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1. Introduction

This paper is a continuation of our paper with the same title [21 in which we have
showed, mainly, that under some assumptions the Markov games with the criterion of
long-run average reward has a value and both players have optimal strategies.

Here, we shall show that the solution $(d, u(\cdot))$ of the functional equation (3. 1) of
assumption 4 in [2] can be solved by the method of successive approximations under
certain conditions. We can obtain this method as an application of the method introduced
by D. J. White in Dynamic Programming [3].

2. Preliminaries

In order to state the method of successive approximations, we assume the same con-
ditions as those in [21, that is, (1) $S,$ $A$ and $B$ are compact metric spaces, (2) $r=r(s, a, b)$

is a $\infty ntinuous$ function on $S\times A\times B,$ (3) whenever $s_{n}\rightarrow s_{0},$ $a_{n}\rightarrow a_{0}$ and $b_{n}\rightarrow b_{0},$ $q(\cdot|s_{n}$,
$a_{n},$

$b_{n}$) converges weakly to $q(\cdot|s_{0}, a_{0}, b_{0}),$ (4) there exist a continuous function $u(s)$ on $S$

and a constant $d$ such that for each $s\in S$,

$d+u(s)=\sup_{\lambda\in P_{A}}\inf_{\mu\in P_{B}}\{r(s, \mu, \lambda)+\int u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ , (2. 1)

where PA and PB are the sets of all probability measures on ($A$ , es $(A)$) and ($B$, es $(B)$),

respectively,

$r(s, \mu, \lambda)=\int\int r(s, a, b)d\mu(a)d\lambda(b)$,

and

$q(E|s, \mu, \lambda)=\int\int q(E|s, a, b)d\mu(a)d\lambda(b)$.

Moreover, we need the same lemmas as those in [21, that is,
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LEMMA 1. Let $u(s, a, b)$ be a continuous, real-valued function on $S\times A\times B$. Then $u(s$,
$a,$

$b$) $=\int_{A}\int_{B}u(s, a, b)d\mu(a)d\lambda(b),$ $s\in\in P,$ $\lambda\in PB$, is a continuous function on $S\times PA\times PB$.
LEMMA 2. Let $u(x, y)$ be a bounded, continuous function on $X\times Y$, where $X$ is $a$ &rel

subset of a Polish space and $Y$ is a compact metric space. Then, $u^{*}:X\rightarrow R$ defined by

$u^{*}(x)=\max_{y\in Y}u(x, y)$ is continuous. Moreover, $u_{*};X\rightarrow R$ defined by $u_{*}(x)=\min_{y\in Y}u(x, y)$ is
also continuous.

LEMMA 3. Let $u(x, y)$ be a bounded, continuous function on $x\times Y$, where $X$ is a $\ovalbox{\tt\small REJECT} rel$

subset of a Polish space and $Y$ is a compact metric space. Then, there exist Borel measurable
maps $f$ and $gfmmX$ to $Y$ such that $u(x, f(x))=\max_{y\in Y}u(x, y),$ $x\in X$ and $u(x, g(x))=\min_{y\in Y}$

$u(x, y),$ $x\in X$

The reader is referred to [1] for the proofs,
Then, from Lemma 1 and Lemma 2, the equation $(1, 1)$ can be replaced by the following:

$d+u(s)=\max_{\mu\in}\min_{P_{A^{\lambda\in P_{B}}}}\{r(s, \mu, \lambda)+\int u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ (2. 2)

$=\min_{\lambda\in P_{B}}\max_{\mu\in P_{A}}\{r(s, \mu\lambda)+\int u(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ .

We want to show that the solution $(u(\cdot), d)$ of (2. 2) can be solved by the method of
successive approximations.

3. The method of successive approximations

Let $\Pi^{n}$ be the set of all Markov policies for player I until the $n$th time and $\Gamma$“ the set
of all Markov policies for plaver II until the nth time. That is, for $\pi\in\Pi$“ and $ a\in\Gamma$“,
$\pi=(f_{1}, f_{2},\ldots, f_{n})$ and $\sigma=(g_{1},\ldots, g_{n})$ , where $fk$ and $gk,$ $k=1,2,$

$\ldots,$
$n$, are Borel measurable

maps from $S$ to PA and $PB$ , respectively. Then, for each $\pi=(f_{1}, f_{2},\ldots, f_{n})\in\Pi^{n},$ $a=(g_{1}$ ,
$g_{2},\ldots,$ $g_{n}$) $\in\Gamma^{n},$ $E\in oe(S)$ and $s_{1}\in S$, we define the following:

$q^{(n)}(E|s_{1}, \pi, \sigma)=\int\cdots\int q(E|s_{n}, f_{n}(s_{n}),$ $g_{n}(s))$

$\prod_{i-1}^{n-1}dq(st+1|s;, fi(s;),$ $gi(s;))$ . (3. 1)

And, moreover, we assume the following assumption.

