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As we remarked in \S \S 1 and 2 of [1], the following proposition holds. The
purpose of this paper is to give its proof. Free use will be made of the definitions
and notations of [1].

PROPOSITION 1. $1^{o}$ . If $(K, L)$ is a $Kan$ pair with base point $\varphi\in L_{0}$ , DEFINITIONS
1.7 and 1.10 in [1] of $\pi_{n}(K, L, \varphi)$ are equivalent for $n\geqq 0$ . $2^{O}$ . If $(K;L, M)$ is a
$Kan$ triad with base point $\varphi\in(L\cap M)_{0}$ , DEFINITIONS 2.4 and 2.7 in [1] of $\pi_{n}(K;L,$ $M$,
$\varphi)$ are equivalent for $n\geqq 2$ . I.e. the natural embedding map $i_{k}$ : $K\rightarrow S|K|$ given in [7]

induces one-to-one onto maps $(i_{k})_{*};$ $\pi_{n}(K, L, \varphi)\rightarrow\pi_{n}(S|K|, S|L|, i_{k}(\varphi))$ and $(ik)_{*};$

$\pi_{n}(K;L, M, \varphi)\rightarrow\pi_{n}(S|K| ; S|L|, S|M|, i_{k}(\varphi))$ where $\pi_{n}$ means the set defined by
DEFINITiONS1.7 and 2.4 in [1].

Proof of $1^{O}$ . The equivalence follows from THEOREM 7.3 in [1], REMARK 1 in
[3, \S 4] and the five lemma for $n\geqq 2$, and by their definitions for $n=0$.

To sho $w$ that $(i_{k})_{*}$ is one-to-one onto for $n=1$ , consider $\pi_{1}(K, L, \varphi)$ and $\pi_{1}(S|K|$ ,
$S|L|,$ $i_{k}(\varphi))$ . In this case we may assume that $K$ is connected, i.e. $\pi_{0}(K, \varphi)=0$.
Then we can construct the $c$ . $s$ . $s$ . group $G(K;\varphi)$ which is a loop complex of $K$ rel.
$\varphi$ [ $2$, THEOREM 9.2]. Put $U=G(K;\varphi)\times tK,$ $C=G(K;\varphi)\times tL$ and $\psi=(e_{0}, \varphi)\in U_{0}$

where $t$ is a twisting function defined by $t\sigma=\overline{\sigma},$
$e_{0}$ is the identity element of the group

$G(K;\varphi)_{0}$ . By LEMMA 9.3 in [2] $U$ is contractible. Let $p:U\rightarrow K$ be given by $p(\rho, \sigma)$

$=\sigma for(\rho, \sigma)\in U$. Then $p$ is a fibre map: $(U, C, \psi)\rightarrow(K, L, \varphi)$ and $(U, C)$ is a Kan
pair. By THEOREM 8.3-2) and PROPOSITION 8.2 in [1], $p_{*};$ $\pi_{1}(U, C, \psi)\rightarrow\pi_{1}(K, L, \varphi)$

and $(S|P|)_{*};$ $\pi_{1}(S|U|, S|C|, i_{U}(\psi))\rightarrow\pi_{1}(S|K|, S|L|, i_{k}(\varphi))$ are one-to-one onto.
Consider the following commutative diagram:

$\leftarrow\underline{p_{*}}$ $\underline{\delta}\rightarrow$

$\pi_{1}(K, \downarrow(i_{k})_{*}L,\varphi)$ $\pi_{1}(U,C,\psi)\downarrow(i_{U})_{*}$ $\pi_{0}(C,\psi)\downarrow(i_{C})_{*}$

