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1. Introduction

Let $M$ be a finite von Neumann algebra and {at} $t\in R$ be a flow on $M$ which we mean a
$\sigma\cdot weakly$ continuous one-parameter group of $*$ -automorphisms of $M$ Suppose that there
exists a $\alpha_{t}$-invariant, faithful, normal, finite trace $\tau$ on $M$ such that $\tau(1)=1$ . We construct
the Banach space $L^{p}(M, \tau)(1\leq p\leq\infty)$ in the sense as Segal [7]. For each $p,$ $ 1\leq p<\infty$ ,

$\{\alpha_{t}\}_{t\in R}$ extends uniquely to a strongly continuous representation of $R$ of isometries on
$L^{p}(M, \tau)$ . We denote this extension to each $L^{p}(M, \tau)$ by {at} $t\in R$ also. Therefore we can
consider a spectrum of an element in $L^{p}(M, \tau)$ according to Arveson [11. Let $H^{p}(\alpha)$ be
the set of all elements of $L^{p}(M, \tau)$ with non-negative spectrum with respect to $\{\alpha_{t}\}_{t\in R}$

and $H_{0}^{p}(a)$ be the $L^{p}$-norm closure (a-weakly closure if $ p=\infty$ ) of the set of all elements of
$L^{p}(M, \tau)$ with positive spectrum with respect to $\{\alpha_{t}\}_{t\in R}$ . We shall call $H^{p}(\alpha)$ the non-
commutative Hardy space. Then the structure of $H^{p}(a)$ was investigated by Saito [6]

and, in particular, the structure of $H^{\infty}(\alpha)$ was studied by Kawamura and Tomiyama [2],

Loebl and Muhly [3] and Saito [5]. They showed that $H^{\infty}(a)$ is a maximal subdiagonal
algebra if the family of $a_{t}\cdot invariant$ normal states of $M$ separates the $non\cdot negative$ ele-
ments of $M$. However, we don’t know whether $H^{\infty}(a)$ is maximal as a a-weakly closed
subalgebra of $M$ On the other hand, the Hardy space $H^{\infty}$ , which is the space of bounded
analytic functions in the open unit disk, is a maximal a-weakly closed subalgebra of $L^{\infty}$

of the unit circle. Therefore, in this note, we shall investigate the maximality of $H^{\infty}(a)$

as a $\sigma$-weakly closed subalgebra of $M$.

2. Maximality of $H^{\infty}(a)$

Keep the notations as \S 1 and suppose $\{\alpha_{t}\}_{t\in R}$ is ergodic in the sense that, for $x\in M$,

at $(x)=x$ for all $t\in R$ implies $x=\lambda 1$ for some complex number $\lambda$ . For $a\in M$, the least pro-
jection of all the projections $q$ in $M$ such that $qa=a$ is called the left support of $a$ and is
denoted by $l(a)$ . For a subset $S$ of $L^{p}(M, \tau),$ $[S]p$ is the closed (a-weakly closed if $ p=\infty$ )

linear span of $S$ in $L^{p}(M, \tau)$ .
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Our goal in this note is the following theorem.

THEOREM Keep the notations as above. If $l(x)=1$ for every non-zero element $x$ in $H^{\Phi}(a)$,
then $H^{\infty}(\alpha)$ is a maximal $\sigma$-weakly closed subalgebra of $M$

