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1. Introduction

This paper is a continuation of our paper with the same title [2] in which we have
showed, mainly, that under some assumptions the Markov games with the criterion of
long-run average reward has a value and both players have optimal strategies.

Here, we shall show that the solution (d, #(+)) of the functional equation (3. 1) of
assumption 4 in [2] can be solved by the method of successive approximations under
certain conditions. We can obtain this method as an application of the method introduced

by D. J. White in Dynamic Programming [3].

2. Preliminaries

In order to state the method of successive approximations, we assume the same con-
ditions as those in [2], that is, (1) S, A and B are compact metric spaces, (2) r=7(s, a, b)
is.a continuous function on Sx A X B, (3) whenever sn—> 5S¢, an—>ao and bp—>bg, g(* | S,
an, bn) converges weakly to ¢q(«|so, @o, bo), (4) there exist a continuous function #(s) on S
and a constant d such that for each s&S,

d+u(s)=sup inf (Cs, s D+ u(s) daCs' 15, 1, D), @ 1)

where P4 and Pp are the sets of all probability measures on (A, ®(A4)) and (B, @(B)),
respectively,

s, 1, D= { 7Cs, a, ) dua) di®),
and

a(E1s, u, O={{aCE s, a, ) du(a) di().

Moreover, we need the same lemmas as those in [2], that is,
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LemMMma 1. Let u(s, a, b) be a continuous, real-valued function on SXAXB. Then u(s,
a, b)= SASBu(s, a, b)dp(a)di(b), s€S, p=Pa, A& P, is a continuous function on Sx Pa X Pp.

LEMMA 2. Let u(x, y) be a bounded, continuous function on Xx Y, where X is a Borel
subset of a Polish space and Y is a compact metric space. Then, u*: X—>R defined by
u*(x)=ma;c u(x, v) is continuous. Moreover, u,: X—>R defined by u*(x)=mi3 u(x, ) is

e ye

y
also continuous.

LEmMA 3. Let u(x, y) be a bounded, continuous function on XX Y, where X is a Borel
subset of a Polish space and Y is a compact metric space. Then, there exist Borel measurable
maps f and g from X to Y such that u(x, f (x))=r§’1§)§' u(x, ), & X and u(x, g(x))=rynéirl}
u(x, v), x& X.

The reader is referred to [1] for the proofs,

Then, from Lemma 1 and Lemma 2, the equation (1, 1) can be replaced by the following:

d-+u(s)= max min (rCs, 2, D+ S u(s' )dg(s’ |s, g, D) 2. 2)
€Pp

BEP 4

=min max {r(s, ¢ )+ S u(s’ )dq(s'is, p, 2)}.

A€Ppg pEPA

We want to show that the solution (#(+), d) of (2.2) can be solved by the method of
successive approximations.

3. The method of successive approximations

Let I7” be the set of all Markov policies for player I until the »th time and I"* the set
of all Markov policies for plaver II until the nth time. That is, for z&I" and c&I'™",

r=(f1, f2,---» fn) and 6=(g1,..., gn), Where fr and gz, k=1, 2, ..., n, are Borel measurable
maps from Sto Pa and Pa, respectively. Then, for each =#=(f1, f2,..., fa)EII"*, 0=(g,
g2y--, gn)ET?, EE®(S) and 5;& S, we define the following:

g (E|s1, 7, )= - | a(E |sn, falsn), gnCs))

:I:I:dq(3i+1 |si, fi(si), gi(si)). @G. D

And, moreover, we assume the following assumption.

AssumpTION. There exist an integer #=0, a quantity a(0<a=<1) and a state so&S
such that; for each 71'=(f1, f2"-" fu+1)eﬂu+1, 0’=(g1, 825000y gu+1)el"u+1 and SIES’

g**+V (sols1, 7, 6) =a>0. (3. 2)

Then, it should be noted that assumption 5 in [2] implies this assumption.
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THEOREM. Under the above assumption, the sequence {dn, va(+), n==0} defined by, s&S

Va(s)=man min (rCs, #, D+{  0a-1(sDdg(s'Is, 1, D),
#HEP4 A€Pp

dn=Vu(s0), @G 3
vn(s): Vn(s)—dn,
converges uniformly to the solution {d, u(+)} of the functional equation (2. 1), where

vo(s)=max min r(s, g, 2).
#EP, AEPR

Proor. By Lemma 1 and Lemma 2, it follows that V,(+), v.(+) are well defined and
continuous. We need only prove the uniformity of convergence, since this implies that
the limiting form is a solution of (2.1). For any sequence of continuous functions

