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Our main purpose is to give the definitions of the homotopy groups of a c.s.s.
pair (or triad) and of homotopy between maps of one of c.s.s. pair (or triad) into
another after the combinatorial manner as [5] [6]. And we study the fundamental
properties of these notions, for example, those properties mentioned by S. T. Hu [2]
as the axioms of homotopy theory of topological space, or the exactness of the lower
and upper homotopy sequences of c.s.s. triad. All of these properties ‘may be
‘verified combinatorially. "

§1. The homotopy gruops of c.s.s. pairs.

In this note, K,, means the collection of all n-simplices of c.s.s. complex K, get
and o7’ mean the i-th face and the i-th degeneracy of simplex o.
DerFINITION 1.1. For ¢;=K,, symbol

W -+ Ud-D O Ud+D -+« (+D
Lag, =+ 01—y, [, G141, ** = Ont1]
is called an equation in K, and means that aiej;lzvjsi, 0<=i<j=n-+l, i, 3= (match
 condition). If there exists =Ky, such that cei=0i, 0<i<n+1, i3], 0 and oc! are
ealled-solvent and- solution of this equation respectively.
If each equation in K has at least one solvent, K is called a-Kan complex. (‘This is
a complex: which satisfies the extension condition [3] [4]).
D. M. ‘Kan [5] gave* the following definition:
DEFINITION 1.2. Two simplices ¢ and ¢ of K., (#=0) is called homotopic (notation
6~7 Or p:o~r) if
(a) their faces coincide, i.e. gei=rze? for all i
(b) there exists pEKuyq1 such that pen=o, pertl=1c and pei =gciyn~1 = reipn~l,
0<i<n—1. '
We have
- PROPOSITION 1.3. - Let K-be a'Kan complex. Two-n-simplices ¢ and v of K are homo-
topic if and only if
(a) oci=rei forall i
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(b") there exists p’Kny1 Such that p'el~1=o, p’el=1c and p’eci=on!lei=1rpl~1lei,
0=i<n+t1, is=l—1, I, where 1<1<n. :

Proof. Assume that p:o~z. Put gi=opmp!~lei, 0=i<n+1, i==l. Then there
exists the following equation in K:

@ -+ =D D) U+ o+ (n41) B+
Log, + ¢, 011, p, G141, * -, Ont1, O]
and let p’&Kn4+1 be a solution of this equation. We can see easily that p’e!~1=g,
p'el=7 and p’ei=on!"lei=ry!~lei for i &=[—1, I. Thus the condition (b”) is satisfied.
Conversely assume that (a) and (b’) are satisfied, then a solution of the following
equation in K:

W <« U-1D W U+ =« 1+ (n+2)
[00! c*% Ol D; Ol+1y *** On+l, P']
is the homotopy of ¢ and . The proof is complete.
If K and L are c.s.s. complexes such that L is a subcomplex of K, (K, L) is

called a c.s.s. pair. A c.s.s. pair (K, L) such that K and L are Kan complexes is
called a Kan pair.

Let (K, L) be a c.s.s. pair and put

An(K, L)={0:0E Ky, 0e°CLy_1} for n=1.

DerFiNITION 1.4.  Two simplices ¢ and ¢ of 4,(K, L) are called homotopic loosened
in L (notation o~z Isd. L or p:o~zlsd. L) if

(a) oei=rei for all 140 7

(b) there exists p in 4,41 (K, L) such that per=g, pentl=r and pei=gcinn—1=
reign~l for 1<i<n—1.

We call p the homotopy loosened in L between ¢ and r.

ProrosITION 1.5, Let (K, L) be a Kan pair. Then the relation ~Isd. L is an
equivalence relation on the simplices of An(K, L) for all n=1.

Proof. 1t is clear that p=op?:0~0 Isd. L. Now let us show that p,:o~z lsd.
L and put1:0~w lsd. L imply z~w Isd. L. Put o;i=apmynei, then the following table

@ .- () s (n-2 ®-1) @ @®+D
[0150’ R} O'i+160, MR o'n-—leoa aﬂsoy 0'n+150; D]

is an equation in L. Let Y&L,+; be a solvent of this equation. Then

@ @) ees (@) cee (-1 1) (n+1) (n+2)
[r; g1y, **° Oiy, **°*% On_-1, Pn, Pn+l, [:l]

is an equation in K. Let =K.+ be a solution of this equation, then we can see
that B:r~w Isd. L.

ProrosiTION 1.6. Let (K, L) be a Kan pair. Two simplices ¢ and © of An(K, L)



Homotopy theory of c.s.s. pairs and triads 69

are homotopic loosened in L if and only if

(@) woei=rzel for all i0

(b") there exists p'eAny1 (K, L) such that p'c!~l=c, p'el=7 and p'ei=op!lei=
wpl~lei for i2=0, |—1, I, where 2<I<n. ‘

Proof. Assume that o~r Isd. L and let p be its homotopy. Put g;=opmy)! 1lei,
Then there is the following equation in L:

w -+ Ud-2 U-D ) L n) (»m+1D
[0150! *t Y 01—150’ .050, Ul+150’ tt Y 0'n+‘1€0, Dl

Let Y& L4, be a solvent of this equation. Then a solution p’&K,4; of the equation

@ @ @ «-« U-D D U+ « =+ n+1) (n+2)
[r, 01, G2y *** Tl—1, Py Ol+1, *** On+l, D]
satisfies the conditions in (b").

Conversely assume that (a) and (b’) are satisfied. Consider the following equation
in L:

@ o0 Uep) =D @) «ev ) (4D
[016% « -+, 01_1% [, 614160 -+, gns1€0 p'e]

and let 7"=L,4, be its solvent. Then a solution p&K,.; of the equation in K:

@ @ -+« d=1 O Ud+D =« -+ (n+1) (n+2)
L7, o1, +++, 61_1, [J, 6i41, =+ * Ons1, p']
is the homotopy loosened in L between ¢ and r.

DerFINITION 1.7. Let (K, L) be a Kan pair and ¢&L,. For every integer n=1,
we define a set 7.(K, L, ¢) as follows. Put I'.(K, L, p)={0:0E4.(K, L), oci=
on®---9n=2 for 1<i<n). The equivalence relation ~ Isd. L divides I'x»(K, L, ¢) into
classes. Then »,(K, L, ¢) will be the set of these equivalence classes, i.e.

(K, L, 9)=T'x(K, L, )/(~Isd. L).

The class containing a simplex ¢ will be denoted by {¢} x,z1.

(K, L, ¢) denotes the set of components of K [5] indexed by L.

For n=2 the set m,(K, L, ¢) may be converted into a group (the »-th homotopy
group of (K L) relative to ¢) as follows. Let o&=a and &b be n-simplices in the
classes a and b&r=,(K, L, ¢). There is the following equation in L:

w Ceae n-3) n—-2) (n-1) (@
[90U0"'77n—2! .o SDUO"V]n_zv o [, 760]-

Let &L, be one of its solvents. We can consider the equation in K;

() (€] ... n-2> @x-1) (n) (n+1>
[T’ 907]0...7}”“1’ LIS 907)07)1!—1’ 0', [:], T],
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and let BEK, be a solution of this equation. The product a-b is defined by

a-b={B} kL.

ProposITION 1.8. The multiplication defined above is independent of the choice of g, ,
T and B.

Furthermore

ProrosITION 1.9. The multiplication defined above comverts nn(K, L, ¢) into a group

for n=2.

The proofs of ProrosiTions 1.8 and 1.9 will be given in §3.

DeFINITION 1.10.  Let (K, L, go)’ be a c.s.s. péir with base boint o, let |K|
denote the geometric realization of K in the sense of J. W. Milnor [7]. Let S be
the functor which assings to evefy topological space its simplicial singular complex.
For every integer #=0, we then define n.(K, L, ¢) by n.(S|K|, S|L|, i(¢)) (the set
in the sense of DErINITION 1.7 for the Kan pair (S|K]|, S|L|) with base point i(p),
where i: K—S| K| is the natural embedding map [7]).

ReMarRk 1.11. If (K, L) is a Kan pair, the DEriNiTIONs 1.7 and 1.10 of ma(K, L, ¢)
may be seen to be equivalent for all n.

ProrosiTION 1.12. n.(K, L, ¢) is abelian for n=3.

The proof will be given in §4.

§2. The homotopy groups of c.s.s. triads.

If K i_s'a.vc. s.s. complex and if L, M are éubcomplexes of K such that LNM
+0. Then (K; L, M) is called a c.s.s. traid. A c.s.s. traid (K; L, M) such that
K, L, M and LN M are Kan éomplexes is called a Kan traid.

Let (K; L, M) be a c.s.s. triad and put

An{K; L, M)={6:06EK,, 66°ELy_1, 0el&=My_q}

for n=2.

