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0. Introduction

Let (M, g) be a Riemannian manifold. Let Vv° R’ (R°; and S° be the Riemannian,
the Riemannian curvature tensor, the Ricci tensor and the scalar curvature, respectively.
The k-th covariant differential of a tensor field K with respect to Ve is denoted by (V°)*K
and (V%) °K=XK, by definition. Manifolds and tensor fields are assumed to be of class C*
unless otherwise stated. For any integer =0 and tangent vectors or vector fields on M,
we adopt a notation:

(VPR =V, Va—g,-ere, V153 (VO RY)

=(Vi Vot VIV, VY, e VI (RO k1R,
where Vﬁ," etc., are components of V,, etc., and V%, V%, 1 .- V%, (R rjik are compon-

ents of the k-th covariant differential of Re in local coordinates. For each x, y&EM, a
linear isomorphism @ of the tangent space T=(M) onto Ty (M) is naturally extended to a
linear isomorphism of the tensor algebra T'(Tx(M)) onto T'(Ty(M)), which is also denoted
by @. Now, we assume that (M, g) is a homogeneous Riemannian space, i. e., that (M,
£) admits a transitive group of isometries.
Then, for every integer n=0, the following condition P(#) is satisfied:

P(n); For each x, yEM, there exists a linear isometry of Tx(M) onto Ty(M) such
that

O((VO)*R%) x= ((VO)*R?) s, for k=0,1,......, m

In fact, @ is given by putting @= (dy) x, where ¢ is an isometry which maps x to y. 1. M.
Singer (of. [4]) dealt with the converse problem and proved the following

THEOREM A. Let (M, g) be a connected, simply connected and complete Riemannian space.
If (M, g) satisfies the condition P(n) for certain n, then it is Riemannian homogeneous.

In this Theorem, the minimum of such integers #, depends on (M, g), though it is smaller
than m(m—1) /2+1, where m=dim M. The proof of the above Theorem in [4] is based
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on the following

THeorem B. (W. Ambrose and I. M. Singer, [1]) Let (M, g) be a connected, simply
connected and complete Riemannian manifold. (M, g) is Riemannian homogeneous if and
only if there exists a skew-symmetric tensor field T of type (1, 2) on M satisfying

©. 1) VL R=T(X) R,
0. 2) v, T=T(X)-T,

Jfor any tangent vector XcT<x(M), xE M.
Concerning with Theorem A, the present author has proved the following (cf. [3])

THEOREM C. Lel (M, 2) be a 3-dimensional connected simply connected and complete
Riemannian manifold satisfying the condition P(1). Then (M, g) is Riemannian homogene-
ous, and furthermore, it is isomeiric with one of (I) S3, (II) E3, (III) H3, (IV) M2x E!,
(V) group manifolds with certain left-invariant metrics which ane not symmetric ones, where
S™, E™, H™ denote m-dimensional sphere, euclidean space, hyperbolic space with canonical
melrics, respectively, and M?*=S2? or H? in (IV).

In this paper, we shall give a list of Lie algebras of Lie groups of full isometries
which act effectively and transitively on 3-dimensional connected, simply connected Rie-
mannian manifolds by means of the eigenvalues of the Ricci transformation (R%)1, etc.
(cf. Table in §2).

1. Preliminaries

Let (M, ) be a connected m-dimensional Riemannian manifold with the Riemannian
connection V°and I(M, g (Io(M, g), resp.) be the full group of the isometries (the iden-
tity component of I(M, g), resp.). Let O(M, g) be the orthonormal frame bundle over M
with the projection =. Let R™ be an m-dimensional real number space and (v;), v;=(0,...,

0, i, 0,...... ,OER™ {=1,2, ...... , m, be the canonical basis for R™. Then, each 7= (x;
X1, ceeeee , Xm) EO(M, g) can be regarded as a linear isomorphism from R™ cnto Tx(M )
such that y(v,))=X;, i=1, 2, ...... ,m. Let O(m) (SO(m), resp.) be orthogonal group of

degree m (a special orthogonal group of degree m, resp.) and o(m)=38o(m) be the Lie
algebra of O(m) (or SO(m)). More generally, let SO(n, m—n) be the group of metrices
in SL(m, R) which leave invariant the quadratic form —#—......—w-+uf 1 +...... 0,
and 80(n, m—mn) be its Lie algebra. Now, we define linear mappings fij(i<j) on R™
by

fii() =—vj, fij(wj)=v; and fij(wr)=0, for k#i,j.

