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1. Introduction

In [1] Arveson gives a non.commutative generalization of Choquet boundary and
Silow boundary. We shall study those of a tensor product of $C^{*}$ -algebras.

If $E$ is a subspace of a $C^{*}$ -algebra and $M_{n}$ is the algebra of $n\times n$ complex matrices,
then the algebraic tensor product $E\otimes M_{n}$ is the set of $n\times n$ matrices with entries in $E$.
If $\varphi:E\rightarrow F$ is a linear map from one linear space into another, then, for each positive
integer $n$, define $\varphi_{n}$ : $E\otimes M_{n}\rightarrow F\otimes M_{n}$ by applying element by element to each matrix
over $E,$ $i.e$ . $\varphi_{n}(Tij)=(\varphi(Tij))$ . $\varphi$ is called completely positive (resp., completely isome-
tric) if each $\varphi_{n}$ is positive (resp., isometric).

Following Arveson [1], let $B$ be a $C^{*}$ -algebra with unit and $A$ a subspace of $B$ which
contains unit and generates $B$ as a $C^{*}$ -algebra.

An irreducible representation $\pi$ of $B$ is called a boundary representation for $A$ if the
restriction $\pi|A$ has a unique completely positive linear extension to $B$.

A closed two-sided ideal $J$ in $B$ is called a boundary ideal for $A$ if the canonical
quotient map $q_{J}$ : $B\rightarrow B/J$ is completely isometric on $A$ .

A boundary ideal is called the Silov boundary for $A$ if it contains every other bound-
ary ideal.

$A$ is called an admissible subspace of $B$ if the intersection of the kernels of the
boundary representatoins for $A$ is a boundary ideal for $A$ .

Throughout this paper, we use the following notations. Let $B_{1}$ and $B_{2}$ be $c*$ -algebras,
and let for each $i=1,2,$ $e$; be unit in $B;,$ $Ai$ a subspace of $Bi$ which contains $ei$ and gener-
ates $B$ ; as a $c*$-algebra.

2. Boundary representation8

Let $A_{1}\otimes A_{2}$ be the algebraic tensor product, and $B_{1}\bigotimes_{a}B_{2}$ the $c*$-tensor product [3].

Then $A_{1}\otimes A_{2}$ generates $B_{1}\bigotimes_{a}B_{2}$ as a $c*$-algebra.
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THEOREM 1. Let $\pi_{1}$ (resp., $\pi_{2}$) be a boundary representation of $B_{1}$ (resp., $B_{2}$) for $A_{1}$

(resp., $A_{2}$). Then $\pi_{1}\otimes\pi_{2}$ is a boundary representation of $B_{1}\bigotimes_{\alpha}B_{2}$ for $A_{1}\otimes A_{2}$ .
PROOF. Let $\varphi$ be a completely positive extension to $B_{1}\bigotimes_{\alpha}B_{2}$ of the restriction $\pi_{1}\otimes$

$\pi_{2}|_{A_{1}\otimes A_{2}}$ . Then there is a representation $\pi$ of $B_{1}\bigotimes_{a}B_{2}$ on a Hilbert space $H$ such that

$\varphi(x)=H_{1}\otimes H_{2}\pi(x)H_{1}\otimes H_{2},$
$x\in B_{1}\bigotimes_{\alpha}B_{2}$ ,

where $H_{1}$ and $H_{2}$ are representation spaces of $\pi_{1}$ and $\pi_{2}$ .
Let $L(H_{1})$ and $L(H_{2})$ be the $c*$-algebras of all bounded operators on $H_{1}$ and $H_{2}$ . We

define the bounded linear map $Le_{\eta}$ of $L(H_{1})\bigotimes_{\alpha}L(H_{2})$ to $L(H_{1})$ by

$L_{\text{\’{e}}.\eta}(x\otimes y)=(y\xi|\eta)x,$ $x\in L(H_{1}),$ $y\in L(H_{2}),$ $\xi,$ $\eta\in H_{2}$ .
Then L\mbox{\boldmath $\epsilon$}.\’e is a completely positive map. By [1; Theorem 1. 2. 9] it has a completely
positive extension to $L(H_{1}\otimes H_{2})$, and is also denoted by L\’e. $e$ .

