Boundary representations of a tensor product of C*-algebras

By

Tadashi HURUYA

(Received October 26, 1973)

1. Introduction

In [1] Arveson gives a non-commutative generalization of Choquet boundary and Silow boundary. We shall study those of a tensor product of C*-algebras.

If E is a subspace of a C*-algebra and M_n is the algebra of $n \times n$ complex matrices, then the algebraic tensor product $E \otimes M_n$ is the set of $n \times n$ matrices with entries in E. If $\varphi: E \to F$ is a linear map from one linear space into another, then, for each positive integer n, define $\varphi_n: E \otimes M_n \longrightarrow F \otimes M_n$ by applying element by element to each matrix over E, i.e. $\varphi_n(T_{ij}) = (\varphi(T_{ij}))$. φ is called completely positive (resp., completely isometric) if each φ_n is positive (resp., isometric).

Following Arveson [1], let B be a C*-algebra with unit and A a subspace of B which contains unit and generates B as a C*-algebra.

An irreducible representation π of B is called a boundary representation for A if the restriction $\pi | A$ has a unique completely positive linear extension to B.

A closed two-sided ideal J in B is called a boundary ideal for A if the canonical quotient map $q_J: B \longrightarrow B/J$ is completely isometric on A.

A boundary ideal is called the Silov boundary for A if it contains every other boundary ideal.

A is called an admissible subspace of B if the intersection of the kernels of the boundary representations for A is a boundary ideal for A.

Throughout this paper, we use the following notations. Let B_1 and B_2 be C*-algebras, and let for each $i=1, 2, e_i$ be unit in B_i, A_i a subspace of B_i which contains e_i and generates B_i as a C*-algebra.

2. Boundary representations

Let $A_1 \otimes A_2$ be the algebraic tensor product, and $B_1 \otimes B_2$ the C*-tensor product [3]. Then $A_1 \otimes A_2$ generates $B_1 \otimes B_2$ as a C*-algebra. THEOREM 1. Let π_1 (resp., π_2) be a boundary representation of B_1 (resp., B_2) for A_1 (resp., A_2). Then $\pi_1 \otimes \pi_2$ is a boundary representation of $B_1 \otimes B_2$ for $A_1 \otimes A_2$.

PROOF. Let φ be a completely positive extension to $B_1 \bigotimes_{\alpha} B_2$ of the restriction $\pi_1 \bigotimes \pi_2|_{A_1 \otimes A_2}$. Then there is a representation π of $B_1 \bigotimes_{\alpha} B_2$ on a Hilbert space H such that

$$\varphi(\mathbf{x}) = H_1 \otimes H_2 \pi(\mathbf{x}) H_1 \otimes H_2, \ \mathbf{x} \in B_1 \otimes B_2,$$

where H_1 and H_2 are representation spaces of π_1 and π_2 .

Let $L(H_1)$ and $L(H_2)$ be the C*-algebras of all bounded operators on H_1 and H_2 . We define the bounded linear map $L_{\xi,\eta}$ of $L(H_1) \otimes L(H_2)$ to $L(H_1)$ by

$$L_{\xi,\eta}(x\otimes y) = (y\xi|\eta)x, x\in L(H_1), y\in L(H_2), \xi, \eta\in H_2.$$

Then $L_{\xi,\xi}$ is a completely positive map. By [1: Theorem 1. 2. 9] it has a completely positive extension to $L(H_1 \otimes H_2)$, and is also denoted by $L_{\xi,\xi}$.