DEeFINITION 2.1. Two simplices ¢ and ¢ of 4,(K ; L, M) are called homotopic loosened

“in L, M (notation o~ Isd. L, M or p:o~t Isd. L, M) if

(@) ogei=rei for all {40, 1 .
(b) there exists p in A,4+1(K; L, M) such that pen=g, pentl=7 and pei=gecipn1
=rzeipn~1 for 2<i<n—1.
We call p the homotopy loosened in L, M between ¢ and r.
ProposITION 2.2. Let (K; L, M) be a Kan triad. Then the relation ~ Isd. L, M
is an equivalence relation on the simplices of A.(K; L, M) for all n=2.
Proof. 1t is clear that p=oy”:9~0c Isd. L, M. It remains to show that p,:o~7
Isd. L, M and pn+1: o~ lsd. L,-M im'ply r~w Isd. L, M. Put g;i=an"pnei, then there
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exists the follow.in‘g equation in LNM:

G co ') .o (n-3) (n—-2) (n-1 €0
[0250501 °t Y 0'i+2€060, R 0”-“1505 P”eoe pn+15060 D]
Let #&(LMNM)» be one of its solvent. Let ¥&L,i1 and 7'& M4y be solvents of the
following equations '

@ @ ---. @ v (-2 (n-1) @ (+1)
[9; 0250) t Y G'i+1€0, R 6”—-1507 Pnso, Pn+150, D]

and

@ @ .. @) e (-2 (»-1 n) (n+1)
LO, o2el, « o, dig1el, <« on_16l, pnel, pnt1el, [1]
respectively.
Then the solution &K, 4, of the equation in K:

@ @ @ -+ () +ve (1=1) W (r+1) (2+2)
L7, 7'y a3 <+, gy * ** On—1y Pny Pn+l 1]
gives the required homotOpy loosened in L, M between r and w.
" PROPOSITION 2.3. Let (K; L, M) be a Kan triad. Two simplices o and © of
A(K; L, M) are homotopic loosened in L, M if and only if "
(@) osi=rei for all i+0, 1
(b") there exists psAn+1(K L, M) such that p'e!~l=0, p'e!=r and ps'—-my’ lgi
—'"2'7)’ lgt for =0, 1, I-1, | where 3<l<n.
Proof. Assume that pio~t Isd. L, M. Put oi=oy"p'~lei, then there exists the
following gquat;on in LOM: N
()} oo (-3 (-2 (-1 oo (n—-1) )
[qgeoeo, oo, 01-16%0, P00, 0741600, <« o) 0,41€%0, ]
Let w&(LNM), be a solvent of this equation. Let B&=L,4+; and 7TEM,4; be
solvents of the following equations:

@@ @ -+« d-2 U-D D ‘e ). m+1)
[w, 02¢% « -, 01_1¢, PSO, 01+1% + ¢+, Ont16Y, 1]

and

@ @ .- U-2 Ud-D B - M @+
[w, o3¢l, - -+, 0'.1_161, Psl» ol+151) ) Pn+151, D]

respectively. Then a solution p’ of the equation in K:

@ @ @ <« U= DO U+ -+ (n+1) (n+2)
[.B’ T, @3 *++ GI-1, Py GFl+1, *** Fnt1, D]

satisfies the conditions in (b").
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Conversely assume that (a) and (b’) are satisfied. Let o’&(LN M), be a solvent
of the equation in LNM:

()] R (-3 d-2> d-1D =« (n-1) (n)
[0250607 *t % 01“160507 1, o-l+15050’ °t Y 0n+15050s Pleoso]- .

Let B’&Ly4+1 and 7'E My be solvents of the following equations:

» @ -+ dd-2 d-D DO €] (n+1)
[wly UZEO’ *t Y 01—150’ 1, 01+1507 *t Y Un+150, P'eo]

and

W @ e+« d-2 d-1» D L (n) (n+1)
[0, agel, « «+, a1_18Y, [0, G141€L, « <+, Ons18l, p'el]

respectively. Then a solution p&K,+; of the equation in K:

@ @ @ +-« Ud=1D O U+ «++ (41 (n+2)
LB, T/, a3 + v+ 011, [, G141, =+ *, Ont1, p']
gives the homotopy loosened in L, M between ¢ and .

DerINITION 24. Let (K; L, M) be a Kan triad and ¢ be a 0-simplex of LN M (the
base point).

For every integer n>2, we define a set n,(K; L, M, ¢) as follows. Put
F'n(K; L, M, o)=}0:0E4,(K; L, M), oci=opn% yn—2 for 2<i<n}. The equivalence
relation ~ Isd. L, M divides I'n,(K; L, M, ¢) into classes. Then n,(K; L, M, ¢)
will be the set of these equivalence classes, ie. n,(K; L, M, o)=Ix(K; L, M, ¢)/
(~lsd. L, M). The class containing a simplex ¢ will be denoted by {¢}x;r,m-

For n=3 the set n,(K; L, M, ¢) may be converted into a group (the »n-th homo-
topy group of (K; L, M) relative to ¢) as follows. Let s&=a and &b be n-simplices
in the classes a and bcn,(K; L, M, ¢). There exists the following equation in
LNM:

()] .. (n—4> n—-3) (n—-2) (n-1)
[¢7]0...7}n_3, DI (on...vn“s, 0'5050, D’ TEOEO].

Let (LN M),_; be one of its solvents. Let 7y=L, and 7,& M, be solvents of the
following equations:

) 6)) s (n-3> n-2) n-1>
[0, Soy]o...vn‘_z’ ey 907]0...1)71_2’ 0'50’ D’ TED]

and

()} @ K n-3> @-2) (-1
[0, on0-7772 « v @972 gel, [, rel]

respectively. Then we define the product a-b by
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a-b={B)k;L.m

where S=K, is a solution of the following equation in K:

@ @ 2 <o n-2> @-1 &) n+1)
(7o, T1, @nOyn=l ooe opOugn=l g [, zl.

PRrROPOSITION 2.5. The multiplication defined above is independent of the choice of o,
z, 0, Ty, 1 and .

Furthermore

PrOPOSITION 2.6. The multiplication defined above converts n,(K; L, M, ¢) into a
group for n=3.

The proofs of ProrosiTioNs 2.5 and 2.6 will be given in §3.

REMARK., The unit element of groups =,(K, ¢), (K, L, ¢) and #,(K; L, M, ¢)
are {on%-p* g, (%91} g, and {en%-9n~1) k.7, respectively.

DerFINITION 2.7, For a c.s.s. triad (K; L, M) with base point ¢, we define
m(K; L, M, ¢) by n.(S|K|; S|L|, S|M]|, i(p)), the set in the sense of DEFINITION
2.4 for the Kan triad (S|K|; S|L|, S|M]|, i(¢)) with base point i(¢).

ReMArRk. If (K; L, M) is a Kan triad, the DEFiniTIONS 2.4 and 2.7 of #.(K; L,
M, ¢) may be seen to be equivalent for all n=2.

We call DerFinitions 1.7 and 2.4 ‘the first definition, DEFINITIONS 110 and 2.7 the
second definition. Then in each theorem and proposition, either of these definitions
of 7, may be used when we consider only Kan complexes, and only the second

- definition is used otherwise.

ProPOSITION 2.8. n,(K; L, M, ¢) is abelian for n=4.
The proof will be given in §4. '

THEOREM 2.9 There exists a transformation u: no(K; L, M, ¢)—m(K; M, L, ¢)
which is isomorphic for n=3 and one-to-one onto for n=2.

Proof. It suffices to consider the case of Kan triad using the first definition.
Let (K; L, M) be a Kan triad. For a simplex ¢&I"»(K; L, M, ¢) consider a solution
&K, of the following equation in K:

® @ @ N R o))
[0, oy, 0, @nOpn=1, .o @EpO.gyn—1],

It is easily seen that t&I'»(K; M, L, ¢). Then we may define a transformation
u:nn(K; L, M, o)—mu(K; M, L, ¢) by u({o}g:izm)=1{7)}g:mr for n=2. This is
verified as follows. Let p:o~0¢’ let L, M, lsd. w=K,41 and o’ ©K,4q be solvents of
the following equations

0w @ @ oo (n+1D)
[[:], g’elyio, a, Spvou.yin—l, IR qmo..‘n—l]

and
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()} @ @ €:)) e (n+1)
[D, 0’51770, 0',’ gjvo--.vn—l’ LI 507)07711_1]

respectively, and put r=we?, '=w’e?% Let p’&K,+1 be a solution of the equation in

K:

