
A Banach algebra which is an ideal in the second
conjugate space II

By

Seiji WATANABE

(Received May 20, 1975)

1. Introduction

Let $A$ be a Banach algebra, $A^{**}$ its second conjugate space. Then $A^{**}$ becomes a
Banach algebra under the Arens multiplications. For any Banach space $X$, let $\pi$ be the
cononical embedding of $X$ into $X^{**}$. When does $A^{**}$ contain $\pi(A)$ as an ideal? In [51

we investigated the condition under which $\pi(A)$ is an ideal in $A^{**}$ . Here we shall $con$.
sider the following problem.

(1) When is $\pi(A)$ a two-sided ideal in $A^{**}?$

(2) When is $\pi(A)$ a block subalgebra in $A^{**}?$

$i$. $e$. $\pi(A)A^{**}\pi(A)\subset\pi(A)$ .
If $\pi(A)$ is an ideal in $A^{**}$ , it is a block subalgebra of $A^{**}$ .
A Banach algebra $A$ is called weakly compact if every left and right multiplication opera-
tors on $A$ are weakly compact.
In [5] we have shown that $\pi(A)$ is an ideal in $A^{**}$ if and only if $A$ is weakly compact.
In \S 3 we shall investigate the special case, and obtain an improvement of a result in [5].

We shall use the notations and definitions given in [5] without notice.

2. General case

Let $A$ be a Banach algebra. Denote by $L_{a}$ (resp. $R_{a}$) the left (resp. right) multip-
lication operator on $A$ .
Then we have

$L_{a}^{*}\zeta f)=f\circ a,$ $R_{a}^{*}(f)=a*f$, $L_{a}^{**}(F)=\pi(a)\circ F$

$R_{a}^{**}(F)=F*\pi(a)$ $(a\in A, f\in A^{*}, F\in A^{**})$

where $T^{*}$ (resp. $T^{**}$) denote the conjugate (resp. second conjugate) operator of an opera-
tor $T$.
Hence we have the following two theorems from the well-known result on weakly com-
pact operators [see 2].
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THEOREM 1. The following three statements are equivalent.
(1) $\pi(A)$ is a two-sided ideal in $A^{**}$.
(2) $A$ is weakly compact.
(3) $f\rightarrow f\circ a$ and $f\rightarrow a*f$ are weakly compact on $A^{*}for$ each $a\in A$ .

THEOREM 2. The following three statements are equivalent.
(1) $\pi(A)$ is a block subalgebra of $A^{**}$ .
(2) $L_{a}\circ RbisweaklycompactonAforeacha,$ $b\in A$ .
(3) $f\rightarrow a*f\circ bisweaklycompactonA^{*}for$ each a, $b\in A$ .

Next we have the following useful proposition.

PROPOSITION 3. Let I and $B$ be a closed two-sided ideal and a closed subalgebra in $A$

respectiv $ely$. Suppose that $\pi(A)$ is a $two\cdot sided$ ideal (resp. block subalgebra) of $A^{**}$. Then
$\pi(B)$ is a two-sided ideal (resp. block subalgebra) of $B^{**}$ and $\pi(A/I)$ is a two-sided ideal
(resp. block subalgebra) of $(A/I)^{**}$.

PROOF. Let $\{x_{n}\}$ be a bounded sequence in $B$ and $a$ be in $B$. Then there exists a
subsequence $\{ax_{n^{\prime}}\}$ of $\{ax_{n}\}$ such that a weak limit of $ax_{n^{l}}$ exists in $A$ . Since $B$ is weakly
closed in $A$ , weak $\lim\{ax_{n^{l}}\}$ is in $B$. On the other hand, let $\{[y_{n}]\}$ be a bounded sequence
in $A/I$ and $[a]$ be in $A/I$ where $[z]$ is a canonical image of $z\in A$ in $A/I$. Then we may
assume that $\{y_{n}\}$ is a bounded sequence. Hence we can choose a subsequence $\{y_{n^{\prime}}\}$ of $\{y_{n}\}$

such that a weak limit $ay_{n^{\prime}}$ exists in $A$ . Since $(A/I)^{*}$ is isometrically isomorphic to the
$w1arofIinA^{*}$, weak limit $[a][y_{n^{\prime}}]$ exists inA/I.

Consequently $\pi(B)$ and $\pi(A/I)$ are left ideals in $B^{**}$ and in $(A/I)^{**}$ respectively.
For the other cases we can prove in a similar way.

