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1. Introduction

Duality theorem of mathematical programming problems in complex space have .

been given in [1] and [5] for linear programs, in [2], [4] and [6] for quadratic programs,
in [3], [7], [8] and [9] for nonlinear programs. Self-dual problems, that is, problems
whose primal and dual formulations are equivalent, have been investigated by Duffin
(107, Dorn [11], Hanson [13], Cottle [14] in real case, and by Mond and Hanson [4] in
complex case.

In this paper, it will be shown that the self-duality theorem for quadratic programm-
ing can be extended to constraints involving polyhedral cone in complex space. Moreo-
ver, we extended the duality theorem [12] to the case of complex nonlinear programming
and the self-dual program will be given as its special case.

2. Duality in complex quadratic programming

By Abrams and Ben-Israel, the duality theorem for complex quadratic programming
[2] was extended to constraints involving polyhedral cone.

For x&Cr, y=Cn, (x, y)=yHx denotes the inner product of ¥ and y in complex
space. And for any nonempty subset SC Cr, let

S*={yc= Cn : x&S—>Re[ (x, y)1=0}

~ denotes the polar of S. Also, SCC» is a polyhedral cone if for some positive integer 2
and Ac Cnxk,

S={Ax . x=0}.

For any A= (Cmxn, AT denotes the transpose of A and AH denotes the conjugate
transpose of A.

Let B&= Cnxn be a positive definite Hermitian matrix, A& Cmxn, b= Cm, c=Cn, and let
ScC C», T C= be polyhedral cones.
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Consider the following quadratic programming problems in complex space.
(P1) minimize

1105 ERe(%xH Br+ cHx) v (1)

subject to
Ax—beT (2)
xES (3D

(D1) maximize

=Ref —1yu H

80, D=Re(—LyHBy-+b1z) (4

subject to
c+By—AHzc S* (5)
zET¥*, (6D

Duality theorem for this programming problem is given by Abrams and Ben-Israel
[61

THEOREM 1.

(a) If (PY) has an optimal solution x,, there exists a vector zo such that (xo, 2q) is an
optimal solution of (D1) and f(xo)=2g(%0, 20)-

(b)) If (DY) has an optimal solution (¢, 2o), there exists a vector xo, such that Bxy=
By, which is an optimal solution of (P1) and g(yy, 20)=Jf (%p).

Proor. The proof is given in [6].

A special case of this problem, which is self-dual, will be considered in the next
section.

3. Self-dual complex quadratic programming

The concept of self-dual program was given by Dorn [11]. If constraints are added
to, or subtracted from, a program in such a way that the solution (both the optimal value
of objective function and the optimal values of the variables) is unchanged, the new pro-
gram thus constructed is called equivalent to the original program. A program is called
self-dual if it is equivalent to its dual.

Consider the following complex quadratic programming problem:

(P2) minimize

S(x)=Re(xHAx+pHx) (T
subject to
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Ax+peES* (8)
x&S 9)

where A= Cnxn is an Hermitian positive definite matrix, p=Cn, x&Cn, and SCCr isa

polyhedral cone.
THEOREM 2. If the problem (P 2) is feasible, then it is self-dual.  Moreover, the

minimum value of f(x) is zero.
Proor. If B=2A, c=—b=p, T=S* in (P1), we have then the problem (P2). There-

fore, the dual problem of (P2) is the following:
(D2) maximize

&(y, D=Re(—yHAy—pHz) (105
subject to
p+2Ay—AHz=S* an
zES. | a2
Let x be a feasible solution of (P2). From (8) and (9),
Re[(Ax+p)Hx]=0. (13)

Since then f(x)=Re(xH Ax+pHx)=0 is bounded below,- therefore (P2) has an opti-
mal solution x,. By Theorem 1, there exists a z, such that (o, 29) is optimal for problem
(D2) and such that

Re(xgf Axg+ pHxo) =Re(—yoH Ayo—pH o). Qry)
Using (11) and (12)
Re[(p+24y— AHZ)Hz]=0
or
Re(—zHAz+2yHAz)=Re(—pHz).
Then, we have
209, 2)=Re(—yHAy—pHz)<Re(—yHAy—2HAz+2yHAz)
=Re[ —(z—y)HA(z—y)1=0
where the last inequality results from the assumption of matrix A. It follows that
maximum g(y, 2)=<0.
From (13), however,
minimum f(x)=0.