Then the map: $a \rightarrow L_{\ell,\ell} \varphi(a \otimes e_2)$ is completely positive and we have

$$L_{\xi,\xi}\varphi(a\otimes e_2)=(\xi|\xi)\pi_1(a), a\in A_1.$$

Since π_1 is a boundary representation of B_1 for A_1 , we have

$$L_{\xi,\xi}\varphi(a\otimes e_2)=(\xi|\xi)\pi_1(a), a\in B_1.$$

Since $L_{\xi,\eta}$ is a linear combination of maps of the form $L_{\xi,\xi}$, we have

 $L_{\xi,\eta}\varphi(a\otimes e_2)=(\xi|\eta)\pi_1(a), \ a\in B_1.$

Hence we have

$$\varphi(a \otimes e_2) = \pi_1(a) \otimes I_{H_2}, \ a \in B_1.$$

Consequently, by [1; p. 174], $H_1 \otimes H_2$ is a invariant subspace for $\pi(B_1 \otimes B_2)$.

Similarly, we have $\varphi(e_1 \otimes b) = I_{H_1} \otimes \pi_2(b)$, $b \in B_2$, and $H_1 \otimes H_2$ is a invariant subspace for $\pi(e_1 \otimes B_2)$.

Hence we have

$$\varphi(a \otimes b) = H_1 \otimes H_2 \pi(a \otimes b) H_1 \otimes H_2$$
$$= H_1 \otimes H_2 \pi(a \otimes e_2) \pi(e_1 \otimes b) H_1 \otimes H_2$$
$$= \pi_1(a) \otimes \pi_2(b), \ a \in B_1, \ b \in B_2.$$

Consequently, we have $\varphi = \pi_1 \otimes \pi_2$. This completes the proof.

In [2] Hopenwasser proved the following result.

Let B be a C*-algebra with unit e_b . Let S be a linear subspace of $B \otimes M_n$ which generares $B \otimes M_n$ and which contains the set of matrix units $e_b \otimes e_{ij}$, i, j=1,...,n. Let T be the set of operators in B which appear as a matrix entry in some element of S. Then an irreducible representation π of B is a unique completely positive extension of $\pi|_T$ to B if and only if $\pi \otimes I_n$ is a boundary representation for S.

We shall give the proof of the "if" part in a slightly different way.

PROOF. Let π be a boundary representation for T, acting on the Hilbert space H, and let φ be a completely positive extension to $B \otimes M_n$.

Then, by [1: p. 146], we have a representation π_b of $B \otimes M_n$ such that

 $\varphi(x \otimes y) = H \otimes H_n \pi_b(x \otimes y) H \otimes H_n, x \in B, \text{ and } y \in M_n,$

where H_n is *n*-dimensional Hilbert space.

Since $e_b \otimes e_{ij} \in S$,

 $\varphi(e_b \otimes e_{ij}) = P \pi_b(e_b \otimes e_{ij}) P = I_H \otimes e_{ij},$

where P is the projection on $H \otimes H_n$.

Hence the map: $x \longrightarrow \varphi(e_b \otimes x)$ is a representation of M_n , and so P is invariant for $\pi_b(e_b \otimes M_n)$.

Now, we have

$$\varphi(\mathbf{x} \otimes e_{ij}) = P \pi_b(\mathbf{x} \otimes e_n) \pi_b(e_b \otimes e_{ij}) P$$
$$= P \pi_b(\mathbf{x} \otimes e_n) P I_H \otimes e_{ij},$$

where e_n is unit of M_n .

On the other hand, we have

$$\varphi(x \otimes e_{ij}) = P \pi_b(e_b \otimes e_{ij}) \pi_b(x \otimes e_n)$$
$$= I_H \otimes e_{ij} P \pi_b(x \otimes e_n) P.$$

Hence, we have $P\pi_b(x \otimes e_n) P \in (I_H \otimes L(H_n))'$, and so there is a positive linear map ρ such that

 $P\pi_b(x\otimes e_n)P=\rho(x)\otimes I_{H_n}.$

Since we have for each $s \in S$, $\varphi \otimes I_n(s) = \pi \otimes I_n(s)$, we have $\rho = \pi$ on T.

On the other hand, the map: $x \longrightarrow \varphi(x \otimes e_n)$ is completely positive, and π is a boundary representation for T we have $\pi = \rho$ on B.

Then P is invariant for $\pi_b(B \otimes e_n)$.

