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Introduction

The object of this note is to prove the following

THEOREM. Let $G$ be a compact connected Lie group, locally isomorphic to $\tau^{r}\times G_{1}\times G_{2}\times$

. . . $\times G_{s}$ . where $T^{r}$ is r-dimensional toms and each $G$; is a simple compact connected Lie group of
$mnk\geqq 5$ . Then the fixed point set of any effective differentiable action of $G$ on $a$ euclidean
space $R^{m}$ with four orbit types is non-empty.

The fixed point set of differentiable action of compact connected Lie group on euclidean
spaces with two or three orbit types have been proved to be non-empty by BOREL ([1]) and
HSIANG, W. C. ([2]). Our result is a direct consequence of the works of HSIANG, W. C. and
HSIANG, W. Y. ([3], [4]).

The author wishes to express his thanks to Mr. K. ABE for his kind discussions and
valuable suggestions.

1. Statement of $re8ults$

Let $G$ be a compact connected Lie group and $f$ an effective dfflerentiable action of $G$ on
$R^{m}$ , i.e. $f:G\times R^{m}\rightarrow R^{m}$ is a dfflerentiable mapping satisfying (1)$f(e, x)=x$ for every $x\epsilon R^{m}$

(2) $f(g_{1},f(g_{2}, x))=f(g_{1}g_{2},x)$ for $gt\epsilon G,$
$x\underline{\epsilon}R^{m}$ and (3) if $f(g,x)=x$ for every $x\epsilon R^{m}$, then $g=e$.

We write $f(g, x)=gx$.
In the first place, we consider the case where $G$ is locally isomorphic to a product $G_{1}\times G_{2}$

of two simple compact connected Lie groups $G$; of rank $\geqq 5$ . Assume the number of orbit
types of $f$ is four. Then $G_{1}\times G_{2}$ acts almost effectively on $R^{m}$ with four orbit types. The
set of all orbit types of a differenentiable action is an ordered set (i.e. $(G_{x})\leqq(G_{y})$ if every
element of $(G_{x})$ is contained in some element of $(G_{\mathcal{Y}}))$ . Hence we can define a graph for
a differentiable action with finite orbit types as follows; points of the graph are orbit types
and points $a$ and $b$ are jointed by a segment from $a$ to $b$ when $a<b$ and there is no point $c$

such that $a<c<b$ .
Then possible graphs of action with four orbit types are;
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(1) (2) (3) (4) (5)

$\xi$

Consider the restricted action $fi$ of $f$ to $G;$ . It is clear that the number of orbit types
of $fi$ is at most four and hence principal isotropy subgroups of $fi$ are positive dimensional.
Therefore a result in [2] shows that the fixed point set of $fi$ is non-empty. Choose $x;\epsilon F(Gi$,
$R^{m})$ ( $=the$ fixed point set of $fi$) and fix them. By the following lemmas, it follows that
the isotropy subgroups $G_{x_{1}}$ and $G_{x_{2}}$ are split, i.e. $G_{X_{1}}=G_{1}\times G_{2^{x_{1}}}$, and $G_{x_{2}}=G_{1^{x_{2}}},\times G_{2}$ .

LEMMA 1. Let $G=G_{1}\times G_{2}$ and $\overline{G}$be a subgroup of $G$ which containes $G_{1}$ . Then $\overline{G}=G_{1}\times K_{2}$,
where $K_{2}$ is a subgroup of $G_{2}$.

LEMMA 2. Let $f$ be a differentiable achion of $G_{1}\times G_{2}$ . If $G_{x}=K_{1}\times K_{2}$, where $Ki$ is sub-
group of $Gi$, then $ G_{x}=G_{1^{x}}.\times G_{2^{x}},\cdot$

We shall show that the fixed point set of $f$ is non-empty. It is suffifient to consider
the case where $(G_{xj})\not\equiv(G_{x_{3-j}})(i=1,2)$ and none of $(G_{x;})$ is principal. Therefore the four
orbit types are; $(H)(=principal),$ $(U),$ $(G_{x_{1}})$ and $(G_{x_{2}})$ . Since the fixed point set of actions
of graph (4) and (5) is non-empty, it suffices to consider the cases (1), (2) and (3).

The case (1). Consider the slice representation $fix;$. By a result of Borel ([1]) and
the following proposition, it follows that a principal isotropy subgroup $H$ is split.

