Boundary representations of a tensor product of C^{*}-algebras

By
Tadashi Huruya

(Received October 26, 1973)

1. Introduction

In [1] Arveson gives a non-commutative generalization of Choquet boundary and Silow boundary. We shall study those of a tensor product of C^{*}-algebras.

If E is a subspace of a C^{*}-algebra and M_{n} is the algebra of $n \times n$ complex matrices, then the algebraic tensor product $E \otimes M_{n}$ is the set of $n \times n$ matrices with entries in E. If $\varphi: E \rightarrow F$ is a linear map from one linear space into another, then, for each positive integer n, define $\varphi_{n}: E \otimes M_{n} \longrightarrow F \otimes M_{n}$ by applying element by element to each matrix over E, i. e. $\varphi_{n}\left(T_{i j}\right)=\left(\varphi\left(T_{i j}\right)\right) . \quad \varphi$ is called completely positive (resp., completely isometric) if each φ_{n} is positive (resp., isometric).

Following Arveson [1], let B be a C^{*}-algebra with unit and A a subspace of B which contains unit and generates B as a C^{*}-algebra.

An irreducible representation π of B is called a boundary representation for A if the restriction $\pi \mid A$ has a unique completely positive linear extension to B.

A closed two-sided ideal J in B is called a boundary ideal for A if the canonical quotient $\operatorname{map} q_{J}: B \longrightarrow B / J$ is completely isometric on A.

A boundary ideal is called the Silov boundary for A if it contains every other boundary ideal.
A is called an admissible subspace of B if the intersection of the kernels of the boundary representatoins for A is a boundary ideal for A.

Throughout this paper, we use the following notations. Let B_{1} and B_{2} be C^{*}-algebras, and let for each $i=1,2, e_{i}$ be unit in B_{i}, A_{i} a subspace of B_{i} which contains e_{i} and generates B_{i} as a C ${ }^{*}$-algebra.

2. Boundary representations

Let $A_{1} \otimes A_{2}$ be the algebraic tensor product, and $B_{1} \otimes_{\alpha} B_{2}$ the C^{*}-tensor product [3]. Then $A_{1} \otimes A_{2}$ generates $B_{1} \otimes_{\alpha} B_{2}$ as a C^{*}-algebra.

Theorem 1. Let π_{1} (resp., π_{2}) be a boundary representation of B_{1} (resp., B_{2}) for A_{1} (resp., A_{2}). Then $\pi_{1} \otimes \pi_{2}$ is a boundary representation of $B_{1} \otimes_{\alpha} B_{2}$ for $A_{1} \otimes A_{2}$.

Proof. Let φ be a completely positive extension to $B_{1} \otimes_{\alpha} B_{2}$ of the restriction $\pi_{1} \otimes$ $\left.\pi_{2}\right|_{A_{1} \otimes A_{2}}$. Then there is a representation π of $B_{1} \otimes_{\alpha} B_{2}$ on a Hilbert space H such that

$$
\varphi(x)=H_{1} \otimes H_{2} \pi(x) H_{1} \otimes H_{2}, \quad x \in B_{1} \underset{\alpha}{\otimes} B_{2},
$$

where H_{1} and H_{2} are representation spaces of π_{1} and π_{2}.
Let $L\left(H_{1}\right)$ and $L\left(H_{2}\right)$ be the C^{*}-algebras of all bounded operators on H_{1} and H_{2}. We define the bounded linear map $L_{\xi, \eta}$ of $L\left(H_{1}\right) \underset{\alpha}{\otimes L\left(H_{2}\right)}$ to $L\left(H_{1}\right)$ by

$$
L_{\xi, \eta}(x \otimes y)=(y \xi \mid \eta) x, \quad x \in L\left(H_{1}\right), \quad y \in L\left(H_{2}\right), \quad \xi, \eta \in H_{2} .
$$

Then $L_{\xi, \xi}$ is a completely positive map. By [1: Theorem 1.2.9] it has a completely positive extension to $L\left(H_{1} \otimes H_{2}\right)$, and is also denoted by $L_{\xi, \xi}$.