$(s|p|)_{*}$ $\delta^{\prime}$

$\pi_{1}(S|K|, S|L|, i_{k}(\varphi))\leftarrow-\pi_{1}(S|U|, S|C|, i_{U}(\psi))-\rightarrow\pi_{0}(S|C|, i_{C}(\psi)),-$

where $\delta$ and $\delta^{\prime}$ are the boundary operations induced by the O-th face operation, $(i_{C})_{*}$

is one-to-one onto [3, \S 4 REMARK 1]. Therefore to show that $(i_{k})_{*}$ is one-to-one
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onto it sufficies to prove the following.
LEMMA 2. If $(U, C)$ is a $Kan$ pair with base point $\emptyset\in C_{0}$ and if $U$ is contrac-

tible, then $\delta;\pi_{1}(U, C, \psi)\rightarrow\pi_{0}(C, \psi)$ is one.to-one onto.
(In this case, $S|U|$ is also contractible and that $\delta^{\prime}$ is one.to-one onto is verified

by the same method.)

Proof. Since $\pi_{0}(U, \psi)=0$ it is clear that $\delta$ is onto.
Now consider two simplices $\sigma$ and $\tau\in\Gamma_{1}(U, C, \psi)$ such that $\sigma\epsilon^{0}\sim\tau\epsilon^{0}$, i.e. there

exists $\gamma\in C_{1}$ with $\gamma_{\epsilon^{0}=\sigma\epsilon^{0}}$ and $\gamma_{\epsilon^{1}=\tau\epsilon^{0}}$. Let $\omega_{1}\in U_{2}$ be a solvent of

(0) (1) $(2)$

$[\gamma, \sigma, \coprod]$

and let $\sigma^{\prime}=\omega_{1}\epsilon^{2}$. Let $\omega_{2}\in U_{2}$ be a solvent of

(0) (1) $(2)$

$[\sigma^{\prime}, \tau, \coprod]$

and let $\theta=\omega_{2}\epsilon^{2}$. we have $\theta\epsilon^{0}=\emptyset$ and $\theta\epsilon^{1}=\psi$ . Since $\pi_{1}(U, \psi)=0=\{\psi\eta^{0}\}$ , there exists
$\omega_{3}\in U_{2}$ such that $\omega_{3}\epsilon^{0}=\omega_{3}\epsilon^{1}=\psi\eta^{0},$ $\omega_{3}\epsilon^{2}=\theta$. Let $\omega_{4}\in U_{2}$ be a solution of

(0) (1) (2) (3)

$[\coprod, \tau\eta^{0}, \omega_{2}, \omega_{3}]$

and $\rho\in U_{2}$ be a solution of

(0)(1) (2) (3)

$[\square , \omega_{1}, \sigma\eta^{0}, \omega_{4}]$ .
Then we have $\rho\epsilon^{0}=r\in C_{1},$ $\rho\epsilon^{1}=\sigma,$ $\rho\epsilon^{2}=\tau$ and therefore $\rho:\sigma\sim\tau$ lsd. $C$.

Proof of $2^{o}$ . The equivalence follows from THEOREM 7.1 in [1], THEOREM $1-1^{o}$

and the five lemma for $n\geqq 3$.
To show that $(i_{K})_{*}$ is one-to-one onto for $n=2$, consider $\pi_{2}(K;L, M, \varphi)$ and

$\pi_{2}(S|K| ; S|L|, S|M|, i_{K}(\varphi))$ where we may assume that $K$ is connected. Let $U,$ $C,$ $\psi$,

be those given in the proof of $1^{O}$ and moreover let $D=G(K;\varphi)\times tM$ Then $(U;C$,
$D)$ is a Kan triad with base point $\psi$ , and the following diagram is commutative:

$\underline{(i_{K})_{*}}\rightarrow$

$\pi_{2}(K;\uparrow p_{*}L,M, \varphi)$

$\underline{(i_{U})_{*}}\rightarrow$

$\pi_{2}(U;C, D, \psi)$

$\pi_{2}(S|K| ; S|L|, S|M|, i_{K}(\varphi))$

$\uparrow(S|p|)_{*}$

$\pi_{2}(S|U| ; S|C|, S|D|, i_{U}(\psi))$ ,

where $p:U\rightarrow K$ is the fibre map given in the proof of 1o and $p_{*}$ and $(S|p|)_{*}$ are
one-to-one onto (THEOREM 8.3-1 in [1]). Therefore to show that $(i_{K})_{*}$ is one.to-
one onto it sufficies to prove that $(i_{U})_{*}$ is so.