PROOF. Suppose that $H^{\infty}(a)$ is not a maximal a-weakly closed subalgebra of $M$ and
let $B$ be a proper $\sigma\cdot weakly$ closed subalgebra of $M$ which contains $H^{\infty}(\alpha)$ properly. Then
we shall prove that $L^{2}(M, \tau)\neq[B]_{2}$ . Since $B\subsetneq M$, there exists a $non\cdot zero$ element $a$ of
$L^{1}(M, \tau)$ such that $\tau(a^{*}y)=0$ for every $y\in B$. As $B$ contains $H^{\infty}(\alpha)$ , we have $a^{*}\in H_{0}^{1}(\alpha)$

by [6, Proposition 2. 7] Let $a=u|a|$ be the polar decomposition of $a$ and let $|a|=\int_{0}^{\infty}\lambda de_{\lambda}$

be the spectral decomposition of $|a|$ . How we define a function $f(\lambda)=\min(1,1/\lambda),$ $\lambda\geqq 0$ .
Putting $k=f(|a|),$ $k$ is a self-adjoint operator in $M$ and the invertible element $k^{-1}$ of $k$ be-
longs to $L^{1}(M, \tau)$ . Furthermore we have $k\not\in[kH_{0}^{\infty}(a)]_{\infty}$ . Then $[kH^{\infty}(a)]_{\infty}$ is a right
simply invariant subspace in the sense that

$[[kH^{\infty}(a)]_{\infty}H_{0}^{\infty}(a)]_{\infty}\subsetneq[kH^{\infty}(\alpha)]_{\infty}$ .
According to [6, Theorem 5.11, there exists a unitary element $v$ of $M$ such that $[kH^{\Phi}(a)]_{\infty}$

$=vH^{\infty}(a)$ . Thus there exists an element $y$ of $H^{\infty}(\alpha)$ such that $k=vy$. Then we have

$ay^{*}=u|a|kv=u\int_{0}^{\infty}\lambda de_{\lambda}\int_{0}^{\infty}f(\lambda)de_{\lambda}v=u\int_{0}^{\infty}\lambda f(\lambda)de_{\lambda}v$.
Since $\lambda f(\lambda)$ is bounded, we have $ay^{*}\in M$ Furthermore for every $z\in[B]_{2}$ ,

$(z, ay^{*})=\tau((ay^{*})^{*}z)=\tau(ya^{*}z)=\tau(a^{*}zy)=0$.
Thus $ay^{*}\in[B]_{2}^{\perp}\cap M$ where $[B]_{2}^{\perp}$ is the orthogonal complement of $[B]_{2}$ in $L^{2}(M, \tau)$ .
Therefore we have $L^{2}(M, \tau)\neq[B]_{2}$ .

By [6, Proposition 2.7], we have $[B]_{2}^{\perp}\subset H_{0}^{2}(\alpha)^{*}$ . Furthermore there exists a pro $\cdot$

jection $p$ of $B\cap B^{*}$ such that $0<p<1$ . We choose an element $x$ in $B$ which is invertible
in $B$ but which does not belong to $H^{\infty}(a)$ . Such a choice is possible sinoe a Banach algebra
with identity is spanned by its invertible elements and since $B\neq M$ As $x\in M\cap M^{-1}$,
$[xH^{\infty}(\alpha)]_{\infty}$ is a right simply invariant subspace of $M$ Thus there exists a unitary ele-
ment $u$ of $M$ such that $[xH^{\infty}(a)]_{\infty}=uH^{\infty}(a)$ . Then there exists $y\in H^{\infty}(a)nH^{\infty}(a)-1$

such that $x=uy$. Since $x\in H^{\infty}(\alpha),$ $u$ is not a scalar multiple of 1 and $u^{-1}=u^{*}\in B$. There-
fore $B$ contains all the spectral projections of $u$. Since $u$ is not a scalar multiple of 1,
there exists a spectral projection $p$ of $u$ as a unitary operator such that $0<p<1$ .

Since $p\in B$, we have $[B]_{2}^{\perp}p\subset[B]_{2}^{\perp}\subset H_{0^{2}}(\alpha)^{*}$ . Putting $b=ay^{*}p(=ay^{*}(1-p)$ if afl $p$

$=0)$ , we have $l(b^{*})\leqq p<1$ and $b^{*}\in H_{0}^{\infty}(a)$ . This is a contradiction. Therefore $H^{\infty}(a)$ is
a maximal a-weakly closed subalgebra of $M$

Q. E. D.
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