ASSUMPTION. There exist an integer $u\geqq 0$, a quantity $a(0<a\leqq 1)$ and a state $s_{0}\in S$

such that, for each $\pi=(f_{1}, f_{2},\ldots, f_{u+1})\in\Pi^{u+1},$ $\sigma=(g_{1}, g_{2},\ldots, g_{u+1})\in\Gamma^{u+1}$ and $s_{1}\in S$,

$q^{(u+1)}(s_{0}|s_{1}, \pi, a)\geqq a>0$. (3. 2)

Then, it should be noted that assumption 5 in [21 implies this assumption.
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THEOREM. Under the above assumption, the sequence $\{d_{n}, v_{n}(\cdot), n\geqq 0\}$ defined by, $s\in S$

$V_{n}(s)=man\mu\in P_{A}\min_{\lambda\in P_{B}}\{r(s, \mu, \lambda)+\int_{S}v_{n-1}(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$ ,

$d_{n}=V_{n}(s_{0})$ , (3. 3)

$v_{n}(s)=V_{n}(s)-d_{n}$ ,

converges uniformly to the solution $\{d, u(\cdot)\}$ of the functional equation (2. 1), where

$v_{0}(s)=\max_{\mu\in}\min_{P_{A^{\lambda\in P_{B}}}}r(s, \mu, \lambda)$ .

PROOF. By Lemma 1 and Lemma 2, it follows that $V_{n}(\cdot),$ $v_{n}(\cdot)$ are well defined and
continuous. We need only prove the uniformity of convergence, since this implies that
the limiting form is a solution of (2. 1). For any sequence of continuous functions
$\{Z_{n}(s)\}$ define

$\nabla_{n}(Z)=\inf_{s\in S}[Z_{n}(s)-Z_{n-1}(s)]$ (3. 4)

and

$\Delta_{n}(Z)=\sup_{s\in S}[Z_{n}(s)-Z_{n-1}(s)]$ . (3. 5)

When $n\geqq u+4$, we can show that

$V_{n}(s)-V_{n-1}(s)$ (3. 6)

$\geqq\min_{\mu}[\min_{\lambda}\{r(s, \mu, \lambda)+\int v_{n-1}(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}$

$-\min_{\lambda}\{r(s, \mu, \lambda)+\int v_{n-2}(s^{\prime})dq(s^{\prime}|s, \mu, \lambda)\}]$

$\geqq\min_{\mu}[\min_{\lambda}\int(v_{n-1}(s^{\prime})-v_{n-2}(s^{\prime}))dq(s^{\prime}|s, \mu, \lambda)]$

$=\min_{\mu’\lambda}[\int(v_{n-1}(s^{\prime})-v_{n-2}(s^{\prime}))dq(s^{\prime}|s, \mu, \lambda)]$

$=\min_{\mu’\lambda}[\int(V_{n-1}(s^{\prime})-V_{n-2}(s^{\prime}))dq(s^{\prime}|s, \mu, \lambda)]$

$-(d_{n-1}-d_{n-2})$.
Hence,

$V_{n}(s)-V_{n-1}(s)+\zeta d_{n-1}-d_{n-2})$

$\geqq\min_{\mu\lambda}[\int(V_{n-1}(s^{\prime})-V_{n-2}(s^{\prime}))dq(s^{\prime}|, \mu, \lambda)]$. (3. 7)
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Then, by Lemma 3, we can show that

$V_{n}(s)-V_{n-1}(s)+(d_{n-1}-d_{n-2})+(d_{n-2}-d_{n-3})$ (3. 8)

$\geqq\min_{\mu\prime\lambda}[\int\{\min_{\mu^{\prime}\lambda}\int(V_{n-2}(s^{\prime\prime})-V_{n-3}(s^{\prime\prime}))dKs^{\prime\prime}|s^{\prime}, \mu^{\prime}, \lambda^{\prime})\}$

$d\propto s^{\prime}|s,$ $\mu,$
$\lambda$)].