Furthermore, we put fji=—fij (i<j) and fii=0. Then (fi;) (i<j) is a basis for 80(m).
Let F;; be the fundamental vector fields on O(M, g) corresponding to fij € 80(m), i, j=1,
2, ceeeen ,m (cf. [2]), and ¥ be the Lie algebra of all vector fields on O (M, g) of the form
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S1b;xFjr, where bjr are any real numbers. Now, let ¥V be a metric linear connection on
Mk with respect to g. Then we may associate with each » =R” a horizontal vector field
E(v) on O(M, g) with respect to V as follows. For each y €0}, g), (E(®)) is the uni-
que horizontal vector at 7 such that =#((E(®),;)=7r({®). E() is called the standard hori-
zontal vector field corresponding to v &R™. We put E;=E(v;), i=1,2, ...... , m. Then,
(E;) are lineary independent horizontal vectors at each y €0O(M, g). Let & be the m-

dimensional vector space of all vector fields on O(4, g) of the form >}a;E; where a; are
1
any real numbers. Then, § acts on € by
(1. 1) [Fij, E(v)1=E(fijv), i, 1=1,2,...... , M.
On the other hand, if we denote by }~{ the horizontal lift of a vector field X on M with
respect to V, then we have (cf. [2])
1. 2) [X, V1r=(X YDr—771-R(X, Y)or, rEOM, o),

where R denotes the curvature tensor field with respect to V.

Now, we assume that (M, g) is simply connected, complete, and that there exists a
skew-symmetric tensor field T of type (1. 2) on M satisfying (0. 1) and (0. 2). Using the
tensor field 7, we may construct a metric linear connection V by Vx=vV%—T(X). We
now fix a point e= (%o, €f, -----. ,em)EO(M, 2. Let G be the holonomy subbundle of
O(M, g) through ¢ with respect to V. Then, W. Ambrose and 1. M. Singer proved that
G has a Lie group structure with the identity € and acts transitively on M as a group of
isometries of (M, g) by v (x)==("7), 7, 7'EG, n(y)=x. The Lie algebra of G can be
expressed by means of ¥ and €. This is nothing but the assertion of Theorem B in §1.

2. Statement of main result
Let (M, g) be a connected, simply connected 3-dimensional homogeneous Riemannian
manifold. dim M=3 implies
2. 1) RY(X, V)= (RO XNAY+XN\RHY—(5°/2) X\,

forall X, YET:(M), x&M.

We now fix a point xo EM. At x,, we may choose an orthonormal basis (e}) in T«,(M)
such that

@ 2 (R%)le]=Fkie], 1<i<3.
By the homogeneity of (M, g), ki are constant on M. (2.1) and (2. 2) imply
2 3 R°(ef, €3) = ((k1+ketks) [2) el /\e3,
R°(€3, €3) = ((kat+ks—Fky) [2)€3/\e3,
R°(e3, e7) = ((ks+ki—ky) [2)€3/\e] .
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For our purpose, it is sufficient to deal with the case (V) in Theorem C. The details
for (V) is mentioned as follows. In this case, (M, g) can be regarded as a connected,
simply connected 3-dimensional group manifold ’c? with left-invariant metric g induced
by a positive-definite inner product <<, > on g (Lie algebra of 8) such that g =spang
(e, €3, €3), where {e;, e;>=3ij, i, j =1, 2, 3, and furthermore, e; are related by

@2 9 [e:1, e2]= (b—a)es+ece1—pes,
Lez, es]1= (b—h)e,+de;—fes,
[es, e1]1= (k—a)e,+ge3—cey,

here [ , ] denotes the Lie bracket operation on g, and the real numbers, a, b, ¢, d, ¢, f, A,
b, g, in (2. 4) are determined by the following manner:

(i) ki#ky, ko#tks, hks#k.

(i)-@) c=d=e=f=0, p, qg+0,
a=(ky—k3)r, b= (kst+ki—2ks)r, h=(2ky—ks—Fky)r, p=(ks—ks)t
q= (k—k1) 1,

where 2= (k12— koks+ k3 —kiky) [ (2(ky—ks) 2 (ks + Ry —2k3) ),
12=—(ks+ky) [ (R1—ks3)2.

(1)-(2) e=f=p=q=0, c d+*0,
a= (ky-+ky—2ks3) 7, b= (k1+ko—2k3)r, h= (ko—Fk)7, c=(ki—ks)t,
d= (ks—ky) 1,

where 2= (klz'—- k2k3+ k22 —kakl) / (2 (kl ——kz) 2 (kl + kz— 2k3) ) ’
2= — (ky+ky) | (y—F3) 2.

