)=\emptyset$ , then $G(yi)$ is 3-dimensional
and hence $G(y;)\cap F(D_{2}, M)$ consists of six points, which is impossible. Thus we have
$F(N, M)\neq\emptyset^{\prime}$ . Since $F(N, M)=F(a, F(T, M))$ , we have $F(N, M)=\{x_{1}, x_{2}\}$ or $\{x_{1},$ $x_{2},$ $x_{3}$ ,
$x_{4}\}$ . If $F(N, M)=F(T, M)$ , there exists no point whose isotropy subgroup is $T$, which
contradicts to the proposition (2. 1). Thus we have $F(N, M)=\{x_{1}, x_{2}\}$ . Assume $F(G$,
$ M)\neq\emptyset$ . Consider the local represemtation at a point in $F(G, M)$ . This representation
define an action of $SO(3)$ on $S^{5}$ whose principal isotropy subgroups are icosahedral, which
is clearly impossible (see [7]). The assumption $F(G, M)=\beta$ also concludes a contradic-
tion. This proves the proposition.

Moreover we can prove the following

PROPOSITION (2. 7) Principal isotropy subgroups are trivial.

PROOF. Let $H=Z_{m}$ be a principal isotropy subgroup. We may assume $H\subset T$. It is
clear that $m$ is odd. Assume that $m$ is greater than 1 and $p$ is a prime factor of $m$ . Then
$F(Zp, M)$ is $4\cdot dimensional$ and hence $ F(Zp, M)=FU\chi$, where $F\sim CP_{2}$. Since $F(Zp, M)$

$z_{p}$

is $T\cdot invariant,$ $x\in F(T, M)$ . Consider slice representation $\rho_{x}$ at $x,$ $\rho_{x}$ ; $T\rightarrow 0(4)$ . Then
$\rho_{x}=t^{u}+t^{v}$ in $R(T)=Z[t, t^{-1}]$ , where $u$ and $v$ are integers. It is clear that $m=(u, v)$ and
$F(Zp, M)$ is 4-dimensional at $\chi$, which is a contradiction. This completes the proof of
the proposition.

Thus in the case 3 possible orbit types are $\{e\}(Z_{2})$ , (odd dihedral group), and $(T)$ .

3. Remarks

An argument in [6] ([6], p. 5) which states that the case in which $F(T, M)=S_{1}^{2}U$
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$\{x_{1}, x_{2}\}$ and principal isotropy subgroups are finite does not occur is incorrect. In this
case we shall prove the following

PROPOSITION. Let $SO(3)$ act on homotopy complex projective 3-space M. Assume $F(T$,
$M)$ is union of one 2-sphere and two isolated points. Then $M$ is diffeomorphic to the standard
complex projective $3\cdot spaceCP_{3}$.

PROOF. We have proved in this case that
(i) $F(b, M)=S_{1^{2}}US_{2^{2}}$

(ii) $F(N, M)=\{y_{1}, y_{2}\}\subset S_{1^{2}}$ and $F(G, M)=\{y_{1}\}$ .
(iii) $M_{0}=GS_{2}^{2},$ $F(T, M_{0})=\{x_{1}, x_{2}, y_{2}\}$

(iv) principal isotropy subgroup of $G\cdot action$ on $M_{0}$ is cyclic of order 2.
(v) $F(N, M)=\{yA$

Consider the $SU(2)$ -action on $CP_{2}$ induced by $\varphi_{2}:SU(2)\rightarrow U(3)$ . This action induces
an $SO(3)$ action on $CP_{2}$ . It is easy to show that this action has the same orbit structure
as the action on $SO(3)$ on $M_{0}$ . Since $M_{0}/SO(3)$ and $CP_{2}(3)$ are both $[0,1]$ , we can con-
struct a homeomorphism $h:M_{0}/SO(3)\rightarrow CP_{2}/SO(3)$ preserving orbit structure. From a
result in [2] ([2], Chap. II), it follows that $M_{0}$ is diffeomorphic to $CP_{2}$ . Since inclusions
$S_{2^{2}}\rightarrow M_{0}$ and $S_{2}^{2}\rightarrow M$ induce isomorphisms $H^{2}(M_{0}: Q)\rightarrow H^{2}(S_{2}^{2}; Q)$ and $H^{2}(M;Q)\rightarrow H^{2}(S_{2}^{2}$ ;
$Q)$ , we have that the inclusion $M_{0}\rightarrow M$ induces an isomorphism $H^{2}(M;Q)\simeq H^{2}(M_{0};Q)$ .
From a result in [6] (Proposition 1) it follows that $M$ is diffeomorphic to $CP_{3}$ . This
completes the proof of the proposition.
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