@ O @ @ e n)  (n+1) (n+2)
[D, wl) p’ 907]0””’ LICICN 9)7707}”’ (!), w’]’

where w;&M,41 is a solvent of the following equation in M:

o @ o .. (n-1) (n) (n+1)
[D’ psl’ ¢7]0...7]”_1’ o e -’ ano...nﬂ_‘l’ 0-51770’ 0’517]0].
Then it is easily seen that p’':7z~7’ Isd. M, L. Thus # is a transformation from
ﬂnCK; L, M, SD) to ﬂn(K; M, L, SD).
Let us now prove that # is a homomorphism for n=3. Put {8)x;r,m={0)}&;L.0°
{2 xiLm In 7o(K; L, M, ¢), i.e. B=9825¢", where 2,&K,,; is a solvent of the equation
in K:
0 @ @ ‘e n-2 (x-1) (@) (n+1)
[7’0, T].’ 907]07]”“‘1, o e o’ S07]0...vn—1, o', D’ 21,
(7’06 L, and r1&M, are defined such as the above equation holds in K, see the definition

of product). Put {z}g;mr=u{e}k;.m), {e}k:imr=u({2}k;L,m) and {a}g:pr=
u((ﬁ)K:L,M), i-e. T-——Qnﬁo, F:Qn+2€0 and a=9n+150, Where Qn, Qn+2 and Qn+1 are
solvents of the following equations in K: '

@ W @ @ .o n+1)
[D’ 0-51770, 0-, 907]0..‘,7;1—1, RN ¢7]0,,,,7n—11‘

() @ @ (3> e n+1)
[D’ 2517]0, 2’ 907]0...””_1’ LN Sono..n”_l]

and

()} @ @ @ o (n+1)
[D’ ‘3517}0’ ﬁ’ 507]0...””_1’ LI ¢v0...7]”_1]

respectively. Let 2,&K,,; be a solution of the equation in K:

@ M @ . @ ree (n=-1) () (n+1D (n+2)
[Dr Ql’ ‘927 90720"'0"» Y GDWO"'W": .Q”, Qﬂ»+1’ Qn+2]

where 2,&M,,1 is a solvent of the equation in M:

@ W €)) .. n-2> (n-D )  (n+1)
[D’ rl) ¢n0...nn—1,.. L gor;Ovn‘_l’ 0’51”0, ‘351,70, 251770].

Then Qo€°=glsoEMn, Qo€1=QzSO=ToELn? Qoeizsva...z)”_l for 2_§_i§n——2, QQE”—1=
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Qned=1, Quer=0,,1%=a, QpenT1=0,,,%=p. Thus {a}g;mr={c ;m.°{ 1) k:M.L»
namely % is a homomorphism.
We can complete the proof of this ProposiTioNn by showing that x is one-to-one

~onto for n=2.

For a simplex r=I',(K; M, L, ¢), consider a solution ¢ K, of the following
equation in K:

» @ @ &) v (n+1)

[z, ze%0% [0, @n-gn~1, -+, opyn-1],
Then o&I's(K; L, M, ¢). And we can define a transformation «':#,(K; M, L, ¢)
—m(K; L, M, ¢) by w({z}g;m )={0)k;L.m- Since u o u'=identity, and «' - u=
identity, » is one-to-one onto. ’

Remark. Even in the case n=2, u({¢pn% )} k;r.m) =107} k0, L-

TueoreMm 2.10. Let (K; L, M) be a c.s.s. triad with base point ¢. Moregver assume
that LOM.  Then the inclusion map j:(K; L, Ny, ¢)—(K; L, M, ¢) induces the
1samor phism jy: wa(K, L, ¢)—ma(K; L, M, ¢) for w=3, where N, means thg c.s.s.
complex whose only non-degenerate simplex is ¢.

Proof. 1t is clear that z,(K, L, ¢)=n.(K; L, Ny, ¢).

At first, we consider the case of Kan complexés using the first definition. If
p:o~rt Isd. L where o, t=I's(K, L, ¢), then j(p):j(e)~j(z) 1sd. L, M. Therefore
we can define a transformation jy:7m.(K, L, ¢)—z.(K; L, M, ¢) by j*({a}g,L)=
{j(eD}k;L,m- It is easily to see that jy is homomorphic for n=3.

For an arbitrary element {r}g;;,»Cnn(K; L, M, ¢), consider a solvent pc K1
of the equation in K:

@ @ @ @ @ .. (n+1)
[0, zel7% 7, OO, @p%pn~l, « oy @nO-yn7l],
where #& L, is a solvent of the following equation in L:
@ @O @ @3> I (n)
[7_-51’ 2-50’ D’ 507]0...7]71_‘2’ LICIEN 50770...7]14—2]_
Put 6=ped. Then oIy (K, L, ¢). Since pe®=0E& Ly, pel=7e1°C My, pe?=rz, pei=o,
pei=opn0-pn—i=ry2ei=0gn2i for 4<i<n-+1, by ProposiTiON 2.3, we have r~g¢ lsd. L, M.

Thus jx({0}k.L.)={7}x;L.m, namely jx is onto.

It thus remains to show that ji is isomorphic. Consider a class {o} k.1 such that
jx({e}k.1) is the unit element of n,(K; L, M, ¢). Then there exists a homotopy p:
en®-yn~l~g Isd. L, M, Let p"’ K, be a solution of the equation in K:

@ @O @ @ ces (n41) (n+2)
Lo’y py PERC, @70ty « -, op-pn, 1],

where p’& L, is a salvent of the following equation in L:
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@ @ e ) (4D
[pe, pel, @npn=l «oo @ylupn—1, [1].

Then we have p'’e0=p/entlcL,, p''sl=pentl=g, p”éz=p517]05”+1=p6"+15177°=q51770=
C onPegn—1, p''ei=gyP-gn—1 for 3=i<n+1.

Therefore, by ProrositioN 1.6, we have o~¢y0-97~1 Isd. L, namely {p}g,; is the
unit element of z,(K, L, ¢). Thus jyx is isomorphic. .

Secondly, in the general case jx is defined by (S|j|)x:#.(S|K|, S|L|, i(p))—
m(S|K|; S|L|, S|M|, i(¢)) where |j| is the induced continuous map [7]. There-
fore jy is isomorphic.

Remark 2.11. The inclusion map j:(K; L, N, ¢)—(K; L, M, ¢) induces a
transformation jy:m(K; L, ¢o)—ny (K; L, M, ¢) which is one-to-one onto.

Proof. 1t suffices to prove the case of Kan triad using the first definition. “We
may prove that jy is onto by the method used in the proof of Tueorem 2.10. To
show that jy is one-to-one, consider two simplices ¢ and &[I"2(K, L, ¢) such that
o~t lsd. L, M. Then there exists p&K; such that pe®cL,, pelcM,, pe?=c and

ped=t. Since pe!Cl'y(K, L, ¢), pel~enp! Isd. L and {pel}k,L+{7}x,L=10)k.L, WE
have {¢}g, =10}k, L.

§3. Proofs of PROPOSITIONS 1.8, 1.9, 2.5 and 2.6.

For n=3, ProrosiTions 1.8 and 1.9 are the special cases of Prorositions 2.5 and 2.6
respectively, i.e. the case when M=N,. Therefore we give only proofs of ProrPosITIONS
2.5, 2.6 and of the case n=2 of ProposiTions 1.8, 1.9. '

Proof of ProrosiTioN 2.5. Let ¢, ¢’ and  be simplices of I',(K; L, M, ¢) and
assume that p:o~o’ Isd. L, M. Let 9, 7,, 7, and B be simplices mentioned in
ProposiTiON 2.5 for ¢ and 7, and let a=K,,; be a solvent of

@ @ @ e n—-2) (m-1) () (n4+1)
[TO’ T, 90770"'0”_1’ AR 907)0...7711—1, o, [, 7]

such thatae?=p. Define similarly 9/, 7/, 71/, B’ and a’ for ¢’ and z. Let O=(L N\ M)x
be a solvent of the equation in LNM:

w e (n—4) (n-3) (n-2) (n-1) (n)
Lon0-pn=2, « oo @on0pn=2, pe%0 [, 6, 6'].

Consider a solution w &K, .1 of

W (@ e -2 (n-1) () (n+1) (n+2)
Lwp, @1, 9%, ~ = oy @r0y%, p, O, @ a'l,

where wg=L,41 and &My, are solvents of the following equations:
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(1)) (@)) <. n-3) @m-2) (n-1) (n) (n+1)
[@, SDWO...nn"l’ LN Sono...nn_l’ pEO’ D, TO’ TO/]
and ' ’
Q)] 6] ... (n—-3) n—-2) (n—-1) (n) (n+1)
(6, enOpn=l, ..., @pqn=l, pel, [0, Ty, T¢']
respectively.