Then the map: $a \rightarrow L_{\xi, \xi \varphi}\left(a \otimes e_{2}\right)$ is completely positive and we have

$$
L_{\xi, \xi \varphi}\left(a \otimes e_{2}\right)=(\xi \mid \xi) \pi_{1}(a), \quad a \in A_{1} .
$$

Since π_{1} is a boundary representation of B_{1} for A_{1}, we have

$$
L_{\xi, \xi \varphi}\left(a \otimes e_{2}\right)=(\xi \mid \xi) \pi_{1}(a), \quad a \in B_{1}
$$

Since $L_{\xi, \eta}$ is a linear combination of maps of the form $L_{\xi, \xi}$, we have

$$
L_{\xi, \eta} \varphi\left(a \otimes e_{2}\right)=(\xi \mid \eta) \pi_{1}(a), \quad a \in B_{1}
$$

Hence we have

$$
\varphi\left(a \otimes e_{2}\right)=\pi_{1}(a) \otimes I_{H_{2}}, a \in B_{1}
$$

Consequently, by [1; p. 174], $H_{1} \otimes H_{2}$ is a invariant subspace for $\pi\left(B_{1} \otimes_{\alpha} B_{2}\right)$.
Similarly, we have $\varphi\left(e_{1} \otimes b\right)=I_{H_{1}} \otimes \pi_{2}(b), b \in B_{2}$, and $H_{1} \otimes H_{2}$ is a invariant subspace for $\pi\left(e_{1} \otimes B_{2}\right)$.

Hence we have

$$
\begin{aligned}
\varphi(a \otimes b) & =H_{1} \otimes H_{2} \pi(a \otimes b) H_{1} \otimes H_{2} \\
& =H_{1} \otimes H_{2} \pi\left(a \otimes e_{2}\right) \pi\left(e_{1} \otimes b\right) H_{1} \otimes H_{2} \\
& =\pi_{1}(a) \otimes \pi_{2}(b), \quad a \in B_{1}, \quad b \in B_{2} .
\end{aligned}
$$

Consequently, we have $\varphi=\pi_{1} \otimes \pi_{2}$. This completes the proof.
In [2] Hopenwasser proved the following result.
Let B be a C^{*}-algebra with unit eb. Let S be a linear subspace of $B \otimes M_{n}$ which generares $B \otimes M_{n}$ and which contains the set of matrix units $e_{b} \otimes e_{i j}, i, j=1, \ldots, n$. Let T be the set of operators in B which appear as a matrix entry in some element of S. Then an irreducible representation π of B is a unique completely positive extension of $\left.\pi\right|_{T}$ to B if and only if $\pi \otimes I_{n}$
is a boundary representation for S.
We shall give the proof of the "if" part in a slightly different way.
Proof. Let π be a boundary representation for T, acting on the Hilbert space H, and let φ be a completely positive extension to $B \otimes M_{n}$.

Then, by [1: p. 146], we have a representation π_{b} of $B \otimes M_{n}$ such that

$$
\varphi(x \otimes y)=H \otimes H_{n} \pi_{b}(x \otimes y) H \otimes H_{n}, \quad x \in B, \text { and } y \in M_{n},
$$

where H_{n} is n-dimensional Hilbert space.
Since $e_{b} \otimes e_{i j} \in S$,

$$
\varphi\left(e_{b} \otimes e_{i j}\right)=P \pi_{b}\left(e_{b} \otimes e_{i j}\right) P=I_{H} \otimes e_{i j}
$$

where P is the projection on $H \otimes H_{n}$.
Hence the map: $x \longrightarrow \varphi\left(e_{b} \otimes x\right)$ is a representation of M_{n}, and so P is invariant for $\pi_{b}\left(e_{b} \otimes M_{n}\right)$.

Now, we have

$$
\begin{aligned}
& \varphi\left(x \otimes e_{i j}\right)=P \pi_{b}\left(x \otimes e_{n}\right) \pi_{b}\left(e_{b} \otimes e_{i j}\right) P \\
& =P_{t b}\left(x \otimes e_{n}\right) P I_{H} \otimes e_{i j},
\end{aligned}
$$

where e_{n} is unit of M_{n}.
On the other hand, we have

$$
\begin{aligned}
\varphi\left(x \otimes e_{i j}\right) & =P_{\pi_{b}}\left(e_{b} \otimes e_{i j}\right) \pi_{b}\left(x \otimes e_{n}\right) \\
& =I_{H} \otimes e_{i j} P \pi_{b}\left(x \otimes e_{n}\right) P .
\end{aligned}
$$

Hence, we have $P_{\pi_{b}}\left(x \otimes e_{n}\right) P \in\left(I_{H} \otimes L\left(H_{n}\right)\right)^{\prime}$, and so there is a positive linear map ρ such that

$$
P_{\pi_{b}}\left(x \otimes e_{n}\right) P=\rho(x) \otimes I_{H_{n}} .
$$

Since we have for each $s \in S, \varphi \otimes I_{n}(s)=\pi \otimes I_{n}(s)$, we have $\rho=\pi$ on T.
On the other hand, the map: $x \longrightarrow \varphi\left(x \otimes e_{n}\right)$ is completely positive, and π is a boundary representation for T we have $\pi=\rho$ on B.

Then P is invariant for $\pi_{b}\left(B \otimes e_{n}\right)$.
Consequently, we have $\varphi=\rho \otimes I_{n}=\pi \otimes I_{n}$. This completes the proof.