(i)_(3) i C=d=P=q=O, e’f:#oa
a= (ky+ks—2k1) 7, b= (k2—ks)?, h= (kot+ks—2k)r, e=(ki—k3)l,
f=(ka—k1) ¢,

where 2= (k2 —ksk,+ ks —Fkiks) [ (2(ko—ks3) 2 (ky-+-k3—2Fky)),
t2=— (ky+ks) [ (ke—k3)2

(1)-® c=d=e=f=p=q=0,
a’=rhiks[2ky, b =koks3[2ky, h2=kyk2/2ks,

where ab=—Fks, bh=ky, ah=-—Fk;.

(ii) ki=ky, ks#ki(k), ks#0.
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iH-@) c=d=e=f=p=q=0.
h=0, ab= (2ki—ks)/2=—Fks/2,
where a+b+#0.
(iD-(2) c=d=e=f=p=q=0,
a+b=0, a’=k3/2, h=—Fk/2a.
§i\nce we may regard (e;) = (e;, €3, €3) as a left-invariant orthonormal frame field on
M=G, we may put
(2. 5 . Ve e j=k§‘:,1bi iK€k,
where bijr=—bir;j.
Then, by (2. 4), we have
(2. 6) bizz=a, baa1=0b, b212=h, bia=e b212=p, bis1=¢,
bazs=d, b3z13=¢q, bam=1F.

Let Bbe the Killing form of g. Then, corresponding to the respective cases, B takes
the following forms:

(1)-@)
(fi?+ks?—2k5%) [ (2ke—k1—k3) 0 0
@ 7 [B(ei, €i)]= 0 0 0 )
0 0 0

where (klz—k2k3+k32‘—k1kz) (k1+k3—2k2) >O, k1+k3<0

(i)-@
0 0 0
2 8 [Blei, e;)]1=| 0 0 0
0 0  (R2+ks?—2ks%) [ (2ks—Fk1— k)
where (klz—k2k3+k22—k1k3) (k1+k2—'2k3) >0, k1+k2<0.
(1)-3
0 0 0
2. 9) [Blei,e)1=| 0 (k?+ks?—2k:%) [ (20— ko—ks) 0
0 0 0
where (k2—kiks+ks?—kiky) (Ryt+hs—2k) >0,  ky+ks<0.
(i) -@
— (Ry+k2) (kotks) [R2 0 0
(2.10) LB(e;, e5)]= 0 — (kitks) (ks+ka) [ 0
0 0 — (kot+ks) (ks+ky) [R3
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where kl kg k3 >0.

2a(b—a) 0 0
(2.11) [B(e;i, ej)]1= ( 0 2b(a—b) 0 )
0 0 2ab
where (2k,—ks) /2=ab, ks/2=—ab, a+b+0, ab+O.
—2(ky+ks3) 0 0
(2.12) [B(e;, €j)]1= 0 —2(ky+ks) 0 )
0 0 — (kitks)2/ks

where ks=a2.
On the other hand, by the well known Iwasawa’s decomposition theorem, we have

LEmMA 2. 1. Let G be a connected, simply connected 3-dimensional Lie group. Then, it
is diffeomorphic with R3 or S5.

First, we consider the cases, (i)-(1), (1)—(2), ()-(3). Without loss of essentiality,
for example, it is sufficient to deal with the case (i)—(2). In this case, we see that g is
isomorphic with the Lie subalgebra a(a+4, a—#, ¢, d) of gl(3, R) given by

a(a+h, a—h, ¢, d)=spang(ei, €3, €3),

where
0 0 c 0 0 ath
el= ( 0 0 a—h), er= ( 0 0 d |,
, 0 0 0 0 0 0
c —(a+h) 0
el= (—— (e—h) —d 0).
0 0 0