Since we®=wpen"1=L,, wel=wie" 1EM,, wet=as"=pf, wertl=a’en=p4" and wei=
enO-pn—1= Beipn—1=B’cipn-1 for 2<{< n—1, we have w: g~p’ Isd. L, M.
Thus the product{e} x;r,pm° {t} x:L,m is independent of the choice of g, 0, 7y, 7; and B.
Now it remains to prove that the product {¢}x;r,ar* {7} k;r.ps is independent of the
choice of z. Let g, - and ¢’ be simplices of I',(K; L, M, ¢) and assume that z~<¢’
Isd. L, M. By ProposiTioN 2.3 there exists p'&A4,.1(K; L, M) such that p’er—l=-¢,
p'er=t’ and p'ei=tyn—lei=c'yn~1lei for {0, 1, n—1, n. Let 4, Ty, 71, « and S be the
simplices defined in the preceding part of this proof, and ¢/, 7y’, 71/, @’ and B’ be the
simplices defined similarly for ¢ and /. Let ® =(LN M), be a solvent of the equation
in LNM: ‘
) .o (n—4q) n-3) (n-2) (n—-1
[90720"'777“2’ .o, 907)0"'77"_2: 0, o', 1, p’e%°].
Consider a solution w’&K,,, of
w @ 2 vee (n-2) (n-1) (n) (B+1) (n+2)
Loy, @1, o0t «oxy opOyr a, o, OO, p']
where wy &L, and w;/&M,,; are solvents of the following equations
“ ) €H) n-3) -2 (n-1) (n) (r+1)
LO, onlyn=l, o ooy onlopn=l, Ty, 7o' [, p'e%]
and
<)) 6D o (n—3> (n—2) (n—-1 (n) (n+1)
[@/, (pn().‘.;?n—‘l’ .y 90,70...77;1“1, 7’1, )’1/’ D’ p'el]
respectively. Since w/e0=wy e"& Ly, o'el=w'0"CM,, o's? l=aer=p, o'st=a’ecn=p’
and w’ci=q@nl-yn~1=Bpn—lei=p'yn—lei for {30, 1, n—1, n, we have g~p’ Isd. L, M
(by ProposITION 2.3). ' '
Proof of ProposiTioN 2.6.
Divisibility. Let ¢ and ¢ be simplices of I',(K; L, M, ¢). Let 6c(LNM)n-1 be
a solvent of the equation in LNM:

1) <. (n—-g) -3 (n—-20 -1
[Sono...nn'—s’ IO @ﬁo...vn—s’ D’ 2'5050. 0-5050].

Consider a solution a=K, of the equation

0 @ @ ces m—2)  (n-1) ) (n+D
[TO’ Tl’ §D7)0"'77"—1, ooy SD,;O...y;n—l’ D’ T, 0-],
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wherery& L, and 71 M, are solvents of

()] (6] ) n-3) (@m-2) (n-1) (w)
[0’ q)van"'z’ LI 50770...7)11—2’ D, 2-60, 0'80]

and
() 6D cee -3 (-2 (n-1) ()
[0’. Spvot..vn_z’ LI SD’]O...””"‘Z, I:]’ Tel, 0‘51]
respectively. Then we have {a}x;r.mM°* {0} k;L. M= {z} k;L. M-

Similarly we may define B&I'»(K; L, M, ¢) such that (o}x;r,m°{B}k;L. M=
{t}k:L.M-

Associativity. Let o,  and v be simplices of [',(K; L, M, ¢). Put an_;j=a and
Bn—1=p where a and B are the simplices defined for ¢ and z in the proof of Pro-
POSITION 2.5, i.e. an—16°& Lyn, an—161E My, an_16i=9¢n% 571 for 2<i<n—2, ap_1e7 1=
G, An_16"=Pn—-1, an—1e*t1=7, Define similarly ay,,, and B4, for r and v, ax+; and
Bn+1 for B and v.

Let 6&(LN M), be a solution of the equation in LNM:

()] s (n—q) n-3 ((@1-2) @=r-1D (n)
[90770...””—2’ P ., SD,)O._,,}n—-Z’ an_le()eo’ D’ an+15060, a”+260$0].

Let wcK,,; be a solution of

® @ (g) s (-2 -1 () (+D) (r42)
[(Do, wb QDVO"'vn’ ** % S07]0"'7]n’ an—1, [, any1, aniyal,

where wy=L,,; and o;&M,,, are solvents of the following equations:

()] 6)) .o (n-3) n-2) (-1 @ (n+1)

[0, on0-yn=1, « ooy @nOupn~1, ay_1€0, [, any1€% anyael]
and

()] (€D) o (n-3) n-2) (-1 (n+1)

L8, e, -« o791, an—16l, [, aniiel, anyzel]
respectively.

ot ki.me (Tt kL m) Wy ks m= {Bn-1} kiL.m* (W kL. = {Bn+1} ki M
={ans1e" k;L. M= {0 gL, Mm
Here {we™ k;r,.m= {0} k;L. 02 {Bn+2} K;L.M> TOT 0e0=wpe?"1E Ly, wel=w1e7 " 1& My, wei=
enO-pn~l (2=<i<n—2), wer l=an-_16""1=0¢ and wer*l=ay,3e"=Pnss  Furthermore
{Bn+2t ;L. M= {t) k;L.M*(W} k;L,m- Thus the associativity holds.
Proof of ProrositioNn 1.8 for n=2. Let o, ¢’ and r be simplices of I'y(K, L, ¢)
and assume that p;o~¢’ Isd. L. Let a=K; be a solvent of

@ @ @ @
[Tr e, O, T],.
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where 7L, is a solvent of the equation in L:

@ @ @
Laed, [, 7e9].
Put B=ae2 Define similarly 7/, «’ and g’ for ¢’ and r.
Consider a solution w& K3 of

W @ @ W
[wOr P; D! «, aI]’

where wy=L; is a solvent of the equation in L:

@ @ @ @
Lpeo, OO, 7, 771
Then we have w: f~p’ Isd L.
Next, consider o, « and ©'EI'y(K, L, ¢) and assume that r~z’ lsd. L. By Pro-
posITION 1.6 there exists p'E43(K, L) such that p’el=rz, p’e2=1’, p’'e3=1pled=1'ple3,
Let 7, « and B be the simplices defined in the preceding part of this proof, and 7/,
a’ and B’ be the simplices defined similarly for o and <.
Consider a solution »’&Kj; of

0 @O @ 6 W
[’ajo’,l o, aly D"P']:
‘where wy’©Ls is a solvent of the equation in L:
@ @ @
r, 7, 0, p'1
Since a)'eo———'a)o’ezELz, m’slza62=‘3, w'52=a'e2=‘8’ and w'53:90770771:l971153:.3'7]153»
we have g~ p’ Isd. L (by ProposiTiON 1.6).
Proof of Proposition 1.9 for n=2.

Divisibility. Let ¢ and r be simplices of I'y,(K L ¢). Consider a solution a&K,
of the equation:

0 @ @ @

[T’ D’ T’ 0'],
where Y& L, is a solvent of the equation in L:
@ @ @

[, 79 oel].

Then we have {a} K,L* oY ko= 1{t} K. L-

Similarly we may define BEI(K, L, ¢) such that (o)L (B . L= (T} K, L
Associativity. Let o, = and v be simplices of I'x(K, L, ¢). Put ayj=a and g;=8

where a and 8 are the simplices defined for ¢ and ¢ in the proof of Proposition 1.8
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for n=2, i.e. a1e°E Ly, ajel=0, a1e2=p, a;ed3=r.
Define similarly a, andB, for = and v, a3 and B3 for 8 and v. Let w&K; be a
solution of the equation:

@ O @ @3 W
[(1)0, ay, [, as, (14],

where wy&=Ls; is a solvent of the equation in L:

[€)) O @ @
La1el [, a3el ayel].

Then we have
(o k.ot D W kL= B koL W kL= (Bl kL = {a3e? kL = {02 i, L Here

{wett k1= {0} k. L* (B4 k. L, TOr We®=wyelE L,, wel=a el=0 and we3=a,2=p4, Further-
more {B4 k,r={t}k.r*{v}k,z. Thus the associativity holds.

§4. The proofs of PROPOSITIONS 1.12 and 2.8.

J. C. Moore [8] proved that the n-th homotopy group z,(K, ¢) of a Kan complex
K is abelian for n=2. After the manner of Moore, we prove Prorosrtion 2.8. Pro-
posiTioN 1.12 may be verified by the same method and we omit its proof.

Lemma 4.1. Let (K; L, M) be a Kan triad with a base point ¢, and a, b and c be
elements of 'n(K; L, M, ¢), where n=A4.