3. Boundary ideals

We assume throughout this section, for each $i=1,2, B_{i}$ acts on a Hilbert space H_{i}.
Theorem 2. Let J_{i} be a boundary ideal for A_{i} of B_{i}. Then ker $\left(q_{J_{1}} \otimes q_{J_{2}}\right)$ is a boundary ideal of $B_{1} \otimes_{\alpha}^{\otimes} B_{2}$ for $A_{1} \otimes A_{2}$.

Proof. The map $q_{J_{1}}(a) \longrightarrow a$ is completely isometric on $q_{J_{1}}\left(A_{1}\right)$ by [1: Theorem 1.
2.9], this map has a completely positive linear extension to B_{1} / J_{1}. There are a representation π_{1} of B_{1} / J_{1} and a linear isometric map V_{1} from H_{1} into a representation space $H_{\pi_{1}}$ of π_{1} such that

$$
a=V_{1}^{*} \pi_{1}\left(q_{J_{1}}(a)\right) V_{1}, \quad a \in A_{1}
$$

Similary, there are a representation π_{2} of B_{2} / J_{2} and a linear isometric map V_{2} from H_{2} into a representation space $H_{\pi_{2}}$ of π_{2} such that

$$
b=V_{2}^{*} \pi_{2}\left(q_{J_{2}}(b)\right) V_{2}, \quad b \in A_{2}
$$

We have for $a \in A_{1}$ and $b \in A_{2}$

$$
a \otimes b=\left(V_{1} \otimes V_{2}\right) * \tau_{1} \otimes \pi_{2}\left(q_{J_{1}}(a) \otimes q_{J_{2}}(b)\right) V_{1} \otimes V_{2}
$$

Hence the map: $q_{\mathrm{ker}\left(q_{J_{1}} \otimes a_{J_{2}}\right)}(x) \longrightarrow x$ is completely contractive.
Consequently, $\operatorname{ker}\left(q_{J_{1}} \otimes q_{J_{2}}\right)$ is a boundary ideal.
Theorem 3. Let $A_{1}\left(\right.$ resp., $\left.A_{2}\right)$ be an admissible subspace of $B_{1}\left(r e s p ., B_{2}\right)$, and $K_{1}(r e s p$., K_{2}) be the intersection of all kernels of boundary representations of $B_{1}\left(r e s p ., B_{2}\right)$ for $A_{1}($ resp., $\left.A_{2}\right)$. Then $A_{1} \otimes A_{2}$ is an admissible subspace of $B_{1} \otimes B_{\alpha}$, and $k e r\left(q_{K_{1}} \otimes q_{K_{2}}\right)$ is the Silov boundary for $A_{1} \otimes A_{2}$.

Prooe. Let B_{i} denote the set of boundary representations of B_{i} for A_{i}, and let $\rho_{i}=\sum_{\pi_{i} \in B_{i}} \oplus \pi_{i j}$ be the direct sum of boundary representations of B_{i}. Let J be the intersection of the kernels of representations of the form $\pi_{1 m} \otimes \pi_{2 n}$ where $\pi_{1 m}$ and $\pi_{2 n}$ are boundary representations of B_{1} and B_{2}. Since $q_{K 1} \otimes q_{K 2}\left(B_{1} \otimes_{\alpha} B_{2}\right)$ is *-isomorphic to $\rho_{1} \otimes \rho_{2}\left(B_{1} \otimes_{\alpha}\right.$ B_{2}), we have

$$
\operatorname{ker}\left(q_{K_{1}} \otimes q_{K_{2}}\right)=J
$$

Let K be the intersection of all kernels of boundary representations of $B_{1} \otimes_{\alpha} B_{2}$ for $A_{1} \otimes A_{2}$.

By Theorem 1, $\pi_{1 m} \otimes \pi_{2 n}$ is a boundary representation, then we have

$$
J \supset K .
$$

On the other hand, by Theorm 2, $\operatorname{ker}\left(q_{K_{1}} \otimes q_{K_{2}}\right)$ is a boundary ideal. Therefore, K is a boundary ideal, and so $A_{1} \otimes A_{2}$ is admissible. Then K is the Silov boundary ideal [1: Theorem 2. 2. 3], hence we have

$$
K \supset \operatorname{ker}\left(q_{K 1} \otimes q_{K 2}\right)
$$

Consequently, we have

$$
K=\operatorname{ker}\left(q_{K_{1}} \otimes q_{K_{2}}\right)
$$

This completes the proof.
Niggata University

References

[1] W. Arveson: Subalgebras of C*-algebras. Acta Math., 123 (1969), 141-224.
[2] A. Hopenwasser: Boundary representations on C*-algebras with marix units. Trans. Amer. Math. Soc., 177 (1973), 483-490.
[3] A. Wulfsohon: Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.