Consequently, we have $\varphi = \rho \otimes I_n = \pi \otimes I_n$. This completes the proof.

3. Boundary ideals

We assume throughout this section, for each $i=1, 2, B_i$ acts on a Hilbert space H_i .

THEOREM 2. Let J_i be a boundary ideal for A_i of B_i . Then ker $(q_{J_1} \otimes q_{J_2})$ is a boundary ideal of $B_1 \otimes B_2$ for $A_1 \otimes A_2$.

PROOF. The map $q_{J_1}(a) \longrightarrow a$ is completely isometric on $q_{J_1}(A_1)$ by [1: Theorem 1.

2. 9], this map has a completely positive linear extension to B_1/J_1 . There are a representation π_1 of B_1/J_1 and a linear isometric map V_1 from H_1 into a representation space H_{π_1} of π_1 such that

$$a = V_1^* \pi_1(q_{J_1}(a)) V_1, \ a \in A_1.$$

Similary, there are a representation π_2 of B_2/J_2 and a linear isometric map V_2 from H_2 into a representation space H_{π_2} of π_2 such that

 $b = V_2^* \pi_2(q_{J_2}(b)) V_2, \ b \in A_2.$

We have for $a \in A_1$ and $b \in A_2$

$$a \otimes b = (V_1 \otimes V_2)^* \pi_1 \otimes \pi_2(q_{J_1}(a) \otimes q_{J_2}(b)) V_1 \otimes V_2.$$

Hence the map: $q_{\ker(q_{I_1} \otimes q_{I_2})}(x) \longrightarrow x$ is completely contractive.

Consequently, ker $(q_{I_1} \otimes q_{I_2})$ is a boundary ideal.

THEOREM 3. Let A_1 (resp., A_2) be an admissible subspace of B_1 (resp., B_2), and K_1 (resp., K_2) be the intersection of all kernels of boundary representations of B_1 (resp., B_2) for A_1 (resp., A_2). Then $A_1 \otimes A_2$ is an admissible subspace of $B_1 \otimes B_2$, and ker $(q_{K_1} \otimes q_{K_2})$ is the Silov boundary for $A_1 \otimes A_2$.

PROOE. Let B_i denote the set of boundary representations of B_i for A_i , and let $\rho_i = \sum_{\pi_{ij} \in B_i} \bigoplus \pi_{ij}$ be the direct sum of boundary representations of B_i . Let J be the intersection of the kernels of representations of the form $\pi_{1m} \otimes \pi_{2n}$ where π_{1m} and π_{2n} are boundary representations of B_1 and B_2 . Since $q_{K_1} \otimes q_{K_2}$ $(B_1 \otimes B_2)$ is *-isomorphic to $\rho_1 \otimes \rho_2(B_1 \otimes B_2)$, we have

$$\ker(q_{\kappa_1}\otimes q_{\kappa_2})=J.$$

Let K be the intersection of all kernels of boundary representations of $B_1 \bigotimes_{\alpha} B_2$ for $A_1 \otimes A_2$.

By Theorem 1, $\pi_{1m} \otimes \pi_{2n}$ is a boundary representation, then we have

 $J \supset K$.

On the other hand, by Theorm 2, $\ker(q_{K_1} \otimes q_{K_2})$ is a boundary ideal. Therefore, K is a boundary ideal, and so $A_1 \otimes A_2$ is admissible. Then K is the Silov boundary ideal [1: Theorem 2. 2. 3], hence we have

 $K \supset \ker(q_{K_1} \otimes q_{K_2}).$

Consequently, we have

$$K = \ker(q_{K_1} \otimes q_{K_2}).$$

This completes the proof.

NIIGATA UNIVERSITY

References

- [1] W. ARVESON: Subalgebras of C*-algebras. Acta Math., 123 (1969), 141–224.
- [2] A. HOPENWASSER: Boundary representations on C*-algebras with marix units. Trans. Amer. Math. Soc., 177 (1973), 483-490.
- [3] A. WULFSOHON: Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.