(A) If there exists xp 1EAn 1 (K; L, M) such that xni1672=a, Xniy16?"1=b,
Xni416"=C and Xni1ei=@n%-9n=1 for 2=i<n—3 or i=n+t+1l, then {(Ck;L.m*{@ Kk;L.M=
{b) ks, M-

(B) If there exists xn©CAn11(K; L, M) such that xnen~2=a, xnen=0>b, xpen*t1=c and
Xnei=gnO-pn=1 for 2<i<n—3 or i=n—1, then {a}k;L,.m* B k:L.M={C}K:L. M- ,

(C) If there exists xXn,oCAn1(K3 L, M) such that xpise"2=a, Xnigen 1=D,
Xni2e"=C and Xnioei=@nO-nn~1 for 2=i=n—3 or i=n+1, then {a}k;L.m*{C}K:L.M=
{b} K;L,M-

Proof of (A). Consider a solvent /& (LN M),—1 of the following equation

()] o (n—4 n-3) (n—-20 n-1)
[¢7]0...vn—3’ CICECN 907)0...7]11_3’ I:!’ beoso’ a5060]’

and let x,_1=K,,1 be a solvent of

@ @ 2 ) (n—-2) (n—-1) () (n+1)
[0'0’ o1, q,y)o...yjn—l’ DN 90710...7)71—1’ I:]’ b’ a] ............... et asaene (1)

where ¢y&=L, and ¢;&M, are solvents of
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- (o) (G) “ . (n—3) (n—2) (n—1> (n)
[0’ Spno.yin—z’ LILICN 907]0...7711—2, D’ bso’ asO]

and

) €D oo n-3) n-2) n-1
[0, 90770.””_2’ LICIE Sono...nn‘z’ D, bsl, ael]

respectively.
Let o&(LN M), be a solvent of the following equation

()] .o n—g -3 r-20 ®-D (n)
[907}07}11_2’ LI Spvovn"z’ e, D’ xn+15050, SDnovn_z]’

‘and xn=K,,1 be a solution of

0 (€)) .o n-30 @-2) (n-1) n) (n+1) n+2
[7o, 71, @007, ooy onOyn, an?, Xn_1, O, Xny1, anr=2?]

where °=L,.; and r;&M, ., are solvents of

()] 6] ce. n-3) @w-2) (n-10 @) n+1)

[w, en0-yn=1, «.. Nyl g, [, Xnp160, @nd-yn=1]
and

w €Y o n-3) @W-2) (n-1) ) (n+1)

[w’ 937]0...7]"_1, I 907]0...7)11—1, g1, D’ xn+1€1, 907}0011—‘1]
respectively.

81

Then Xne0=1gen"1C L, xpel=r11c"" 1M, xpen~1=x,_1e7"1, Xpen==%p16"=cC and x,ei=

on%-pn—1 otherwise. Thus we have
{Fn—1e" Y gL, m={} kL. M-
On the other hand we have
{Fn—1e" B girm (@ kL. m= O k:m
by (1). Therefore
{driL.m{a kiL.m= {0 ki, M-
Proof of (B). Consider a solvent (LN M),—1 of the following equation

)] o e (n—5) (n—-9 n-3) (-2 -1
[900077"—3) RN 5077077”—‘3, a50€0, wvoy)n_s, D’ 90770.7711—3]

and let x,_1K,,, be a solvent of

0 @ @ .. n-3 @-2> @r-1) (n) (n+1)

[00, 0'1’ govo...vn—l, LI SD”O.vn—l, a’ govOWn'—l’ D’ 907?0..071—1] ..........

where ¢y=L, and s, M, are solvents of
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()] (¢D) o n—q (n-3) n-2) @»r-1) (n)
[0’ Savo...‘y]n_z’ LI So)yovn—z’ aeo’ ¢v0nn—2’ D’ 907]0...7}"_2]

and

) (D) (n—g n-3 (@-2 @*r-1) (n)
[9’ 907)0...””_2’ Py .’*'907?0...1]”_2, ael’ 90770...,7n~2’ D’ Sm?o...vn—Z]

respectively.
Let w&(LNM), be a solvent of the following equation

()] R (n—5) (n—9) -3) (n-2) (n-1) (n)
[¢7}0...]}ﬂ_2’ o e o spvo...vn—z’ ar}'n—ZeOEO,‘ﬁ’ xn€050’ D, c-’)ﬂeoeo]

and x,,1EKn41 be a solution of

0 @ @ e (n—3) n-2) (n-1) (n) (n+1) (n+2)
[101 T1, 9)7)0"'7]”’ b 907]0"'7]”7 ‘aﬁ”—zv'xn—b bxn’ D’ "C‘U'”]

where &L,y and aré &My, are solvents of

» 1) cee (n=g) (n-3) (n=2) (n—1) ) r+1D
Lo, en0pn=1, v onlopn=1, apn=2¢9, gq, xne% [, cne®]

and

()] ¢ A n—9  (n-3) @-2) (n-1) (n) (n41
[w’ ¢7)0...77n—1’ NN 90'7}0...7'}11—1’ avn—‘zel, ‘0-1’ xn€l, D, 07}”51]

respectively. Then x,,160=70e?EL, Xp 16l=71e"CEM, Xpi1e" 1=2Xp_16%, Xni167=Db,

Znp1entl=c and x,,,ei=¢n% p7—1 otherwise. Thus we have
{Fn-1e kL. m (S ki m= (B} ki M-
On the other hand we have
{#n—1e kL. M={@} ks, M) 7!
by (2). Therefore
' {x:.m={a kL. m* B kL M-
Proof of (C). Consider a solvent 0 (LN M), of the following equation

€)] oo (n-5) @—-49 ((®-3) (n-20 (n-D
[907)0..'.7]”—3’ o N ¢vo...7)n—3,' D’ 90‘”0...7)”—3’ 907]0...7'711'“3 anSO]

and let x,_,=K,,; be a solvent of

@ @ @ .o n—3 @-2) n-1 €)) (n+1)
. [0.0’» a1, 901}0...1}”—1’ .o ." Soyjo...vn—l’ D’ ¢7]0...7}""1’ S0'7]0...7]n—1’ a]

where ¢,=L, and ;& M, are solvents of
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() @ .. (-4 (n-3 (n-2) (n—-1) (n)
[0’ sa,]()...vu—z’ LICICN 907]0...7]”_2’ D’ Spﬂo‘..v”"“z’ 90)70...77”_2’ aso]

and

1)) @ n-4 -3 -2 (n-1) (n)
[0’ 900.07]"_2, LN 90770...7]71"‘2’ D, Sovo...vﬂ"'z’ Sovo...nn—z’ asl]

respectively. Then we have, by (B),

{x”_zen—Z}K;L'M: {a} K;L.M' .................................... (3)

We next consider a solvent 7&(LNM), -, of

) s (n-5) (n—q n-3) (n-2) (n-D
[govo...vn_?’, LI ¢v0...vn—3, 05"'—4’ 901/0...””_3’ D’ beoao]

and let x,_;EK, ., be a solvent of

o @ @ s (n-3) (n—2) (n-1 (n) (n+1)
[TO’ T1, g0770...77n~1’ LILIE 90770...;771—1, xn_zen"z’ Sovo...”n"l’ D, b]

where ro&L, and &M, are solvents of

€1)] (6D LY (n—q (n—-3> (n—2) n-1 )
[T’ Sono...vn_z’ IR 907}0‘-.”71_‘2’ xn_zen—250’ 907)0...7)7!—2, D’ bs():l

and

@ (¢)) .o (n—4q) (n—3) n-2> »-1) ()
[r, SD”O...nﬂ"'z’ CICICN Soyjo...vn—z’ x”_zsn_zsl’ govo...y)ﬂ—z’ [j, bel]

respectively. Then we have, by (B),

{xn—ge”_z} Ki:L.M* {xn'—‘lsn}K;L.M: {b}K;LyM' ........................ (4)

Let (LM M)y be a solvent of the following equation

0 (n-5) (-9 (#=3) (n—20 (-1 ()
[90770"'”"_29 R Y 90770"'””_2’ 0’ T’ c77n€050, Dv xn+250€o]

and x,+1=K,,1 be a solution of

@ @ (2 see (-3 (-2 (n-1) ) (n+1) (n+2)
[Po, Pl @vovn’ M} 907200": Xn—2 Xn—1, C", D9 x"+2]

where py=L,.1 and py&M,, 1 are solvents of

(), (6))] oo (n—4) (@-3) (n-2) (n-1) () N+
[o, ?’770"'77”—1’ R 907)0"'7]"_17 ao, To 00”50, O], Xn426°]

and

()] (6] . e (n—g) n—-3) (n—2) (n—-1) (n) (n4+1)
[@, en0-pn=1, «oo) @pOepn=l, 61, 71, OPel, [, Xnyoel]
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respectively. Then x,,1e0=p%"C L, Xy 1el=p1e"CM, Xy, 16" 1=Xn_16", Xni1E"=CNNen
=c¢ and xp41ei=oe7%y7~1 for 2<i<n—2 or i=n+1. Thus we have
(K16} KL M= {C) KL Mo +verrerererennmnmmmmsnsnsineeeeenens (5)

By (3), (4) and (5) we have

@ giL.m S kiL.m={b Kk;L. M-
The proof of LEmMmA 4.1 is complete.

Proof of ProposiTiON 2.8. It suffices to consider the case of Kan triad using the
first definition. Let (K; L, M) be a Kan triad with a base point ¢, and a and b be
elements of I',(K; L, M).