To prove that $(i_{U})_{*}$ is onto, consider an arbitrary simplex $f\in\Gamma_{2}(S|U|$ ; $S|C|$ ,
$S|D|,$ $i_{U}(\psi))$ . $f$ is a continuous map from $\Delta_{2}$ into $|U|$ where $\Delta_{2}$ means the unit
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simplex in euclidean space $R^{3}$. Put $e=f\epsilon^{0}\epsilon^{0}(\Delta_{0})$ $\in|C|\cap|D|$ for the sake of nota $\cdot$

tional simplicity. It is clear that there exist a l-simplex $g\in(S|C|\cap S|D|)_{1}$ and a
O-simplex $\theta\in(C\cap D)_{0}$ such that $g\epsilon^{0}(\Delta_{0})=e$ and $g\epsilon^{1}=i(\theta)$ . Since $S|C|$ and $S|D|$ are
Kan complexes, there exist solvents $h_{0}\in(S|C|)_{2}$ and $h_{1}\in(S|D|)_{2}$ of the following
equations

(0)(1) $(2)$ (0) (1) $(2)$

$[g, f\epsilon^{0}, \square ]$ and $[g, f\epsilon^{1}, \square ]$ respectively.

We see that $h_{0^{\epsilon^{2}}}\in\Gamma_{1}(S|C|, S|\psi\cup\theta|, i_{C}(\psi))$ and $(i_{C})_{*}:$ $\pi_{1}(C, \psi\cup\theta, \psi)\rightarrow\pi_{1}(S|C|,$ $ S|\psi\cup$

$\theta|,$ $i_{C}(\psi))$ is one-to-one onto (THSOREM $1-1^{\circ}$ ) where $\psi\cup\theta$ means the $c$ . $s$ . $s$ . complex
generated by $\psi$ and $\theta$. Therefore we have a simplex $\sigma_{0}\in\Gamma_{1}(C, \psi\cup\theta, \psi)$ such that
$\sigma_{0}\epsilon^{0}=\theta$ and $i_{C}(\sigma_{0})\sim h_{0}\epsilon^{2}$ lsd. $S|\psi\cup\theta|$ . Donote this homotopy by $h_{0}\in(S|C|)_{2}$ . It is
clear that $h\epsilon^{0}=i(\theta)\eta^{0}$. We have also a simplex $\sigma_{1}\in\Gamma_{1}(D, \psi\cup\theta, \psi)$ such that $\sigma_{1}\epsilon^{0}=\theta$

and $i_{D}(\sigma_{1})\sim h_{1}\epsilon^{2}$ lsd. $S|\psi\cup\theta|$ . Denote this homotopy by $h_{1}\in(S|D|)_{2}$. We see that
$k_{1}\epsilon^{0}=i_{D}(\theta)\eta^{0}$ Let $f_{0}\in(S|C|)_{2}$ and $f_{1}\in(S|D|)_{2}$ be solutions of the following equations

(0) (1) (2) (3) (0) (1) (2) (3)

$[g\eta^{0}, \square , h_{0}, h_{0}]$ and $[g\eta^{0}, \square , h_{1}, k_{1}]$ respectively.