3. Special Banach algebras

It is well-known that a $C^{*}$-algebra $A$ is dual if and only if $\pi(A)$ is a $two\cdot sided$ ideal
in $A^{**}$. Recently P. K Wong [7] proved that a semi-simple Banach algebra $A$ which is
a dense two-sided ideal of a semi-simple annihilator Banach algebra is a two-seded ideal
in $A^{**}$. Particularly a semi-simple annihilator Banach algebra is a two-sided ideal in the
second conjugate space. More generally, if $A$ be a $semi\cdot simple$ modular annihilator
Banach algebra, is $\pi(A)$ a two-sided ideal in $A^{**}?$ The answer is negative in general.
Indeed we have the following Theorem.

THEOREM 4. Let $F(X)$ be the uniform closure of all finite rank operators on a complex
Banach space X. Then the following four statements are equivalent.

(1) $X$ is reflexive.
(2) $\pi(F(X))$ is a two-sided ideal in $F(X)^{**}$.
(3) (resp. (4)) $\pi(F(X))$ is a left (resp. right) ideal in $F(X)^{**}$ .

PROOF. Let $X^{*}$ denote the conjugate space of $X$ If $a\in X$ and $f\in X^{*}$, we denote by
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$a\otimes f$ the relation $a\otimes f(x)=f(x)a(x\in X)$. Suppose that $X$ be reflexive. For any
$H\in F(X)^{**}$ there exists a net $\{T_{a}\}$ of elements of $F(X)$ such that 1 $ T_{\alpha}\Vert\leqq\Vert H\Vert$ and $weak^{*}-$

limit $\pi(T_{\alpha})=H$ Then for any $a\in X,$ $f\in X^{*}$ and $\varphi\in F(X)^{*}$ , we have

$H\circ\pi(a\otimes f)(\varphi)=\lim_{a}\pi(T_{\alpha})\circ\pi(a\otimes f)(\varphi)$

$=\lim_{\alpha}\pi((T_{\alpha}a)\otimes f)(\varphi)$

$=\lim_{\alpha}\varphi((T_{a}a)\otimes f)$.

Now we can choose a subnet $\{T_{\alpha\prime}(a)\}$ of the net $\{T_{\alpha}(a)\}$ in $X$ such that a weak limit
$T_{\alpha\prime}(a)(\equiv b)$ exists.
Thus $Ho\pi(a\otimes f)(\varphi)=\varphi(b\otimes f)=\pi(b\otimes f)(\varphi)$.
Consequently for any $T\in F(X)$ and $H\in F(X)^{**},$ $H\circ\pi(T)\in\pi(F(X))$ because the set of
all linear combinations of elements of $\{a\otimes f;a\in X, f\in X^{*}\}$ is dense in $F(X)$ .
Since the reflexivity of $X$ implies the reflexivity of $X^{*},$ $\pi(T)\circ H\in\pi(F(X))$ for any $ H\in$

$F(X)^{**},$ $andT\in F(X)$ . Thus $\pi(F(X))isatwo- sidedidealinF(X)^{**}$ .
Now take any element $f_{0}\in X^{*}$ and $a\in X$ such that $f_{0}(a)=1$ , and fix it. We shall

show that if $\pi(f(X))$ be aleft ideal in $F(X)^{**},$ $X$ is reflexive. Suppose that $\pi(F(X))$ be
a Ieft ideal in $F(X)^{**}$ . For each $f\in F(X)^{*}$ and $G\in X^{**},$ $ 1etf\sim$and $\sim G$ be the bounded linear
functionals on $X$ and on $F(X)^{*}$ , respectively, defined by $f(x)=f(x\otimes f_{0})\sim(x\in X)$ and
$ G(f)=G(f)(f\in F(X)^{*})\sim\sim$ .
$Thenthereexistsb\in XsuchthatG\circ\pi(a\sim\otimes f_{0})=\pi(b\otimes f_{0})$ . $Nowforanyf\in X^{*}$ , we define
a bounded linear functional $F$ on a closed linear subspace $Z=\{x\otimes f_{0} ; x\in X\}$ of $F(X)$ by
the relation $F(x\otimes f_{0})=f(x)(x\in X)$ . Then by the Hahn-Banach Theorem we have a
bounded linear functional $\sim F$ on $F(X)$ such that $\sim F|Z=F$. On the other hand, we have

$a\otimes f_{0}*F(x)\sim_{\sim}$

$(x\in X)$

$=F((x\otimes f_{0})(a\otimes f_{0}))=F(x\otimes f_{0})=f(x)\sim$ .
Hence we have,

$\pi(b\otimes f_{0})(F)=F(b\otimes f)=\pi(b)(f)\sim$ ,

and

$ G\circ\pi(a\otimes f_{0})(F)=G(a\otimes f_{0}*F)=G(f)\sim\sim\sim\sim$.
Consequently $X$ is reflexive.