Consider a solvent 0E(L M),_, of

1)) cee (n-5) n—9 »-3) (n-2) =-D
Lon®-yn=3, « o, @n0-yn=3, aelel, beel, [1, py0-yn~3]

and let c=K, be a solution of

@ @ @ .o n-3 (n-2) (n-1) (») (n+1)
[0'0, ay, 90770...7}11—1, AR} (on“'rin—ly a, b’ O, 997]0“'7]"-—1]

where ¢, L, and o0& M, are solvents of

(1)) (6)) v n-4) (-3) (n-2) (n-1) (n)
[0, gDﬂo'"ﬂ”—z, oo 50770"'77”—2’ aeo, beo’ 1, SD”O...vn—l]

and

<)) (6)) v (n—g n—-3) (2n-2) (n—-1) (n)
[0, Sovo...vn"'z’ oo, 9)770...7]#—2’ ael’ bEl, O, gpvo...nn-l]

respectively. Then, by (A) and (C), we have

S r;L.m= 0 k;L.m({ay g;L.m) !

and

Sre.m=Ua g;L.m) 1 (B k0. M-

Therefore

@ kim0 k;L.m= {0 k;L.m (@ k.M.

§5. The induced maps.

Let f: (K, ¢)—(K’, ¢') be a c.s.s. map where K and K’ are Kan complexes and
¢ and ¢’are 0-simplices of K and K’ respectively.
If p is a homotopy between simplices ¢ and = of I',(K, ¢), the it is clear that
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S(p): fle)~f(r). Therefore we may define the induced map fi: 7. (K, ¢)—mu(K’, ¢’)
by fu({o}k)={f(e)}k/. It is easy to see that fx is homomorphic when n=1.

If fis a c.s.s. map between two Kan pairs (K, L, ¢) and (K’, L', ¢’), then f
may induce also a transformation fy:n.,(K, L, ¢)—r.(K’, L', ¢’) forn=1, and fy is
homomorphic when n=2.

If f:(K; L. M, o )—(K'; L', M, ¢’) is a c.s.s. map where (K; L, M) and
(K’; L', M’) are Kan triads and ¢ and ¢’ are base points of these triads, then the
induced transformation fyx:#n.(K; L, M, ¢)—n.,(K’'; L', M’, ¢’) may be defined for
n=>2, and it is homomorphic when »=3.

When f is a map of arbitrary c.s.s. complexes, we define fx by (S|f|)x in each
case considered above. Then fy is homomorphic for the same » as before. If fis
a map of Kan complexes, it is easily seen that these two definitions of fyx may be
indentified. It is easy to see that the following two theorems hold for absolute,

‘relative and triadic homotopy theories.

TaeoreMm 5.1. If f: (K; L, M, o)—(K; L, M, ¢) is the identity, then fy is the
identity.

THEOREM 5.2. (g flx=gxfx Where f:(K; L, M, o)—»(K'; L'y, M, ¢’) and g:
(K'; L', M', 9" )—~(K'"; L"", M"", ¢©'") are maps.

Now we define two boundary operators 6y:7n(K; L, M, ¢)—n,—1(L, LNM, ¢)
and 61:mn(K; L, M, ¢)—ran_1(M, LM, ¢).

In the case of Kan complexes using the first definition of =, define 5, and §; by
do({o} k;L.m)={0¢% r,.nm and 6:({o} k;L.m) = {0e'} m;Lnpe Where oET(K 5 L, M, ¢)
and n=>2. .

In the general case, for t&I',(S|K|; S|L|, S|M|, i(¢)) define 3, and ; by

0o({z} sikl; siLl> sim)={ze% siLi, siLINSIM]
and
01({z} siki:sILl, SIMI)= {rel} siml, siLinsIMI-

For the case of Kan complexes the following diagrams are commutative

(K L, M, ¢) o tn_1(L, LOM, ¢)
! 2* l*
(S| K| ; S|L|, SIM], i(¢)) — wn—1(S|L], S|ILINS|M|, i(e))
and
01
mi(K; L, M, ¢) — an—1(M, LNM, ¢)
ix ix
01

7A(S| K| ; SIL|, S| M|, i(p)) — mn-1(S|M|, S|LINS|M]|, i(e))
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where n, and =,_; mean those of the first definition.
we may identify two Jy’s and two 4§,’s respectively.

ProrosiTIiON 5.3. &) and 6, are homomorphic for n=3.

Proof. 1t suffices to consider the case of Kan complexes using the first definition.
Let ¢ and = be simplices of I',(K; L, M, ¢) and B&l',(K; L, M, ¢) be a representa-
tive of {0} x;z,m* {7} k:;L,m, then there exists a&Kn41 such that ae®C L., aslcM,,
aci=¢n0..pn~1 for 2<i<n—2, aenl=g, ac®=f and aentl=r,

Since ae%*°S(LNM)p-1, aci=¢n0-pn=2 for 1<i<n—3, aclenr~2=0¢el aelen—1=p8e0
and ae%7=7% we have {Be% 1, rnm=1{0e% L, LAme {ze% L, LNy Thus 3, is homo-
morphic. It may be proved similarly that §; is homomorphic.

ReMaRk 54. d:7x(K, L, ¢)—ma_i(L, ¢) defined by 6({o}x, )= {se%  is homo-
morphic when n>2.

Since iy is an isomorphism,

Since c.s.s. map f commutes with the face operators <0 and ¢!, we have
THEOREM 5.5. The following diagrams are commutative:

0
(K L, M, 9) s mea(L, LOM, @)
52 | 1D
S
ﬂn(K'; L', M’, ¢/) 0 - n.”_l(Lr’ L'NnM, ¢1)’
01
ma(K; L, M, ¢) -  m-(M, LNM, o)
| £ Ly
01

ﬂ”(K'; L', M', 90,) — Tt”_l(M’, L'OM', SD/)_

§6. The homotopy of c.s.s. maps.

Let I=4[1] (the standard 1-simplex defined in DeriniTiION 2.2 of [6], this is the

c.s.s. complex K[1] defined in [1, p. 508]), &3&I be the only non-degenerate

1l-simplex. Let K be a c.s.s. complex and IxK be the cartesian product ([6],
Definition 2.1) of I and K.

For every simplex ¢= K, consider n+2 simplices of (I X K),:
79(0) = (&1t~ 1, a),

vi(0)=(e17®709i-yn-1, o) for 1<i<n,
. s
l_._

Tns1(0) = (e1e17%-70, o).
Ny e’
n

(z9(o) and 7,.1(e) are the simplices Ogo and 1ko respectively defined in [6].)
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Kan [6] defined a homotopy relation relative to the base point for maps of c.s.s.
complexes with base point as follows.

" Let (K, ¢) and (X, ¢’) be two c.s.s. complexes with base points ¢ and ¢’, then
two c.s.s. maps f, g: (K, ¢)—(K’, ¢") are called homotopic relative to ¢ if there exists
ac.s.s. map fr: Ix K— K’ such that

@D fr:f=g, ie. fi(zo(e))=f(0) and fi(zaim. ++1(0))=g(d) for every sCK,

(i) frlen er)=p"7".

We denote this homotopy relation by f;:f—~g rel. ¢. By the condition (ii) we have
f1(e1€% @) =f1(e1e!, @) =9’.

Now we extend this definition for the case of maps of c.s.s. pairs and triads with
base point as follows.

DEFINITION 6.1. Let (K; L, M, ¢) and (K’; L', M’, ¢’) be two c.s.s. triads with
base points ¢ and ¢’. . Two c.s.s. maps f, g:(K; L, M, o)—>(K'; L', M’, ¢’) are
called homotopic on (K; L, M, ¢) if there exists a c.s.s. map fr: (IxK; IXL, IxM)
— (K’; L', M") such that

(1) fi(zo(e))=f(0) and fi(zdim.0+1(0))=g(c) for every sCK,

4D f1(ey, en0)=9'7"

We denote this relation by f;: f—~g on (K; L, M, ¢)
When M=N, and M’'=N,’, we denote this relation by f;: f~g on (K L, o).

We may prove the following Lemma by snmp]e computation.

LemmMma 62. Let (K; L, M, ¢) and (K’'; L ') be c.s.s. triads with base pomt
F:(IxK; IXL, IXM)—>(K'; L', M') be a c.s.s. map such that F(e1, ¢7°) =¢'70.
If gis asimplex of 'n(K; L, M, ¢) then wi=F(zi(0)) is a simplex of 'n,(K'; L', M’, ¢')
(0=i=n+1).

Now we have

LemMMma 6.3. Let (K; L, M, ¢) be a c.s.s. triad with base point ¢, (K'; L', M', ¢')
be a Kan triad with base point ¢’, F and w; be those considered in LEMMA 6.2. Then
we have '

wi~wiy Isd. L', M’ for 0=i<n.
Proof. Put
pi=F(e17%70ni*1l.9n, opi) for 0=i<n.
1
(1) We have
poe®=wy, ppel=w1, ppe?=F(eylt-n"~1, aeln®) & M’y,
poci=p'n0yn1 (B=i=n+1).

Let é&EM', 41 be a solvent of the following equation in M’
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@ @ @ @ @ R (n+1)
[0, w1n%el, 017%2, poe?, /90 -yn=1, ooy @/90pgn—1],

And consider a solution & K’,,, of the following equation

@ @O @ & W ) oo (n+2)
[D’ (‘.)1727 §, w1’7°, P0s 901770"'77'1) °t 90170"'7"]‘

Then we have
Ne0=w1n2e0C Ly, nel=E60CE My, nel=wy, ne3=awy,
pei=g'n0-yn1 (4=i=n+D).