PROPOSITION 1. Let $G=G_{1}\times G_{2}$, where each $G$; is a simple compact connected Lie group
with $rank\geqq 5$ and $H$ is a closed subgroup of G. Assume that $G/His$ a positive dimensional
sphere. Then $H=G_{1}\times H_{2}$ or $H_{1}\times G_{2}$ and $G_{1}/H_{1}$ or $G_{2}/H_{2}$ is equal to $G/H$, respectively. Moreover
$prin\dot{\alpha p}al$ isotropy subgrops are conjugate to $H_{1}\times H_{2}$, where $G_{1}/H_{1}$ and $G_{2}/H_{2}$ are spheres.

Consider the induced action of $G_{2}$ on $X=F(G_{1}, R^{m})$ . Since $F(G, R^{m})$ is empty, $G_{2}$ acts
on $X$ with only one orbit type $(G_{2^{X_{1}}}.)$ such that $G_{2}/G_{2^{X_{1}}}$. is sphere. The $Z_{2}$-Gysin sequence
of fibering $G_{2}/G_{2^{X_{1}}}.\rightarrow X\rightarrow X^{\prime}$ induces a contradiction. Thus the graph (1) is impossible.

The case (2). In this case, we may assume the graph is; $(H)$

consider the induced action of $G_{2}$ on $X=F(G_{1}, R^{m})$ . It is clear $|$

that this action has only one orbit type and hence the following $(U)$

proposition, which is proved by similar arguments in the case $/^{/}$ $\backslash _{\backslash }$

(1), implies that $F(G_{2},X)$ is non.empty. This is a contradiction. $(G_{x_{1}})$ $(G_{x_{2}})$

PROPOSITION 2. Let $X$ be a $Z_{2}$-acyclic manifold and $f$ be a differentiable action of a con-
nected Lie groupG onXwith only one orbit type. ThenG acts trivally on X.

The case (3). The same arguments as in the case (2) show that this case is also im-
possible.
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Thus we have proved that any almost effective differentiable action of $G_{1}\times G_{2}$, where
$G;^{\prime}s$ are simple compact connected Lie groups with rank $\geqq 5$ has fixed points.

We shall investigate the acyclicity of the fixed points set. Let $X=F(G, R^{m})$ and
$Xi=F(GjR^{m})$ . Consider the restricted action $\overline{fi}$ of $Gj$ on $X_{3-i}(i=1,2)$ . When one of $\overline{f}i^{\prime}S$ has
only one orbit type, say $\overline{f_{1}}$ , proposition 2 implies that $X=X_{2}$ . Hence $X$ is $Z_{2}$-acyclic. Assume
that both $\overline{f_{1}}$ and $\overline{f_{2}}$ have at least two orbit types. Then it is clear that both $\overline{f_{1}}$ and $\overline{f}_{2}$ must
have two orbit types and hence both $f_{1}$ and $f_{2}$ have two orbit types.

PROPOSITION 3. Let $G$ be a simple compact connected Lie group of $mnk\geqq 5$ and $f$ be dif-
ferentiable action of $G$ on $R^{m}$ with two orbit types. Then $G$ is a classical Lie group and all isotropy

subgroups are conjugate to standardly embedded subgroup.

From this proposition, we can prove the following

PROPOSITION 4. Let $G_{1}\times G_{2}$ act almost effectively on $R^{m}$ with four orbit types. Then the

fixed poin set is $Z_{2}$-acyclic.

Summing up above arguments, we have proved the following

THEOREM 1. Let $G$ be a compact connected Lie group, locally isomorphic to $G_{1}\times G_{2}$, where
each $G$; is a simple compact connected Lie group of $mnk\geqq 5$ , and $f$ be an almost effective differ$\cdot$

entiable action of $G$ on $R^{m}$ with four orbit types. Then the fixed point set of$f$ is $Z_{2}$-acyclic.

Next we shall consider the case $G$ is locally isomorphic to $G_{1}\times G_{2}$, where $G_{1}$ is a semi-
simple compact connected Lie group and $G_{2}$ is a simple compact connected Lie group of
rank $\geqq 5$ . Let $f$ be an effective differentiable action of $G$ on $R^{m}$ with four orbit types.

Assume that the fixed point set of the restricted action of $f$ to $G_{1}$ is $Z_{2}$-acyclic. By the same
arguments used in the proof of Theorem 1, we can prove the fixerd point set of $f$ is $Z_{2^{-}}$

acyclic. By the induction on the number of simple factors of $G$, we can prove the following.