Then we have $f\sim f_{3}$ lsd. $S|C|,$ $S|D|$ where $f_{3}\in(S|U|)_{2}$ is a solution of the following

equation

(0) (1) $(2)(3)$

$[f_{0}, f_{1}, f, \coprod]$ .
On the other hand, let $\gamma\in U_{2}$ be a solvent of the equation

(0) (1) $(2)$

$[\sigma_{0}, \sigma_{1}, \coprod]$

and let $\iota$) $=Y\epsilon^{2}$. Then we have $ u\epsilon^{0}=u\epsilon^{1}=\psi$ , and since $\pi_{1}(U, \psi)=0$ there exists a
simplex $\Omega\in U_{2}$ such that $\Omega\epsilon^{0}=\Omega\epsilon^{1}=\psi\eta^{0}$ and $\Omega\epsilon^{2}=\iota$). A solution $\sigma$ of the equation in
$U$ :

(0) (1) (2) (3)

$[\sigma_{0}\eta^{0}, \square , r, \Omega]$

is a simplex contained in $\Gamma_{2}(U;C, D, \psi)$ , i.e. $\sigma\epsilon^{0}=\sigma_{0},$ $\sigma\epsilon^{1}=\sigma_{1}$ and $\sigma\epsilon^{2}=\psi\eta^{0}$ Let
$F_{3}\in(S|U|)_{3}$ be a solvent of the equation in $S|U|$ :

$[i_{U}(\sigma_{0})\eta^{0}(0)f_{3}(1)i_{U}(\sigma)(2)(3)\square ]$

and let $f_{4}=F_{3}\epsilon^{3}$. Then we have $f_{4}\text{\’{e}}^{0}=f_{4}\epsilon^{1}=f_{4}\epsilon^{2}=i_{U}(\psi)\eta^{0}$, and since $\pi_{2}(S|U|, i_{U}(\psi))$

$=\pi_{2}(U, \psi)=0$ there exists $F_{4}\in(S|U|)_{3}$ such that $F_{4}\epsilon^{0}=F_{4}\epsilon^{1}=F_{4}\epsilon^{2}=i_{U}(\psi)\eta^{0_{\gamma)}1}$ and
$F_{4}\epsilon^{3}=f_{4}$ . Let $F\in(S|U|)_{3}$ be a solution of the equation in $S|U|$ :
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$(0)$ (1) (2) (3) (4)

$[i_{U}(\sigma_{0})\eta^{0}\eta^{1}, \square , i_{U}(\sigma)\eta^{1}, F_{3}, F_{4}]$

and let $G\in(S|U|)_{3}$ be a solution of the equation in $S|U|$ :

$[i_{U}(\sigma_{0})\eta^{0}\eta^{2}(0)i_{U}(\sigma)\eta^{2}(1)(2)\square , i_{U}(\sigma)\eta^{1}(3)(4)F]$ .
Then we have $G\epsilon^{0}=i_{U}(\sigma_{0})\eta^{1}\in S|C|,$ $G\epsilon^{1}=i_{D}(\sigma_{1})\eta^{1}\in S|D|,$ $G\epsilon^{2}=i_{U}(\sigma)$ and $G\epsilon^{3}=f_{3}$ , i.e.
$i_{U}(\sigma)\sim f_{3}$ lsd. $S|C|,$ $S|D|$ . Thus we have $i_{U}(\sigma)\sim f$ lsd. $S|C|,$ $S|D|$ , i.e. $(i_{U})_{*}$ is onto.

To show that $(i_{U})_{*}$ is one-to-one, consider two simplices $\sigma$ and $\tau\in\Gamma_{2}(U;C, D, \psi)$