Finally we shall show the implication (4) $\Rightarrow(1)$ . Suppose that $\pi(F(X))$ is a right
ideal in $F(X)^{**}$ . For each $\varphi\in F(X)^{*}$ and $H\in X^{***},$ let\varphi \sim and $\tilde{H}$ be the bounded linear
functionals on $X^{*}$ and on $F(X)^{*}$ respectively, defined by $\varphi(f)=\varphi(a\otimes f)\sim(f\in X^{*})$ and
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$\tilde{H}(\varphi)=H(\varphi)(\varphi\in F(X)^{*})\sim$ .
Then there exists $g\in X^{*}$ such that $\pi(a\otimes f_{0})\circ H=\pi(a\otimes g)$.
Now for any $G\in X^{**}$ , we define a bounded linear functional $K$ on a closed linear subspace
$Y=\{a\otimes f;f\in X^{*}\}$ of $F(X)$ by the relation $K(a\otimes f)=G(f)(f\in X^{*})$. Then by the Hahn-
Banach Theorem we have a bounded linear functional $\tilde{K}$ on $F(X)$ such that $\tilde{K|}Y=G$.

Then$\approx K\circ a\otimes f_{0}=G$. Hence we have

$\pi(a\otimes g)(\tilde{K})=\pi(g)(G)$

and

$\pi(a\otimes f_{0})\circ\tilde{H}(\tilde{K})=H(G)$.
Thus $X^{*}$ is reflexive, and so $X$ is.
Consequently all implications are proved.

REMARK. For any complex Banach spaoe $X,$ $F(X)$ is a $semi\cdot simple$ modular annihi $\cdot$

lator Banach algebra.
However it is open whether the above problem is true or not for modular annihilator

$A^{*}$-algebras. This problem was posed by B. D. Malviya in [3].

Next we shall investigate the other special case.
Let $G$ be a locally compact topological group, and $\mu$ be the left-invariant Haar measure
on $G$. Moreover let $L^{1}(G)=L^{1}(G, \mu)$ be the group algebra of $G$ and $M(G)$ be the measure
algebra of $G$. When are these algebras ideals in its second conjugate space. For any
compact group $G,$ $C(G)$ (the algebra of all complex valued continuous functions with
supremum norm and convolution multiplication) is always a two-sided ideal in $C(G)^{**}$ .
Indeed all left and right multiplication operators on $C(G)$ are strongly compact.

THEORBM 5. The following four statments are equivalent.
(1) $G$ is finite group.
(2) $\pi(M(G))$ isa two-sided ideal of the second dual space.
(3) $\pi(M(G))isaone$-sided ideal of the second dual space.
(4) $\pi(M(G))isablocksubalgebmoftheseconddualspace$.

PROOF. If $G$ is finite, $M(G)$ is finite dimensional, and so $M(G)$ is reflexive.
Thus the implications (1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)$ are clear.
Next suppose that $\pi(M(G)$ is a block sub-algebra of $M(G)^{**}$ . Then $M(G)$ is reflexive,

and so $finite\cdot dimmensional$ . Thus $G$ is finite.

THEOREM 6. The follwing four statements are equivalent.
(1) $G$ is compact.
(2) $\pi(L^{1}(G))$ is a closed two-sided ideal in the second dual space.
(3) $\pi(L^{1}(G))$ is a closed one-sided ideal in the second dual space.
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(4) $\pi(L^{1}(G))$ is a block subalgebra in the second dual space.

PROOF. We denote the convolution product $by*$. (1) $\Rightarrow(2)$ . It is proved in [6].