Combining these with (14) then
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0<minimum f(x)=Re(xHAx+pHx) ~
=maximum g(y, z2)=Re(—yHAy—pH2)<0.
Since A is an Hermitian positive definite matrix
maximum g(y, 2)=Re(—yHAy—pHz)=0

if and only if y=2. The constraint y=z may, therefore, be added to (11) and (12) and
an equivalent problem is obtained. The equivalent problem so obtained is
(D2 maximize

&(y, 2)=Re(—yHAy—pH2)
subject to
pP+2Ay—AH2=S*, 2SS, and y=z.

This equivalent problem may be reduced by elminating z to:
(D2") maximize

&(y)=Re(—yHAy—pHy)
subject to
Ay+pES* and ycS,

which is precisely the original problem. This completes the proof of the theorem.

4. Duality in complex nonlinear programming

The analytic function f: C* x C*—C will be said to be convex in a domain A if for all
21 ZZEA

Re[ (23, 2 2)—f(21, 2 1D— (22— 20)TV1 f(21, 21— (22— 21)HV2f(21, 21D]=0, (15)
where V denoting the gradient vector, that is,

V1S(z, 2)=V:1(z, )—( af( Z) ) i=1,.., n

Vo (2 Z)=Vef(z 2)= af(;;f>) i=1,.., n

A function f will be called concave if —f is convex. Similarly, for an analytic func-
tion g: C"x C*—C™ is convex in a domain A if for any z;, 2, A

Re[g(zz 22)—8&(21, 21)—D18(21, 21)(22—21)—D2g(21, 21)(22— 21)1=0

where

Dig(z, 7) =D:2(z, z)—( ag,(z, z) ) i=1,.., m j=l...n
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Dyg(z2,2)=D:zg(z,z)= ( 3gz§§;z) ) i=1..m,j=1,..,n

We assume throughout that f(z2,z): C”"x C"—C is convex, g(2,z): C*"x C"—C™" is
concave with respect to S [8], SHR™C R™,, and both be analytic in a neighborhood of a
qualified point [7]. Consider the following two programs.

(P3) minimize

Re f(2,2)
subject to
8(z,2)ES . (16)
2&T . an

where SCC”™ and TC C?” are polyhedral cones.
(D3) maximize
H(z, w)=Re[ f(2,2)—(g(2,2), )—(V1f(2, 2 )+V2/(2,2), 2)
+(D1Hg(z, z2Du+DoTg(2,2) %, )]
subject to
V1f(2,2)+Vaf(2,2)—D1Hg(2, 2 )u—D,Tg(2, 2 )uc T* (18
ueS* a9

where

DiTg(27)= ( ogi @’z) ) i=1,..m, j=1,.,n

DyHg(27)= (ag,(z,z)) i=1,...m, j=1,..,n

THEOREM 3. If (20,2 0) is an optimal solution of (P3), then there exists a vector uy=S*
such that (2o, ug) is an optimal solution for (D3), and the extreme values of the two objective
Sfuctions are equal.

Proor. Let (20,z¢) be an optimal solution of (P3). The necessary conditions for
(20, 2 0) to be an optimal solution of (P3) are given by Abrams and Ben-Israel; there exist
a uy=S* such that

V120, 2 0)+ V2 (20, 2 0) =D1Hg(20, 2 0)tho+ D27 8(20, 2 0) %0 20)
and '
Re(gCZO!.z—O)’ uO) = O (21)