$\geqq_{\pi\in\Pi l}\min_{\sigma\in\Gamma^{l}}[\int(V_{n-2}(s^{\prime})-V_{n-3}(s^{\prime}))dq^{(2)}(s^{\prime}|s. \pi, \sigma)]$ .

Repeating this process we derive

$V_{n}(s)-V_{-1}(s)+\sum_{k-1}^{u}(d_{n-k}-d_{n-k-1})$ (3. 9)

$\geqq\min_{*\in\Pi^{u},\sigma\in\Gamma^{u}}[\int(V_{n-u}(s^{\prime})-V_{n-u-1}(s^{\prime}))dq^{(u)}(s^{\prime}|s, \pi, \sigma)]$,

namely,

$V_{n}(s)-V_{n-1}(s)+(d_{-1}-d_{-u})$ (3. 10)

$\geqq*\min[\int u$
Now by hypothesis (3. 3)

$v_{n-u-1}(s_{0})=v_{n-u-2}(s_{0})=0$

and

$q^{(u+1)}(s_{0}|s, \pi, a)\geqq a>0$ for all $\pi\in\Pi^{u+1},$ $\sigma\in\Gamma^{u+1}$ and $s\in S$.
Thus, we have

$\nabla_{n}(V)+(d_{-1}-d_{l-u})\geqq(1-a)\nabla-u-1(v)$. (3. 11)

Similarly, for $n\geqq u+4$,

. $V_{n}(s)-V_{n-1}(s)+(d_{-1}-d_{\alpha-u})$

$\leqq\max_{\pi\in\Pi u+1,\sigma\in\Gamma^{u+1}}[\int(v_{n-u-1}(s^{\prime})-v_{n-u-2}(s^{\prime}))$

$dq^{(+1)}u(s^{\prime}|s, \pi, \sigma)]$ . (3. 12)

Thus, by hypothesis (3. 3),

$\Delta(V)+(d_{-1}-d_{-u})\leqq(1-a)\Delta_{\hslash-u-1}(v)$. (3. 13)

(3. 11) and (3. 13) imply that

$\Delta_{\#}(V)-\nabla(V)\leqq(1-\alpha)(\Delta-u-1(v)-\nabla-u-1(v))$. (3. 14)
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At the same time,

$\nabla_{n}(v)=\nabla n(V)-(d_{n}-d_{n-1})$

and

$\Delta_{n}(v)=\Delta_{n}(V)-(d_{n}-d_{n-1})$

yield

$\Delta_{n}(v)-\nabla n(v)=\Delta_{n}(V)-\nabla n(V)$ . (3. 15)

Thus, by (3. 15), (3. 14) becomes

$\Delta_{n}(v)-\nabla n(v)\leqq(1-a)(\Delta_{n-u-1}(v)-\nabla n-u-1(v))$ .
Let $D_{n}(v)=\Delta_{n}(v)-\nabla n(v)$. Then, for $n=N(u+1)+r(1\leqq r\leqq u+1)$,

$D_{n}(v)\leqq(1-a)^{N}D_{r}(v)\leqq(1-a)NA$ ,

where $A=\max\{D_{1}(v), D_{2}(v),\ldots, D_{u+1}(v)\}$ .
Since $v_{n}(s_{0})-v_{n-1}(s_{0})=0$, it follows that

$\nabla_{n}(v)\leqq 0\leqq\Delta_{n}(v)$ .
Let

$U_{n}(v)=\sup_{s\in S}|v_{n}(s)-v_{n-1}(s)|$

and

$U_{n}(V)=\sup_{s\in S}|V_{n}(s)-V_{n-1}(s)|$ ,

then

$U_{n}(v)\leqq D_{n}(v)\leqq(1-\alpha)N$ A. (3. 16)

This is sufficient to prove that the sequence $\{v_{n}(s)\}$ converges uniformly to the function
$v(s)$ .

On the other hand, we easily see that

$U_{n}(V)\leqq U_{n-1}(v)$ . (3. 17)

From (3. 17), the sequence $\{V_{n}(s)\}$ also converges uniformly to a function $V(s)$. Since
$\{V_{n}(s)\}$ converges uniformly, so does the sequence $\{d_{n}\}=\{V_{n}(s_{0})\}$ converge. Thus,
the proof is complete.
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