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1. Introduction

Let A be a Banach algebra, A** its second conjugate space. Then A** becomes a
Banach algebra under the Arens multiplications. For any Banach space X, let z be the
cononical embedding of X into X**. When does A** contain #(A) as an ideal? In [5]
we investigated the condition under which #(A) is an ideal in A**. Here we shall con-
sider the following problem.

(1) When is #(A) a two-sided ideal in A** ?

(2) When is #(A) a block subalgebra in A** ?

i.e. w(ADA*™*r(A)C=(A).

If #(A) is an ideal in A**, it is a block subalgebra of A**.
A Banach algebra A is called weakly compact if every left and right multiplication opera-
tors on A are weakly compact.
In [5] we have shown that #(A) is an ideal in A** if and only if A is weakly compact.
In §3 we shall investigate the special case, and obtain an improvement of a result in [5].
‘We shall use the notations and definitions given in [5] without notice.

2. General case

Let A be a Banach algebra. Denote by L. (resp. Rz) the left (resp. right) multip-
lication operator on A.
Then we have

L;(f)=S°a, R;(f)=axf, Ly*(F)=n(a)-F

Ri*(F)=Fx*n(a) (a€A,fEA*, FEA™)
where T* (resp. T**) denote the conjugate (resp. second conjugate) operator of an opera-

tor T.
Hence we have the following two theorems from the well-known result on weakly com-

pact operators [see 2].
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THEOREM 1. The following three statements are equivalent.
(1) =(A) is a two-sided ideal in A**. '
(2) A is weakly compact.
(3) f——>foaand f—>axf are weakly compact on A* for each a SA.

THEOREM 2. The following three statements are equivalent.
(1) =(CA) is a block subalgebra of A**.
(2) La°Rp is weakly compact on A for each a, b EA.
(8) f——>a*xf-bis weakly compact on A* for each a, bEA.
Next we have the following useful proposition. |

ProrosiTioN 3. Let I and B be a closed two-sided ideal and a closed subalgebra in A
respectively. Suppose that n(A) is a two-sided ideal (resp. block subalgebra) of A**. Then
n(B) is a two-sided ideal (resp. block subalgebra) of B** and n(A |I) is a two-sided ideal
(resp. block subalgebra) of (A[I)**.

Proor. Let {xx} be a bounded sequence in B and ¢ be in B. Then there exists a
subsequence {axn} of {@x»} such that a weak limit of ax» exists in A. Since B is weakly
closed in A, weak lim {e@x,} is in B. On the other hand, let {[ y»1} be a bounded sequence
in A/I and [e@] be in A/I where [2] is a canonical image of z&A in A/I. Then we may
assume that {y.} is a bounded sequence. Hence we can choose a subsequence {¥»:} of {¥x}
such that a weak limit gy.- exists in A. Since (A/I)* is isometrically isomorphic to the
polar of I in A*, weak limit [@] [ y» ] exists in A/I.

Consequently #=(B) and n(A/I) are left ideals in B** and in (A/I)** respectively.
For the other cases we can prove in a similar way.

3. Special Banach algebras

It is well-known that a C*-algebra A is dual if and only if #(A) is a two-sided ideal
in A**, Recently P. K. Wong [7] proved that a semi-simple Banach algebra A which is
a dense two-sided ideal of a semi-simple annihilator Banach algebra is a two-seded ideal
in A**, Particularly a semi-simple annihilator Banach algebra is a two-sided ideal in the
second conjugate space. More generally, if A be a semi-simple modular annihilator
Banach algebra, is #(A) a two-sided ideal in A**? The answer is negative in general.
Indeed we have the following Theorem.

THEOREM 4. Let F(X) be the uniform closure of all finite rank operators on a complex
Banach space X. Then the following four statements are equivalent.
(1) X is reflexive.
(2) =(F(X)) is a two-sided ideal in F( X )**.
(3) (resp. (1)) =(F(X)) is a left (resp. right) ideal in F(X)**.