{Z»(s)} define
Vn(Z)=£Iég[ZnCS)—Zn_1(S>] @G. 4

and

An(Z)=§gg [Zu(s)—Zn-1(s)]. (3. 5)

When n=u+ 4, we can show that ;
Va(s)— Va-1(s) (3. 6)

gmli‘n [mlin {r(s, ¢ 1)+S vn-1(5')dq(s" |s, g, 2D}
—min {rCs, #, D+ vu_a(sda(s'Is, 1, D) ]
= min [min § (o105 )—~0n—2(sDdaCs' I3, 4, D]
2“,‘.:1?[ S (Wn—1(8" D —vn—2(s'D)dq(s' |5, 1, D]

=min[ S (Va1 (8 )= Vnea(8)) dg(s’ s, s )]

—(dn—1—dn—2).
Hence,
Va(s)— Va—1(s)+(dn-1—dn-3)

zmin[ § (Va-105)= Va-a(s D da(s' |, 1, D1 G0
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Then, by Lemma 3, we can show that

Va(s)— Va1 (8)+(dn-1—dn-2)+(dn—2—dn—3)

;_mm[ S { min S (Vn—z(sn)—' Vn—s(S”))dQ(S” ls,s f‘" 2:)}
A uHa’

da(s’|s, 1, D1

2 min [§(Vaos(s)= Vas(52dg®Cs |5, 7, 01

xE€J12,0E€

Repeating this process we derive

Vu($)— Vier (s )+§__‘.1(dn_k—dn—h—1)

= _min [ {(Vaeu(8— Vacuoa (901 dg(s' |5, 7, )],

_n‘Eﬂ"r oEers

(3. 8)

3.9

(3. 10)

namely,
Va(s)— Va_1(s)+(dn—1—dn-u)
= min [{ nouci(D)=tnoua(s D) dg (s |5, 7, )],
rEJut), o€ MU+l
Now by hypothesis (3. 3)
Vn—u—1(S0)=0n—u—-2(50)=0
and

q“*D(sols, 7, 0)=za>0 forall zell**l, oI+ and sES.

Thus, we have
Va(V)+(dn-1—dn-u) Z=(1—a) Vn-u-1().
Similarly, for n=x 4,
"Vn(s)— Vu_1(s)+(dn—1—dn—u)

= max [S (vn—u-1(3')'—vn-u—z(3'))

rEJIut), o€ 'utl

dg*+(s'|s, 7, 0)].
Thus, by hypothesis (3. 3),
An(V)+(@n-1—dn-w) =(A—a)An-u—1(v).
(3. 11) and (8. 13) imply that

An(V)=Va(V)=Q—a)(An—u-1(0)— Vn—u-1(v)).

@G. 1)

3. 12)

(. 13)

Q. 14)
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At the same time,
Va(0)=Va(V)—(dn—dn-1)
and
An(0)=An(V)—(dn—0dn-1)
yield
, An(D)—Va(0)=An(V)—=Va(V). (3. 15)
Thus, by (3. 15), (3. 14) becomes
An(0)—Va()=Q—a)(An—u-1(0)—Va—u-1(v)).
Let Du(»)=An(v)—Vn(v). Then, for n=N(u+1)+r A =r=u+1),
Dn()=(1—a)N D, () =(1—a)N A,

where A=max {D;(v), Ds(v),..., Dut1(v)}.
Since vx(sp)—vn—-1(50)=0, it follows that
Va(0)<0=An(v).
Let
Un(v)=sup |va(s)—vn-1(5)|
SES
and
Un(V)=sup | Va(s)— Vu1(s)l,
sES
then
Un(W)=Dn(v)<(1—a)N A. (3. 16)
This is sufficient to prove that the sequence {v»(s)} converges uniformly to the function
v(s).
On the other hand, we easily see that

Un( V)< Un—1(0). (3. 17

From (3. 17), the sequence {Vx(s)} also converges uniformly to a function V(s). Since
{Va(s)} converges uniformly, so does the sequence {d.} = {Va(so)} converge. Thus,
the proof is complete.
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