Then the map: $a\rightarrow L\text{\’{e}.\’{e}}\varphi(a\otimes e_{2})$ is completely positive and we have

L\’e, $e\varphi(a\otimes e_{2})=(\xi|\xi)\pi_{1}(a),$ $a\in A_{1}$ .
Since $\pi_{1}$ is a boundary representation of $B_{1}$ for $A_{1}$, we have

$L\epsilon.e\varphi(a\otimes e_{2})=(\xi|\xi)\pi_{1}(a),$ $a\in B_{1}$ .
Since $L_{\text{\’{e}},\eta}$ is a linear combination of maps of the form Le, $e$ , we have

$L_{\text{\’{e}}.\eta}\varphi(a\otimes e_{2})=(\xi|\eta)\pi_{1}(a),$ $a\in B_{1}$ .
Hence we have

$\varphi(a\otimes e_{2})=\pi_{1}(a)\otimes I_{H_{2}},$ $a\in B_{1}$ .

Consequently, by [1; p. 174], $H_{1}\otimes H_{2}$ is a invariant subspace for $\pi(B_{1}\bigotimes_{\alpha}B_{2})$ .
Similarly, we have $\varphi(e_{1}\otimes b)=I_{H_{1}}\otimes\pi_{2}(b),$ $b\in B_{2}$, and $H_{1}\otimes H_{2}$ is a invariant subspace

for $\pi(e_{1}\otimes B_{2})$ .
Hence we have

$\varphi(a\otimes b)=H_{1}\otimes H_{2}\pi(a\otimes b)H_{1}\otimes H_{2}$

$=H_{1}\otimes H_{2}\pi(a\otimes e_{2})\pi(e_{1}\otimes b)H_{1}\otimes H_{2}$

$=\pi_{1}(a)\otimes\pi_{2}(b),$ $a\in B_{1},$ $b\in B_{2}$ .
Consequently, we have $\varphi=\pi_{1}\otimes\pi_{2}$ . This completes the proof.

In [2] Hopenwasser proved the following result.
Let $B$ be a $c*$-algebra with unit $eb$ . Let $S$ be a linear subspace of $B\otimes M_{n}$ which gener-

$aresB\otimes M_{n}andwhichcontainsthesetofmatrixunitseb\otimes eij,$ $i,$ $j=1,\ldots,$ $n$. LetTbe the set
of operators in $B$ which appear as a matrix entry in some element of S. Then an irreducible
representation $\pi$ of $B$ is a unique completely positive extension of $\pi|_{T}$ to $B$ if and only if $\pi\otimes I_{n}$
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is a boundary representation for S.
We shall give the proof of the “if” part in a slightly different way.
PROOF. Let $\pi$ be a boundary representation for $T$, acting on the Hilbert space $H$, and

let $\varphi$ be a completely positive extension to $B\otimes M_{n}$ .
Then, by [1: p. 146], we have a representation $\pi b$ of $B\otimes M_{n}$ such that

$\varphi(x\otimes y)=H\otimes H_{n}\pi_{b}(x\otimes y)H\otimes H_{n},$ $x\in B$, and $y\in M_{n}$ ,

where $H_{n}$ is n-dimensional Hilbert space.
Since $eb\otimes eij\in S$,

$\varphi(eb\otimes eij)=P\pi b(eb\otimes eij)P=I_{H}\otimes eij$,

where $P$ is the projection on $H\otimes H_{n}$ .
Hence the map: $x\rightarrow\varphi(eb\otimes x)$ is a representation of $M_{n}$, and so $P$ is invariant for

$\pi b(e_{b}\otimes M_{n})$ .
Now, we have

$\varphi(x\otimes eij)=P\pi b(x\otimes e_{n})\pi b(eb\otimes eij)P$

$=P\pi b(x\otimes e_{n})PI_{H}\otimes eij$ ,

where $e_{n}$ is unit of $M_{n}$ .
On the other hand, we have

$\varphi(x\otimes eij)=P\pi b(eb\otimes eij)\pi b(x\otimes e_{n})$

$=I_{H}\otimes eijP\pi b(x\otimes e_{n})P$.
Hence, we have $P\pi b(x\otimes e_{n})P\in(I_{H}\otimes L(H_{n}))^{\prime}$, and so there is a positive linear map $\rho$

such that

$P\pi b(x\otimes e_{n})P=p(x)\otimes I_{H}.$ .

Since we have for each $s\in S,$ $\varphi\otimes I_{n}(s)=\pi\otimes I_{n}(s)$, we have $\rho=\pi$ on $T$.
On the other hand, the map: $x\rightarrow\varphi(x\otimes e_{n})$ is completely positive, and $\pi$ is a boundary

representation for $T$ we have $\pi=p$ on $B$.
Then $P$ is invariant for $\pi b(B\otimes e_{n})$ .
Consequently, we have $\varphi=\rho\otimes I_{n}=\pi\otimes I_{n}$ . This completes the proof.