THEOREM 2. Let $G$ be a semi-simle compact connected Lie group, locally iosmorphic to
$G_{1}\times\ldots\times G_{s}$, where each $G$; is simple of $rank\geqq 5$ , and $f$ be an effective differerentiable action

of $G$ on $R^{m}$ with four orbit types. Thne the fixed point set of $f$ is $Z_{2}$-acyclic.

Every compact connected Lie group $G$ is locally isomorphic to $T^{r}\times G_{1}\times\ldots\times G_{S}$, where
$p$ is r-dimensional torus and each $Gi$ is a simple compact connected Lie group. From
theorem 2 and Smith’s theorem, it follows immeadiately that the fixed point set of any
effective differentiable action of $G$ on $R^{m}$ with four orbit types is $Z_{2}$-acyclic. This com-
pletes the proof of the theorem mentioned in Introduction.

2. Proof of lemmas and proposition8

Proof of Lemma 1. Note that $G_{1}$ is a normal subgroup of $\overline{G.}$ Define a map $p;\overline{G}/G_{1}$

$\rightarrow G_{2}$ by $p(gG)$, where $p_{2}$ ; $c\rightarrow G_{2}$ is the projection. Then $p$ is a well defined homo-
morphism and the following diagram is commutative;
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$1\rightarrow G_{1}\rightarrow\overline{G}\rightarrow\overline{G}/G_{1}\rightarrow 1$

$|I$ $\downarrow$ $\downarrow p$

$1\rightarrow G_{1}\rightarrow G\rightarrow G_{2}p_{2}$

$\rightarrow 1$ .

Hence $p$ is injective. Put $K_{2}=$ the image of $p$ . Then $K_{2}$ is a subgroup of $G_{2}$. Define a
map $h$ : $G_{1}\times K_{2}\rightarrow\overline{G}$ by $h(g_{1}, p(gG))=(g_{1},p_{2}(g))$ . Then it is clear that $h$ is a well defined
isomorphism.

We omit the proof of lemma 2 since it is elementary.

Proof of Proposition 1. It is known that a compact connected Lie group which acts
transitively and effectively on a sphere is one of the followings; classical groups, excep-
tional group of rank 2, $K\times L/N$, where $K$ is classical, $L=(e),$ $SO(2)$ or $sp(1)$ and $N$ is a
finite group ([5]). Hence $G=G_{1}\times G_{2}$, where each $G$; is simple, cannot act on the sphere
effectively and the ineffective kernel $W$ is not a finite group. Therefore $W$ containes $G_{1}$ or
$G_{2}$ and hence $H$ must contain $G_{1}$ or $G_{2}$. Then $H=G_{1}\times H_{2}$ or $H_{1}\times G_{2}$, where $Hi$ is a subgroup
of $G_{i}$ .

Proof of proposition 3. Choose $x\epsilon F(GR^{m})$ and consider the local representation $f_{x}$

at $x$. By a result in [1]., the non-trivial orbits are spheres. Since $G$ is simple of rank $\geqq 5$,
$G$ is $SU(n),$ $Sp(n)$ or $SO(n)$ and non-trivial isotropy subgroups are conjugate to standardly
embedded subgroups $SU(k),$ $Sp(k)$ or $SO(k)$ respectivey (cf. [3], [4]).

Proof of Proposition 4. It suffices to prove that if a classical Lie group $G$ acts on $Z_{2^{-}}$

acyclic manifold $X$ with two orbit types and standardly embedded subgroups as non-trival
isotropy subgroups, then the fixed point set is also $Z_{2}$-acyclic. Since the proofs for the
four cases of $Su(n),$ $sp(n)$ and $SO(n)$ are almost parallel, we shall only prove the $SO(n)$

case. First consider the case of $SO(2k)$ . By assumption, all isotropy subgroups are con-
jugate to $SO(2k)$ or $SO(2k-1)$ . Let $T$ be a maximal torus and $F=F(T, X)$ . It is known
that $F$ is $Z_{2}$-acyclic manifold. It is easy to see that $F(SO(2k), X)=F$. Next consider the
case of $SO(2k+1)$ . Let $(Z_{2})^{2k}$ be a $Z_{2}$-maximal torus of $SO(2k+1)$ . It is not difficult to
see that $F(SO(2k+1), X)=F((Z_{2})^{2k},X)$, which is $Z_{2}$-acyclic by Smith $s$ theorem.
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