ProoF. Let X* denote the conjugate space of X. If e ©X and f&EX*, we denote by
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a®f the relation e Rf(x)=f(x)a (x=X). Suppose that X be reflexive. For any
H& F(X)** there exists a net {T«} of elements of F{X) such that ||T«|<| H| and weak*-
limit # (T«)=H. Then for any e=X, fEX* and ¢ EF(X)*, we have

Her(a ®f)(¢)=1£m 7(Ta)on(a @ fI(e)
=lim 7((Ta @) QF)(¢)
=1¢ixm ¢(Taa)Rf).

Now we can choose a subnet {Te'(@)} of the net {T«(a)} in X such that a weak limit
Ta(a) (=b) exists.

Thus Her(a Q@) (e)=¢(bQfI=n(bQ fI(¢).

Consequently for any T& F(X) and HEF(X)**, Hon(T)e = (F(X)) because the set of
all linear combinations of elements of {a® f; ¢ =X, fEX*)} is dense in F(X).

Since the reflexivity of X implies the reflexivity of X*, n(T)-Hen(F(X)) for any HE
K X)*, and TEF(X). Thus n#(F(X)) is a two-sided ideal in F(X)**.

Now take any element fo&X* and ¢ &X such that fo(e)=1, and fix it. We shall
show that if #(F(X)) be a left ideal in F(X)**, X is reflexive. Suppose that #( F{ X)) be
a left ideal in F{(X)**. For each f& F(X)* and G& X**, let ?and G be the bounded linear
flmctionals on X and on F{X)*, respectively, defined by ?(x) =f(xRfo) (xEX) and
G(HI=G() (fERXI®. 5
Then there exists  © X such that Ger(a R fo)=r(bR fo). Now for any f& X*, we define
a bounded linear functional F on a closed linear subspace Z= {xQfy; *&X} of F(X) by
the relation F(xQ® fo)=rf(x) (x&X). Then by the Hahn-Banach Theorem we have a
bounded linear functional F on F(X) such that |Z=F. On the other hand, we have

=
aQ@foxF(x) (x€X)

=F((xRF)(@Rf))=F(x R fo)= f(x).

Hence we have,

2(bRF ) F)=F( bR )= (b)),

and

/_____/

G+ m(a@f)(F)=G(a@®fox F)=G(f).

Consequently X is reflexive.

Finally we shall show the implication (4)=>(1). Suppose that #( F(X)) is a right
ideal in F(X)**. For each ¢ F(X)* and HE X***, let ¢ and H be the bounded linear
functionals on X* and on F(X)* respectively, defined by o(f)=¢(a®f) (fEX*) and




46 S. Watanabe

H(p)=H() (pEF(XD*).

Then there exists g& X* such that 7(a@R fo) - H=z(aR g).

Now for any G& X**, we define a bounded linear functional K on a closed linear subspace
Y= {a®f; fEX*} of F(X) by the relation K(a@f)=G(f) (f&X*). Then by the Hahn-
Banach Theorem we have a bounded linear functional K on F. (X) such that I?I Y=0G.

—_—
Then K-a@fo=G. Hence we have

r(a®g)(K)=(g)(G)

and

7(a®fo) s H(K)=H(G).

Thus X* is reflexive, and so X is.
Consequently all implications are proved.

RemMARK. For any complex Banach space X, F(X) is a semi-simple modular annihi-
lator Banach algebra. ‘

However it is open whether the above problem is true or not for modular annihilator
A*-algebras. This problem was posed by B. D. Malviya in [3].

Next we shall investigate the other special case.
Let G be a locally compact topological group, and # be the left-invariant Haar measure
on G. Moreover let LY{(G)=LY(G, ¢) be the group algebra of G and M(G) be the measure
algebra of G. When are these algebras ideals in its second conjugate space. For any
compact group G, C(G) (the algebra of all complex valued continuous functions with
supremum norm and convolution multiplication) is always a two-sided ideal in C(G)**.
Indeed all left and right multiplication operators on C(G) are strongly compact.