such that there exists a homotopy $F\in(S|.U|)_{3}$ : $i_{U}(\sigma)\sim i_{U}(\tau)$ lsd. $S|C|,$ $S|D|$ , i.e.
$F\epsilon^{0}\in S|C|,$ $F\epsilon^{1}\in S|D|,$ $F\epsilon^{2}=i_{U}(\sigma)$ and $F\epsilon^{3}=i_{U}(\tau)$ . For the sake of simplicity, put
$\psi_{0}=\sigma\epsilon^{0}\epsilon^{0}$ and $\psi_{1}=\tau\epsilon^{0}\epsilon^{0}$. Since $(i_{C\cap D})_{*};$ $\pi_{1}(C|D|, \psi_{0}\cup\psi_{1}, \psi_{1})\rightarrow\pi_{1}(S|C|\cap S|D|,$ $S|\psi_{0}\cup\psi_{1}|$ ,
$i(\psi_{1}))$ is one-to-one onto (THEOREM 1-1 ) where $\psi_{0}\cup\psi_{1}$ means the $c$ . $s$ . $s$ . complex
generated by $\psi_{0}$ and $\psi_{1}$ and since $F\epsilon^{0}\epsilon^{0}\in\Gamma_{1}(S|C|\cap S|D|, S|\psi_{0}\cup\psi_{1}|, i(\psi_{1}))$ , there
exists a simplex $\gamma\in(C\cap D)_{1}$ such that $r_{\epsilon^{0}}=\psi_{0},$ $r_{\epsilon^{1}}=\psi_{1}$ and $i(\gamma)\sim F\epsilon^{0}\epsilon^{0}$ lsd. $S|\psi_{0}\cup\psi_{1}|$ .
Denote this homotopy by $g\in(S|C|\cap S|D|)_{2}$, i.e. $g\text{\’{e}}^{0}=i(\psi_{0})\eta^{0},$ $g\epsilon^{1}=i(\gamma)$ and $g\epsilon^{2}=F\epsilon^{0}\epsilon^{0}$.
Let $h_{0}\in(S|C|)_{3}$ and $h_{1}\in(S|D|)_{3}$ be solvents of the following equations

(0) (1) (2) (3) (0) (1) (2) (3)

$[g, F\epsilon^{0}\epsilon^{1}\eta^{1}, \square , F\epsilon^{0}]$ and $[g, F\epsilon^{1}\epsilon^{1}\eta^{1}, \square , F\epsilon^{1}]$ respectively.

Consider a solution $F^{\prime}\in(S|U|)_{3}$ of the equation in $S|U|$ :

(0)(1) (2) (3) (4)

$[h_{0}, h_{1}, F\epsilon^{2}\eta^{2}, \square , F]$ .
Then we have $F\epsilon^{0}=h_{0^{\epsilon^{2}}}\in S|C|,$ $F^{\prime}\epsilon^{1}=h_{1}\epsilon^{2}\in S|D|,$ $F^{\prime}\epsilon^{2}=i_{U}(\sigma)$ and $F^{\prime}\text{\’{e}}^{3}=i(\tau)$ , i.e.
$F^{\prime}$ : $i_{U}(\sigma)\sim i_{U}(\tau)$ lsd. $S|C|,$ $S|D|$ . Moreover we have $F^{\prime}\epsilon^{0}\epsilon^{0}=h_{0}\epsilon^{2}\epsilon^{0}=g\epsilon^{1}=i(\gamma)$ .

Let $\tau_{0}\in C_{3}$ and $\tau_{1}\in a$ be solvents of the following equations

(0)(1) $(2)$ (0) (1) (2)

$[\gamma, \square , \tau\epsilon^{0}]$ and $[\gamma, \square , \tau\epsilon^{1}]$ respectively.

Then $\tau\sim\tau^{\prime}$ lsd. $C,$ $D$ where $\tau^{\prime}\in\Gamma_{2}(U;C, D, \psi)$ is a solution of the following equation

in $U$ :

(0) (1) (2) (3)

$[\tau_{0}, \tau_{1}, \square , \tau]$ .