Since T is a polyhedral cone, 0&T*. Therefore, (2o, %) lies in the set of feasible
solution of (D3). We now show that it is also optimal.
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Let (z, #) be any other feasible solution of (D3). We have then, by (20) and (21)
H(zy, uo)—H(z, u)
=Re[ (20, 2 0)— (&(20 2 0)» %0)—(V1./(20,2 0)+V2S/(20:Z0); 20)
+(D1Hg(20, 2 0)tho+ D2T2(20, 2 0)%0s 20)— (2,2 )+ (8(2,2), %)
+(V1f(22)+V2/(2,2), 2)—(D1Hg(2,2)u+D;Tg(2,2 )4, 2)]
=Re[ f(20,20)—f(22)+(&(z2), u)+(V1/(22)+V2/(272), 2)
—D1Hg(z,2 )u+D,Tg(2,2 )%, 2).
The definition of convexity of f(z,z) implies
Re[ f(z0, 2 0)—f(2,2)1=Rel (20— 2)TV1 /(2,2 )+ (20— 2)H V2 f(2,2)].
We have then, '
H(zy, uy)—H(z, u)
=Rel (20— )TVAS(& T+ Carm DAV (& T+ (&), )
+(V1f(2,2)+V21(2,2), 2)—(D1Hg(2, 2 du+ DT &(2,2 )4, 2)
=Re[(V1/(2,2)+V2/(2,2), 20)+(&(2,2), u)—(D1Hg(2,2 )u
+DyTg(2,z)u, 2)]. _
Since (zg, 2 ¢) and (z, ») are feasible for (P3) and (D3) respectively,
20T
V1722 )+ V2 /(2 2)—DiHeg(2,z )u—D,Te(2,z U T,
Therefore, it follows that
Re[20#(V1 (2, 2 )+ V2/(2,2)) 1=Re[ (D1Hg(2,Z Du+DyTe(2,2 D, 20) 1.
Thus from this inequality and concavity of g(z, z), we obtain
H(z, uo)—H(z2, w) v
=Re[ (D17¢(2, 2 Ju+DoT8(2,2 )u, 20—2)+(8(2,2), )]
=Re[(D18(2,2)+D28(2,2))(z0—2), w)+(&(2,2), w)]
=Re[(g(z0,20), #)]=0

where the last inequality follows from #&S* and g(zp,20)ES. This establishes that (z,,
#g) is an optimal solution of problem (D3).

Finally from (20) and (21), it follows that
H(zo, uo)
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=Re[ (20,2 0)— (&(20, 2 0)> %0)—(V1.f(20, 2 0)+ V2 (20, 2 0)> 20)
+(D1Hg(20, 2 0)tho+ DT g(20, 2 0)hos 20) ]
=Ref (20, 20)

verifying the equality of the two objective functions. This completes the proof of the

theorem.

5. Self-duality in complex nonlinear programming

A special case of above problem, which is self-dual, will be considered in the follow-
ing theorem. :

Assume now that g: C*x C"—(C” is concave with respect to S, SHR*C R”, and (g, 2)
is convex. The complex program to be considered is the following.
(P4 minimize

Re[(&(2,2), 2)]

subject to
&(z,z2)ES (22)
z2&ES*, (23)

THEOREM 4. If thereis a (2.2) satisfying (22) and (23), then the problem (P4) is self-
dual and its optimal value is zero.
Proor. Let (2,2) be any feasible solution of (P4). From (22) and (23), we have

Re[(g(z,2), 2)]1=0.

Since minimum Re[(g(z,z), 2]1=0 is bounded below, therefore (P4) has an optimal
solution. It is easy to see that if f(2,z2)=(g(2,2), z) and T=S*, then (P3) reduce to
(P4). Therefore, the dual problem of the above program (P4) is the following.

(D4) maximize
Re[ - (g(z»?)’ 2+ u>— (DIHng:E-DZ-{_DZTg(z,?)?’ z— u)]
subject to
28(z,z2)+D1Hg(2,2 )(z—u)+D.Tg(2, 2 )(z —u) ES** €2Y)
ue=S*. (25)

Since S is polyhedral cone, S**=S. Therefore, from this formulation it is clear that
if the constraints #=z are added to (24) and (25), the equivalent problem is obtained.
Moreover, by Throrem 3, if (24, 29) is an optimal solution of (P4), then

Re[ (g€20a?0>s zO) 1=0.
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Hence, the optimal value of (P4) is zero, which proves the theorem.
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