Therefore wg~w, 1sd, L', M.
(2) Since

w1el=F(el-yn=2, gel) and wyel=F(epl--pn—2, gel)
we have wiei=wyei for 1<i<n.

Moreover
p1e°=F(enl-nn~1, ae90)E L'y, prel=w1, pre?=w, and plei=¢'n0-pn-1 for 3<i<n+1.
Therefore we have w;~w; Isd. L’, and consequently w;~w, Isd. L', M’. .

(3) For 2_s_i_£_n, we have

pis(): F(el 1]0...;70 77i+1...0n$0’ gﬂiso)
)

= F(e1n0-ni+l.yned, gelyi-1) S L'y,
piel=F(ep0-n0yitlymel, apicl) € My,
pict=F(ri(0)) =wi, pietT1=F(zi}1(0))=wis1.
Moreover if 2<j<i—1

Piej:F(El 7)0...7)0 ﬂi+1-'-7]”5j, gy]iej)
i

:F(El ”0...770 7]1'...7771"1, Sovo..q]n—l)
e et

i—1
=F(51, vo...vo 7}i.‘.7]n—1’ 90”0”0 vi...vn—l)
hrungeud —
i—1 z
=(F(e1, %)) p0-n0 pi--yn-1
S~
i—1
—=o’'79 70..790 pi..pn—1= (/' nOpl..pn—1,
'/ 77. 72177 7 28/t it/
l..—

Slmllarly if l+2_§_]§_n+1, Pi5j=§D’7]077]:---ﬂ"_1.
Thus we have wi~wiy1 Isd. L', M.
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THEOREM 64. If f and g:(K: L, M, ¢o)—(K’'; L', M, ¢’) are homotopic on
(K; L, M, ¢), then
fe=gx:mn(K: L, M, ¢)—rmo(K'; L', M', ¢)
for n=2.

If f=g on (K, L, ¢), then
Jx=gx:mn(K, L, o)—m (K', L', ¢') for n=1.
If f=~g rel. ¢, then
' fr=gw: (K, p)—ma(K, 9" for n=0.
Proof. When we use the first definitition, this theorem follows from Lemwmas 6.2,
6.3 and the tranisitivity of homotopy relation of c.s.s. complexes (Prorosirions 1.5
and 2.2).
In the general case, if f~g:(K; L, M, o)—~(K’; L', M’, ¢’) on (K; L, M ¢),
then it is easy to see that S|f|=S|g|:(S|K|; S|L|, S|M|, i(¢))—(S|K'|; S|L'|,
S|M'|, iC")) on (S|K|; S|L|, S|M|, i(p)). Therefore fx=(S|f|D+=(S|gDs=4gx

§7. The exact sequences.

In this section we prove the exactness of the following two sequences, considering
the homotopy class {p7° or {p7%!} as the zero element in the case where the set
of homotopy classes is not group.

3o
(D) —an(L, LN M, go)——):rn(K M, go)——)n:n(K L, M, 0)—mn_1(L, LNM, ¢)—>---

d9
-w—m(K; L M, go)-—)rtl (L LﬂM go)———):rl(K M, ¢),
01
(AD---m(K, LN M, go)——)rcn(K L, <p)——>(K L, M, go)——)irn 1(M LM, o)—>
J1
(K L, M, go)——nrl(M LNM, go)—-—)nl(K L, ¢),
where
iO: (L’ LﬂM)ﬁ(Kr M): il :(M) LmM)—’(K’ L)’
jo: (K; Ny, M)—(K; L, M,) and j,: (K; L, No)—»(K; L, M)
are inclusion maps and iy, Z1%, Jox and jix are the induced maps, identifying
ma(K, M, ¢)=nn.(K; M, Ny, ) With 7, (K; Ny, M, ¢).
In the special case M=N,, the sequence (I) reduces to the following sequence:
ix Jx 0
AID- —an(L, @)—>mn(K, ¢)—>mu(K, L, ¢)—>rn_1(L, ¢)—>—>m(L, ¢)

Ik
-——)n’l(K, go).
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We will prove also the exactness of
I Jx ) ix Jx
(III’) 71'1(L, ‘/’)__)WICK’ (P)_)”l(K’ L, (P)__)”O(L’ 90)_'—)71'0<K) QDD_"‘)WO(K; L, §0)
—0,

considering the component {¢} as the zero element of =,.

TueoreM 7.1. The sequence (1) is exact.

Proof. 1t suffices to consider the case of Kan complexes using the first definition.
1°. Let {0}1,.nm be an element of =,(L, LNM, ¢). Then iw({e}r,cnm)= {0} k. M-
Since e&I'y(L, LN M, ¢), we have the following equation in L: '

@ a @ @ R (n+1)
[D, 0511}0’ 0-, 90770...1)71—1’ LU ¢n077n—1]‘
Let = L, be a solution of this equation. Then rel=0¢s2E(LNM)y,—1 and zei= 0 pn—2
for each i#=1. Therefore the following equation holds in L:
()} @ @ @ e (n+1)
[D’ 1-51”0, T, 50770"'77”_1’ °t Y spﬂn"'ﬂ"’l]
and we have {7} g;r,.m»=0 (by Tueorem 2.3). Thus the image of iy is contained in
the kernel of jjx. ‘
2°. Let {0} g, be an element of n,(K, M, ¢) and =K, be a solution of the equation
@ @O @ @ e (n+1)
[D’ aelvo’ g, pvo...”n—l’ RN ¢v0...vn—l].
Then T€1=USOEM”_1 and Tsi=¢”°"'77”—2 for 1#1, and 50j0*( {0‘} K,M>=5(|( {T} K:L.M)z
{re% 1, .nm=0. Thus the image of jyx is contained in the kernel of 4.
3°. Let {d}g;L.m be an element of n,(K; L, M, ¢). Then inwiy({o}k;L.M)=
tox({0e% . 1nm)={0¢% k.M. Let =K, be a solution of
® @O @ €)) e (n+1)
[D, 0-51720’ a, ¢”0...1]n—1’ LI ¢”0...vn—1].
Then re%=celE My, Tel=03° and rei=¢n%.pn»~2 for i$=0, 1. Therefore {6¢% g, =
0 (by Prorosition 1.6). Thus the image of §, is contained in the kernel of 7.
4°, Let {0} k,m be an element of n,(K, M, ¢) such that jyx«({o}x,m)=0. It is clear
that the following diagram is commutative:
Jox
Wn(K’ M; ‘P)

— n.(K; L, M, o)

k u
Sk
ﬂn(lz, ]ldi L’ SC)

mn(K; M, Ny, 9)

where k4 is induced by the inclusion map k:(K; M, N,)—»(K; M, L) and u is the
transformation defined in Tuaeorem 2.9. Therefore we have {o}g;np, =0, namely
there exists w& K,,1 such that we®EMy, welEL,, we?2=0 and wei=¢n?-yn—1 for =0,
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1, 2. .Then we have {o}g,pr={wel}k, ;v by ProrositioNn 1.6. On the other hand
welcly (L, LNM, ¢), hence {0} g, pr=1tex({wel}r,znar). Thus the kernel of jyy is
contained in the image of 7yx.

5°. Let {o}k;r.m be an element of n,(K; L, M, ¢) such that §;({0} k.;r,p)=0. i.e.
{6e% 1, Lnm=0. By ProprosiTioN 1.6, there is w=L, such that we®=(LNM),_1, wel=
0¢? and wei=g@y0-97=2 for i=+0, 1. Let B=K, be a solution of

@ @ @ G @ .. (n+1)
[w’ a, o, D’ 50770.‘.7711—1, .o, 907]0...)711_1],

where a =M, be a solvent of the equation

()} @ @ @ L n
[wso; 0'517 D9 §0770"'77n—21 R 90770"'7}’1—2]'

Then{o} g;r, M= {8l k;L.ma and BEly(K; Ny, M, ¢). Let aSz (K, M, ¢)=m.(K;
M, N,, ¢) be the element corresponding to {8} x;n. s by the transformation giveri
in TueoreMm 2.9. By the definition of j, we have {¢}k;r,r=jox(a). Thus the
kernel of §, is contained in the image of jyx.