In this case, G=1I, (M, g) acts simply transitively on M= G
and hence, by Lemma 2. 1, M is diffeomorphic with R3,
Secondary, we consider the case (i)—(4). From (2. 10), g is semi-simple (and hence,
simple) if and only if (k1+ky) (Bo+ks) (ks+k1) #0. Furthermore, if (i)-(4); k>0, k<0,
k3<0, k1+Eko >0, k3+k >0, or (1)—(4) 2 k1<<0, k<0, k3 >0, ko+ks >0, ks+k >0, or ()—(4)3
k<0, ks >0, k<0, ky+ky >0, ko+k3 >0, or (1)—(4)4 k1 >0, k2 >0, k5 >0, then g==3o0 (3), and
if ()-(@s k>0, k<0, ks<0, (k1+ky) (ks+k1)<<0, or ()46 £1<<0, k20, ks>0, (ko+ks)
(ks+Fk1)<0, or (A)—(4)7 k1<<0, k>0, k30, (ko+ks) (k1+k3)<<0, then g==<80(2, 1) (=<8[(2,
R)).
Andif (i)—(4)s (kit+k2) (Bat+k3) (Bi+ks) =0, then, we can see that g=~a(l, 1, 0, 0).
For the case (i)—(4), since /6=Io (M, g) acts simply transitively on M=/a, by Lemma 2. 1.
M is diffeomorphic with S§3 for the cases, (i)—-(4)1~ (i)—(4)4, and with RS2 for the cases,
(1)-(4)s~(@{1)-(4)s. Thirdly, we consider the case (ii)—(1). Then, from (2.11) g is

From (i)-(2), g is solvable,
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simple if and only if ¢#b. And furthermore, if (ii)—(1); >0, 5<0, or (i1)—(1). a<0,
b>0, then g=~80(3), and if (Gi)-1)3 >0, b>0, or ({ii)—(1)4 <0, b<<0, then g=<80 (2, 1)
(=81 (2, R)). And if (ii))~(1)s e=b, then we can see that g=~a (1,1, 0,0). Inthe case
(i)—-(1), since /G\Zlo (M, g) acts simply transitively on M= /G\, by Lemma 2.1, M is diffeo-
morphic with S3 for the cases, (ii)—(1)1, (ii)—(1)s and with R3 for the cases, (ii)—(1)3~
(ii)—(1)s, Lastly, we consider the case (ii)—(2). In this case, by the following arguments,
we can see that G does not coincides with Io(M, g). From (ii)—(2) and (2. 6), we have

(2.13) b121=b131=b212="b232=b313= b3 =0,
biss=a, bezi=—a, bs12=—Fki/2a.
For any real number w, we define a skew-symmetric tensor field Tw of type (1, 2) on M
by
(2.14) Tuw(e) =aey/\es, Tw(e)=aes/\e1, Tuw(es)=wei/\e..

Then, we can easily show that T, satisfies (0.1) and (0. 2) in Theorem B. Conversely,
any tensor field T of type (1. 2) on M satisfying (0.1) and (0. 2) is given by the above
fashion. We put T*=Tw(w+k/202) and T=Tkr2e. And we define the corresponding
metric linear connections V* V on M by V%=V%—T*(X), and Vx=V%—T(X),
respectively. Then, by the definition of V and (2. 13), we have Ve;e;j=0, i, j=1, 2, 3.
Let G* and G be the holonomy subbundles of O(M, g) through e = (%; (e) 7, (e2) 7, (e3)7)
with respect to V* and V, respectively, where € is the identity of /G\ Then, we see that
g*(Lie algebra of G*) is isomorphic with i(M, g) (Lie algebra of I,(M, g)), and the Lie
algebra t of the (linear) isotropy subgroup at e is isomorphic with the holonomy group
of v* with reference point ¢, and hence, with 80(2) (C80(3)) (cf. [2], [3], [4]). Further-
more, we can identify G with G through =. Let E*(v) and E(v) be the fundamental hori-
zontal vector fields on O(M, g) with respect to v* and Vv, respectively. Then, we have

(2.15) E*=E, E*=E, FE*=FE+((k—2aw)/2)A,
where Ei*=FE*(v), Ei=E®),i=1,2,3, and A=F;,. Thus, g*=1(M, g) =spangr(4, E*,
B, Es*)=spangr(A, E, E», E3). Along G, we have

(2.16) E1=a*dF23, E2=/e\2—aF31, Es=/;3— (k1/2a) F1a,

7\ .
where e; denotes the horizontal lift of e; with respect to v?, i=1, 2, 3.

From (2. 16), by making use of (1. 1), (1. 2) and the property, [ Fij, é\k]=0, i, j, k=1, 2, 3,
we can see that (M, g) is isomorphic with the following Lie algebra:

g*=spangr(4, e, e, €3),
where

(2' 17) [A: el] =—e€y, [A7 eZ] =ée, [A7 e3] = 0’ [el’ eZ] = —‘2063,
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[e2, es]=— ((k1+k3) [2a)e1, [es, el]=— ((k1+ks)/2a)e,.
First, we assume that k;+k3+0. We put A°=A— (2a/(ky+ks))es. Then, g*=spang(A°,
e, ez, e3) and furthermore,
(218) [A° e;1=0, i=1, 2, 3.