3. Boundary ideals

We assume throughout this section, for each $i=1,2,$ $B$; acts on a Hilbert space $Hi$ .
THEOREM 2. Let $Ji$ be a boundary ideal for $A$ ; of $B;$ . Then $ker(q_{J1}\otimes q_{Jz})$ is a boundary

ideal of $B_{1}\bigotimes_{a}B_{2}$ for $A_{1}\otimes A_{2}$ .
PROOF. The map $q_{f_{1}}(a)\rightarrow a$ is completely isometric on $q_{f_{1}}(A_{1})$ by [1: Theorem 1.
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2. 9], this map has a completely positive linear extension to $B_{1}/J_{1}$ . There are a repres-
entation $\pi_{1}$ of $B_{1}/J_{1}$ and a linear isometric map $V_{1}$ from $H_{1}$ into a representation space $H_{\pi_{1}}$

of $\pi_{1}$ such that

$a=V_{1^{*}}\pi_{1}(q_{f_{1}}(a))V_{1},$ $a\in A_{1}$ .
Similary, there are a representation $\pi_{2}$ of $B_{2}/J_{2}$ and a linear isometric map $V_{2}$ from

$H_{2}$ into a representation space $H_{\pi}$, of $\pi_{2}$ such that

$b=V_{2^{*}}r_{2}(q_{f_{2}}(b))V_{2},$ $b\in A_{2}$ .
We have for $a\in A_{1}$ and $b\in A_{2}$

$a\otimes b=(V_{1}\otimes V_{2})^{*}x_{1}\otimes\pi_{2}(q_{J\iota}(a)\otimes q_{f_{2}}(b))V_{1}\otimes V_{2}$ .
Hence the map: qker$(q_{f_{1}}\otimes q_{Jz})(x)\rightarrow x$ is completely contractive.
Consequently, $ker(q_{J1}\otimes q_{f_{2}})$ is a boundary ideal.
THEOREM 3. Let $A_{1}$ (resp., $A_{2}$) be an admissible subspace of $B_{1}(resp., B_{2})$ , and $K_{1}(resp.$ ,

$K_{2})$ be the intersection of all kernels $\phi$ boundary representations of $B_{1}(tesp., B_{2})$ for $A_{1}(resp.$ ,
$A_{2})$ . Then $A_{1}\otimes A_{2}$ is an admissible subspace of $B_{1}\bigotimes_{\alpha}B_{2}$, and $ker(q_{K\iota}\otimes q_{K2})$ is the Silov
boundary for $A_{1}\otimes A_{2}$.

PROOE. Let $B$ ; denote the set of boundary representations of $B$ ; for $Ai$ , and let

$pi=\sum_{\pi tj\in B}\bigoplus_{i}\pi ij$
be the direct sum of boundary representations of $B;$. Let $J$ be the intersec-

tion of the kernels of representations of the form $\pi_{1^{m}}\otimes\pi_{\ovalbox{\tt\small REJECT}}$ where $\pi_{1^{m}}$ and $\pi_{\ovalbox{\tt\small REJECT}}$ are bounda-
ry representations of $B_{1}$ and $B_{2}$ . Since $q_{K1}\otimes q_{Kz}(B_{1}\bigotimes_{a}B_{2})$ is-isomorphic to $\rho_{1}\otimes\rho_{2}(B_{1}\bigotimes_{\alpha}$

$B_{2})$ , we have

$ker(q_{K1}\otimes q_{K2})=J$ .
Let $K$ be the intersection of all kernels of boundary representations of $B_{1}\bigotimes_{\alpha}B_{2}$ for

$A_{1}\otimes A_{2}$ .
By Theorem 1, $\pi_{1^{m}}\otimes\pi_{2^{n}}$ is a boundary representation, then we have

$J\supset K$.
On the other hand, by Theorm 2, $ker(q_{K1}\otimes q_{K2})$ is a boundary ideal. Therefore, $K$

is a boundary ideal, and so $A_{1}\otimes A_{2}$ is admissible. Then $K$ is the Silov boundary ideal [1:

Theorem 2. 2. 3], hence we have

$K\supset ker(q_{K1}\otimes q_{K2})$ .
Consequently, we have

$K=ker(q_{K\iota}\otimes q_{K2})$ .
This completes the proof.
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