6°. Let {o}r,.nm be an element of zn,_1(L, LNM, ¢) such that iw({o} 1, znm)=0.
Then there exists w& K, such that we®©M,_;, wsl=0 and wei=y0--p»—2 for =0, 1.
Let w'&K, be a solution of

@ @ O @ ce . (n+1)
[0, wely?, o, en-pn=l «o. @yl.pn—1],
Then o' &I'n(K; L, M, ¢) and 0°C{e’} g;1.m)= {0'e% L, cnpm= {0} 1;1nm= {0} L. LOM-
Thus the kernel of 7y is contained in the image of 4.
TueoreM 7.2. The sequence (II) is exact.
Proof. Consider the following commutative diagram

1% Jik 1
—-my(M, LNM, ¢)—>rn(K, L, ¢)—>an(K; L, M, ¢)—>rn_1(M, LNM, ¢)—>---
u

Ik hx 5y -
""’ﬂn(M; LﬂM, '90)'—_—_)”71(]{) L7 §D>'——)7r"<K; M! L’ §0>—__'—)7r7l—1<M» LﬂM) 90)—>

where hy is the injection induced by the inclusion map h:(K; N, L)—~(K; M, L),
identifying #,(K, L, ¢)=n,(K; L, N,, ¢) With 7,(K; N,, L, ¢), 9, is the boundary
operator induced by the face operator &% and # is the transformation defined in
TueoreMm 2.9.

Since the lower sequence is exact by Tueorem 7.1, we have

Im {ix=Ker hy=Ker(u - jix)=Ker jix,

Im jix=Im (ulo hye)=u"1(Im hy)=u"1(Ker ép)=u"1(Ker(s; - u~1))

=u-1(u(Ker §;))=Ker 4,
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Im é;=Im (dg°u)=1Im dy=Ker i
Thus the upper sequence, i.e. (II), is exact.

THEOREM 7.3. The sequence (111) and (I11') are exact.

Proof. Since the sequence (III) is a special case of (I), the sequénce (III) is exact.
In order to show the exactness of (III”), it suffices to consider the case of Kan
complexes using the first definition.

1°. For {0} Em(L, ¢), jxtx({6})=1{0}k,.. Let p&L, be a solvent of the following
equation in L: )

w O @

[0, o, ¢7°].
Then p:o~¢en° Isd. L, ie. {d}k,.=0.
2°. For {0} kEm(K, ¢) such that ji({o} k)=0, i.e. {0} g,.=0, there exists p= K, such
that pe®=L,, pei=0 and pe2=¢70% Then p: ped~ao, ie. ix({pe® )= {0} k.
3°. For {s}rEm(K, ¢), 6jx({e} k)= {0e% L= {p} L=0. '
4°. For {o}g,1Em(K, L, ¢) such that ({0} g,.)=0, i.e. {0e% =0, there exists p& L,
such that pe®=¢ and pel=0¢% Let w&K; be a solution of

@ @O @
Lo, OO, 0]

Then jx({w}x)= {0} k.L-
5°. For {o}g,.Em(K, L, ¢), ix0({o}g,1)=1{0e% k. Since oel=¢, we have ¢:0e0~¢,
ie. {0e% g=0.
6°. For {¢}Em(L, ¢) such that ix({s¢} )=0, ie. {0} k=0, there exists p=K; such
that pe®=o and pel=¢. Therefore o({p}k,.)= {o} L.
7°. For {o}Emy(L, ¢), jxix({6} )= {0}k, From the definition of the zero element
of ny(K, L, ¢), we have {g} g, =0.
8°. For {0} gEny(K, ¢) such that jy({o}k)=0, ie. {o}k,.=0, there exists p=K,
such that pe0C L and pel=os. Then ix({pe® )= {0} k.
9°. By the definition, jy: my(K, ¢)—>m(K, L, ¢) is onto.

§8. The fibering theorem.

D. M. Kan [5] defined a fibre map as follows:

DerINITION 8.1. For c.s.s. complexes E and B, a c.s.s. map p: E—»B is called a
fibre map if for every pair of integers (%, ») such that 0<=k<n, for every equation
in E:

@ -+ (k-1 &) Gkt) -
[00’ ceey Ok—1, O, Okg1, o 0”]
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and for every solvent =B, of the equation

@ cer R B R+ e D
[5Co0), =+ p(ok-1), O, ploks1), + =+ plon)],

there is a solvent ¢=E, of the former equation such that p(¢)=rz. The complex E
is called the total complex, B the base. Let ¢=B, be a 0-simplex. Then we mean
by the fibre of p over ¢ the subcomplex FC E such that F,= p~1(¢n%-p»=1) for all n.

PropOSITION 8.2, 'Sl | is a fibre-presesving functor where | | is the geometric realiza-
tion functor in the sense of J. Milnor [7] and S is the simplicial singular functor, i.e.
if p: E—>B is a fibre map, thee S| p| : S|E|—>S|B| is also a fibre map.

Proof.. Consider an arbitrary equation in S|E|:

0 ¢+ k-1 (&) G+ o« W
[00! cee Ok-1, [, Okt1, = * % O'n],

and assume that there is a solvent :&=(S|B|). of the equation in S|B]:

@  eee GeD ® D e )
[S1pCo0), «++ S|Pl (or-1), O, S|pl(ors1), +++, S|P[(on)].

S| p|(s:) is the composition |p|oae; of maps ¢; and |p|, and |p| is homeomorphic
on the realization of each simplex of E, and p is a fibre map. Therefore we may
choice a solvent ¢=(S|E|). of the former equation such that S|p|(¢)=r=.

THEOREM 8.3. Let p: E->B be a fibre map, B’ and B'' be subcomplexes of B and E’
=p~W(B), E'=p"Y(B"), Then 1) px:mo((E; E’, E/' ¢)—>nn(B; B, B’, ¢) is

. isomor phic for n=3, one-to-ome onto for n=2, where ¢=(B' NB'")y and $=(E'NE'"),

such that p(p)=¢, 2) px:mn(E, E', ¢)—>nu(B, B', ¢) is isomorphic for n=2, one-to-one
onto for n=1 and px~1(0)=0 for n=0, where ¢ =B’y and ¢ E'y such that p(¢P)=¢.

Proof. 1t suffices to prove the TuroreMm for the case E, E’, E’’, B, B’ and B’’ are
Kan complexes using the first definition (Cf. ProposiTioN 8.2).

Proof of 1). It is clear that p, is homomorphic for n=3. Let ¢ and &I, (E;
E', E", ¢) be simplices such that p(¢)~p(z) Isd. B’, B/, and p&=By,,; be the homo-
topy between p(o) and p(r). Since p is a fibre map, there exists a solvent 4= E’,,
of the equation '

)] 6)) o n-2) m-1
[D’ ¢,7]0...77n~2’ LIS ¢p7]04..vn—2 '0-50’ 1-60]

such that p(6)=pe0. Furthermore there exists a solvent p’ECE,,, of the equation

® @ @ n-1) ) =+D
[0, D’ 9[,00...7711'—1’ ooy (/;007771—1, 0" T]

such that p(p’)=p. Since p’el< p~1(pel)CE”’, we have p’:0~z Isd. E’, E’”. Thus
D« 1s one-to-one for n=>2.
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To prove that py is onto for n=2. consider ¢=I",(B; B, B, ¢). Since ¢ is a
solvent of the equation in B’:

1)} @ see (n-1
(4, 977]0"'77”—3’ M) (/7770...7]11—3]

there exists a simplex w&E’,_; which is a solvent of

()] @ s (n-1)
[D, ¢770...1]n—‘3’ RN ¢7]0...vn—~3]

and p(w)=ae® Since ¢ is a solvent of

o W @ R (n)

[6e9, [, @n0-pn=2, ««., @y0.yn—2]
there exists a sinmplex r&I',(E; E’, E"”, ¢) such that p(z)=o0, ie. px({t}E;E".E"")
= {0} B;g’, 7. Thus py is onto for n=2,

Proof of 2). We can prove that py is one-to-one onto for xn=1 similarly to the
proof of 1).

To show that p,—1(0)=0 for =0, consider a simplex ¢&=E, such that {p(o)} g, i
the zero element of ny(B, B/, ¢). Then there exists p&B; such that pe?& B’ pel= p(o).
Since p is a fibre map, there exists p’&FE; such that p(p’)=p and p’el=¢. Then
p' 0= p~1(pe)CE’. Thus {6}, =0, i.e. px1(0)=0 for n=0.

TuroreM 8.4. Let p: E—~B be a fibre map, B’ be a subcomplex of B and E'=p~1 (B’).
Then the sequence

i 7 ] ]
AV)---—>z.(E, ¢)—t—)n'n(E, ¢)—]——>7rn(B, B, ¢)—>rn_1(E’', ¢)—>---—>ry(B, B, go)\

iS exact, where ix is the injection, J= px o jx, jx being the injection, and §=0 - Py},
0=_eD%. Moreover if p maps E onto B, then 7:ny(E, ¢)—>ny(B, B, ¢) is onto.

Proof. 1t suffices to prove the Tueorem for the case E, E’, B and B’ are Kan
complexes using the first definition. The exactness of sequences (IV) is an immediate
consequence of Turorem 8.3 and the exactness of sequences (III), (IIT').

To complete this proof, assume that p: E—B is onto. Then py:ny(E, E', ¢)—
mo(B, B', ¢) is onto. Since jy:m(E, ¢)—>m(E, E’, ¢) is onto, j:n(E, ¢)—>m(B, B,
¢) is onto.
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