Therefore, to complete this proof it sufficies to show that $\tau^{\prime}\sim\sigma$ lsd. $C$, $D$. Let

$k\in(S|C|)_{2}$ be a solution of the equation in $S|C|$ :

(0) (1) (2) (3)

$[i_{C}(\gamma)\eta^{1}, \square , F^{\prime}\epsilon^{0}, i_{C}(\tau_{0})]$ .
Then we have $k\epsilon^{0}=i_{C}(\psi_{0})\eta^{0},$ $k\epsilon^{1}=i_{C}(\sigma\epsilon^{0}),$ $k\text{\’{e}}^{2}=ic(\tau^{\prime}\epsilon^{0})$ . Therefore $i_{C}(\sigma\epsilon^{0})\sim ic(\tau^{\prime}\epsilon^{0})$



The equivalence of two definitions of homotopy sets for Kan complexes

lsd. $i_{C}(\psi_{0})$ . Hence we have $\sigma\epsilon^{0}\sim\tau^{\prime}\epsilon^{0}$ lsd. $\psi\cup\psi_{0}$ , for $(i_{C})_{*};$ $\pi_{1}(C, \psi\cup\psi_{0}, \psi)\rightarrow\pi_{1}(S|C|$ ,
$S|\psi\cup\psi_{0}|,$ $i_{C}(\psi))$ is one-to-one onto. Namely there exists a simplex $\rho_{0}\in C_{2}$ such that
$\rho_{0}\epsilon^{0}=\psi_{0}\eta^{0},$ $\rho_{0}\epsilon^{1}=\sigma\epsilon^{0}$ and $\rho_{0}\epsilon^{2}=\tau^{\prime}\epsilon^{0}$. Similarly we have a simplex $\rho_{1}\in D_{2}$ such that
$\rho_{1}\epsilon^{0}=\psi_{0}\eta^{0},$ $\rho_{1}\epsilon^{1}=\sigma\epsilon^{1}$ and $\rho_{1}\epsilon^{2}=\tau^{\prime}\epsilon^{1}$ . Then $\tau^{\prime}\sim\tau^{\prime\prime}$ lsd. $C,$ $D$ where $\tau^{\prime\prime}\in\Gamma_{2}(U;C, D, \psi)$

is a solution of the equation in $U$ :

(0)(1) (2) $(3)$

$[\rho_{0}, \rho_{1}, \square , \tau^{\prime}]$ .
On the other hand, for a solvent $\Xi\in U_{3}$ of the following equation in $U$ :

(0) (1) (2) (3)

$[\sigma, \tau^{\prime\prime}, \sigma\epsilon^{1}\eta^{0}, \coprod]$ ,

each face of $\xi=E\epsilon^{3}$ degenerates at $\psi$ . Therefore there exists a simplex $\Omega\in U_{3}$ such
that $\Omega\epsilon^{0}=\Omega\epsilon^{2}=\Omega\epsilon^{3}=\psi\eta^{0}\eta^{1}$ and $\Omega\epsilon^{1}=\xi$ , for $\pi_{2}(U, \psi)=0$ . Let $\rho\in U_{3}$ be a solution of
the equation in $U$ :

(0) (1) (2) (3) (4)

$[\coprod, \tau^{\prime\prime}\eta^{2}, \zeta, \tau^{\prime\prime}\eta^{0}, \rho^{\prime}]$

where $\rho^{\prime}\in U_{3}$ is a solution of the equation in $U$ :

(0) (1) (2) (3) (4)

$[\coprod, -\tau^{\prime\prime}\eta^{0}, \sigma\epsilon^{1}\eta^{0}\eta^{1}, \Omega]$

and $\zeta\in D_{3}$ is a solvent of the equation in $D$ :

(0) (1) (2) (3)

$[\coprod, \tau^{\prime\prime}\eta^{2_{6}1}, \tau^{\prime\prime}\eta^{0}\epsilon^{2}, \sigma\epsilon^{1}\eta^{0}]$ .
Then we have $\rho\epsilon^{0}=\tau^{\prime\prime}\epsilon^{0}\eta^{1}\in C,$ $\rho\epsilon^{1}=\zeta\epsilon^{0}\in D,$ $\rho\epsilon^{2}=\tau^{\prime\prime}$ and $\rho\epsilon^{3}=\sigma$ . Thus we have $\sigma\sim$

$\tau^{\prime\prime}\sim\tau^{\prime}\sim\tau$ lsd. $C,$ $D$.
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