Thus, i(M, g)=g* is isomorphic with go-+g (direct sum), where g =spang(e;, ez, e3)
(=Lie algebra of G) and go =spangr(A— (2a/ (k1+k3))es). From (2. 12) and (2. 17), we see
that g==80(3) for the case (ii)-(2); k1+k3s >0, and g==280(2, 1) for the case (ii)—(2); %1+
k3<0. Next, we assume that %;+k3=0. Then, from (2. 17), we see that i(M, g)=g* is
isomorphic with g;+g (semi-direct sum), where g,=spang(4). In this case, g is iso-
morphic with the following Lie subalgebra b of gl (3, R) given by

I’:SpanR(eg: eg’ eg) ’

0 0 O 0 1 o0 0 0 1
et=|0 0 1], e;=({0 0 O, es={0 0 0.

0 0 O 0 0 o0 0o 0 0

where

Thus, from the above arguments and Lemma 2.1, M is diffeomorphic with S§3 for the
case (ii)—(2);, and with R3 for the cases, (ii)—(2)2, (ii)-(2)s.

ReMARk 1. The Lie algebra g;+ b (semi-direct sum) is isomorphic with the follow-
ing Lie subalgebra ¢ of gl (4, R) given by

¢ =spang (A) €%, €%, e03) ’

where
0 0 0 0 ) 0 0 1 0 )
A O 0 1 o e,l,_o 0 0 —1,
0 —1 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0
0 —1 0 0) 0 0 0 1)
o] © 0 0 0 | 0 0 0 0
271 o 0 o —1/ 1o 0 0 0
L 0 0 0 0 L 0 0 0 0

ReMARK 2. In the case (1)-(2), if (k2—Fkoks+R2—Fkiks) (k1+ke—2ks) >0, ky+k<0,
and (1) (2ks—k1—kz) ((ki—ks)2—2k3(2ks—k1—k3)) =0, ((2) (2ks—Fk1—k2) ((k1—k2)2—2k3(2ks
—k1—ky)<0, resp.), then a(@+h, a—h, ¢, d)=a (1,1,0,0) or a (0,0, —1,1) (a(a+h, a—h,
¢, d) is isomorphic with the following Lie subalgebra a of gl (3, C) given by

a=SpanR(e:ll” eg’ eg):
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where
0 0 1 0 0 v—1
ef=|0 0 —vV=1) es=10 0 -1}
0 0 0 0 0 0
(—(c+d)+vD, vV—=1)/2 0 0
e3= 0’ (=(c+d)—VvVD, vV=1)/2 0}
0 0 0

were Do= (2k3(2ks—k1—ky) — (h1—Fk2)?) [ Qks—k1—ks), resp.).

ReMArk 3. The homogeneous Riemannian space in the case I'V-(ii) can be expressed
by some group manifold with left-invariant metric as follows:

Let P be the group of triangular matrices of degree 2 furnished with the Riemannian
metric g induced by the positive-definite inner product <<, > on ¢ (Lie algebra of P)
such that

f=spang(ef, €3, e3), where <ej, e;>=3ij, i,7=1,23,

and

1 0 0 1
el= (V—-ng)(o B 1>, es= (V' =k/2) (0 o)’

1 0
es=(W=F, ]2 k1/2)< > k1< 0.
0. 1

The, (P, g) is isometric with HZ(k,) x E*.

Summing up the arguments in this section, we have the following table:

Cases i(M, g) t M
I 30(4) 80(3) S®
I 30(3) +R?® (semi-direct sum) 30(3) R?
I 30(3, 1 80(3) R?
v (i) 80(3) + R (direct sum) 80(2) S*xX R
(ii) 80(2, 1)+ R (direct sum) 80(2) R3
v | (O)-@ a(—a—b, a—b, p, )
(1)-(2) ala+h, a—h, ¢, d) 0 R
(1)-3) a(—h—b, b—h, e, f)
GRANRORY 0@ o | T
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Cases i(M, g) t M
(- (- @ 1) 0 B
(i)-(4), a(l, 1, 0, 0) 0 R3
(i)-(4), (>()-Q). 30(3) 0 Se
()-(Ds (D)-1), 80(2, 1) 0 Rs
(i) -(1)s a1, 1, 0, 0) 0 Rs
(i)-(2). R+380(3) (direct sum) 30(2) S8
(ii)-(2) . R+30(2, 1) (direct sum) 30(2) RS
(i1)-(2)s 30(2)+b (semi-direct sum), or ¢ 30(2) R3

(1]
[2]

(3]
[4]
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