(2) $\Rightarrow(3),$ (3) $r\Rightarrow(4)$ are clear. (4) $\Rightarrow(1)$ . Suppose that $L^{1}(G)$ is a block subalgebra in
$L^{1}(G)^{**}$ . By Theorem 2 the mapping $f\rightarrow h*f*g(g, h\in L^{1}(G))$ is a weakly compact
operator on $L^{1}(G)$ . Hence the mapping $f\rightarrow h*l*f*k*g(h, l, k, g\in L^{1}(G))$ is (strongly)

compact from [2]. Since $L^{1}(G)$ has a bounded approximate identity, the mapping $ f\rightarrow$

$h*f*g(g, hL^{1}(G))$ is compact from the well-known factorization theorem. Thus, it is
sufficient to prove that $G$ is compact when $L^{1}(G)$ is a compact Banach algebra in the
sense of Alexander [1]. Thus we may assume that the mapping $f\rightarrow g*f*g(g,$ $\in L^{1}$

$(G))$ is compact on $L^{1}(G)$ . Suppose that $G$ is non-compact. Then there exists a compact
subset of $G$ such that $\mu(K)>1$ . We construct inductively infinite sequence $\{a_{n}\}$ of
elements of $G$ such that $Ka_{n}K\cap Ka_{m}K=\phi(n\neq m)$ .

We select an element $a_{1}$ of $G$ and fix it. Next suppose $a_{1},$ $a_{2},\ldots,$ $a_{n}$ were chosen.
Then $\bigcup_{\dot{t}=1}^{n}K^{-1}KaiKK^{-1}$ is a compact set. We may choose $a_{n+1}$ from the complement of
this set.

Then $\chi\chi\int_{G}\chi K(h)\chi K(a_{n}^{-1}h^{-1}t)d\mu(h)$

$=\int_{K}\chi_{K(a_{n}^{-1}h^{-1}t)d\mu(h)}$

$=0$ for all $t\not\in Ka_{n}K$

and

$\Vert\chi K*a_{nK}\chi\Vert_{1}=\int_{G}|\int_{G}\chi K(h)\chi K(a_{n}^{-1}h^{-1}t)d\mu(h)|d\mu$( t)

$=\int_{G}\chi K(h)\{\int_{G}\chi K(a_{n}^{-1}h^{-1}t)d\mu(t)\}d\mu(h)$

$=\{\mu(K)\}^{2}>1$ .
where $a^{\chi}K(t)=\chi K(a^{-1}t)$ and $\chi_{K}$ is the characteristic function of $K$ Now let $S$ be the
unit ball of $L^{1}(G)$ . Then $x_{K}*S*\chi K$ is relatively compact.

Let $\{V_{a}\}$ be a fundamental family of compact neighborhoods at a point $a$ of $G$ and let
$\{f_{a}\}$ be a family of continuous positive functions on $G$ such that the support of $f_{\alpha}$ is $con$.
tained in $V_{\alpha}$ and $\int_{G}f_{a}(t)d\mu(t)=1$ , then $x_{K}*f_{a*\chi}K$ converges to $x_{K}*a^{\chi}K$ in $L^{1}$-norm [4].

Thus $\{xK*a^{\chi}K;a\in G\}$ is relatively compact set in $L^{1}(G)$ .
On the other hand,

I $x_{K}*a_{n}^{\chi_{K}}-x_{K}*a_{m}*x_{K}\Vert_{1}$ $(n\neq m)$

$=\int_{G}|xx-x_{K}x|d\mu$ ( t)
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$=\int_{Ka_{\hslash}K}|x_{K}*a_{n}x_{K(}t)-xK*a_{m}^{\chi}K(t)|d\mu(t)$

$+\int_{Ka_{\hslash}},4x_{K}*a_{n}x_{K(t)-\chi}K*a_{mK(t)}^{\chi}|d\mu(t)$

$+\int_{G-(Ka_{\hslash}K\cup Ka_{\hslash}K)}|x_{K}*a_{n}\chi_{K(t)-x_{K*a_{m}}x_{K(t)}}|d\mu(t)$

$=\int_{KaK}|x_{K*a_{n}}x_{K(t)|d\mu(t)+\int_{Ka_{n},K}|K*a_{mK}^{\chi}(t)|d\mu(t)}\chi$

$=\Vert^{\chi_{K}}*a_{n}^{\chi_{K}}\Vert_{1}+\Vert^{\chi_{K}}*a_{m}^{\chi_{K}}\Vert_{1}$

$=2\{\mu(K)\}^{2}>2$ .
This contradicts to the relative compactness of $\{xK*ax_{K}; a\in G\}$ . Therefore $G$ is compact.
Thus all implications are proved.
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