THEOREM 5. The following four statments are equivalent.
(1) Gis finite group.
(2) #n(M(G)) is a two-sided ideal of the second dual space.
(3) n(M(G)) is a one-sided ideal of the second dual space.
(4) =(M(G)) is a block subalgebra of the second dual space.

Proor. If Gis finite, M(G) is finite dimensional, and so M(G) is reflexive.
Thus the implications (1)=>(2)=>(3)=>(4) are clear.
Next suppose that #( M(G) is a block sub-algebra of M(G)**. Then M(G) is reflexive,
and so finite-dimmensional. Thus G is finite.

THEOREM 6. The follwing four statements are equivalent.
(1) Gis compact.
2) #=(LMG)) is a closed two-sided ideal in the second dual space.
(3) (LY G)) is a closed one-sided ideal in the second dual space.
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(4) w(LYG)) is a block subalgebra in the second dual space.

Proor. We denote the convolution product by *. (1)=>(2). It is proved in [6].
(2)=>(3), (3)==>>(4) are clear. (4)==>(1). Suppose that LI(G) is a block subalgebra in
LY(G)**. By Theorem 2 the mapping f— A*f*g(g, hEL'(G)) is a weakly compact
operator on L!(G). Hence the mapping f——Axlxfxkxg(h, I, k, gEL(G)) is (strongly)
compact from [2]. Since L'(G) has a bounded approximate identity, the mapping f—>
hxfxg(g, h L\(G)) is compact from the well-known factorization theorem. Thus, it is
sufficient to prove that G is compact when L!(G) is a compact Banach algebra in the
sense of Alexander [1]. Thus we may assume that the mapping f—> gxf*xg(g, EL!
(G)) is compact on L'(G). Suppose that G is non-compact. Then there exists a compact
subset of G such that u(K)>1. We construct inductively infinite sequence {a@x} of
elements of G such that Ka, Kn Kam K=¢(n+m).

We select an element @; of G and fix it. Next suppose a;, @3,..., @» Were chosen.
Then ;L":J K-! Kai KK—! is a compact set. We may choose @,+; from the complement of
this set.

Then Xx#anXx(t)=\_Xx(W)Ax(an=2h=1t) du(h)

Il

Je
— SK Yx(an—1h=1t) du(h)
0 for all t&Ka, K

and
I Xk *anXk|: =SG| S o MR Lran™1h=1E) dp(h)ldy( £)

={ ;x| xCan=1 710 duC t )} dpCh)

= {p(KD}2>1.

where aXx(t)=Xk(a~'t) and Xk is the characteristic function of K. Now let S be the
unit ball of LI(G). Then Xx*S*Xx is relatively compact.

Let {Va} be a fundamental family of compact neighborhoods at a point @ of G and let
{f«} be a family of continuous positive functions on G such that the support of f« is con-
tained in Ve and SG fa(t)dp(t)=1, then Xk * faxXx converges to Xx*aXxg in L-norm [4].
Thus Xx*aXk; a =G} is relatively compact set in L1(G).
On the other hand,

|Xx*anXx—2Xr*am*Xk|, (n#Em)

=SG| AekanXg(t)—XgxamXx(t)|dp(t)
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={ o] XA LECE )~ Xk amAr ) |dpeC £
+SKamKI XrxanXx(t)—Xx*amXrx(t) Idﬁ( t)
0 o o o] PO ERCE )= Ak am R £ |dsC £

=SK%K XrxanXk( t)ld/z( t)+§ KamKI Xx*amXx( l)ldﬁ( t)

=|Xx*anXkl1+ 1 Xx*amXk|y

=2 {p(KD}2>2.

This contradicts to the relative compactness of {Xx*aXyx; a=G}. Therefore G is compact.
Thus all implications are proved.
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