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Introduction

The object of this note is to prove the following

THEOREM. Let G be a compact connected Lie group, locally isomorphic to T" X G1X Gy X
... X Gs. where T is r-dimensional torus and each Gi is a simple compact connected Lie group of
rank =5. Then the fixed point set of any effective differentiable action of G on a euclidean
space R™ with four orbit types is non-empty.

The fixed point set of differentiable action of compact connected Lie group on euclidean
spaces with two or three orbit types have been proved to be non-empty by BoreL ([1]) and
Hsiang, W. C. ({2]). Our result is a direct consequence of the works of Hsiang, W. C. and
Hsiang, W. Y. ([3], [4]).

The author wishes to express his thanks to Mr. K. ABE for his kind discussions and
valuable suggestions.

1. Statement of results

Let G be a compact connected Lie group and f an effective differentiable action of G on
R”,ie. f: GX R"—>R™ is a differentiable mapping satisfying (1) f(e, x)=x for every xeR™
(2) fg1, (&2 %))=1(g12,%) for gicG, x<R™ and ( 3) if f(g,x)=x for every xe Rm, then g=e.
We write f(g, x)=gx.

In the first place, we consider the case where G is locally isomorphic to a product Gy X G,
of two simple compact connected Lie groups G; of rank =5. Assume the number of orbit
types of f is four. Then G; X G, acts almost effectively on R~ with four orbit types. The
set of all orbit types of a differenentiable action is an ordered set (i.e. (Gx)<(Gy) if every
element of (Gx) is contained in some element of (Gy)). Hence we can define a graph for
a differentiable action with finite orbit types as follows; points of the graph are orbit types
and points ¢ and b are jointed by a segment from a to b when a<b and there is no point ¢
such that a<<c<b.

Then possible graphs of action with four orbit types are;
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(1) (4) (5)
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Consider the restricted action f: of f to Gi. It is clear that the number of orbit types
of fi is at most four and hence principal isotropy subgroups of fi are positive dimensional.
Therefore a result in [2] shows that the fixed point set of f: is non-empty. Choose x: ¢ F(Gi,
R™) (=the fixed point set of f;) and fix them. By the following lemmas, it follows that
the isotropy subgroups Gz, and Gx, are split, i.e. Gx,=Gy X Gy,x, and Gz,=Gy,x, X G,.

LemMA 1. Let G=G; X G, and G be a subgroup of G which containes G;. Then G=G;X K,
where K, is a subgroup of G,.

LemMA 2. Let f be a differentiable action of Gy X G,. If Ge=K;X K,, where K; is sub-
group of Gi, then Gxr=Gy, xX Gg, x.

We shall show that the fixed point set of f is non-empty. It is suffifient to consider
the case where (Gx;)X(Gx,-:)(i=1, 2) and none of (Gx;) is principal. Therefore the four
orbit types are; (H)(=principal), (U), (Gx,) and (Gx,). Since the fixed point set of actions
of graph (4) and (5) is non-empty, it suffices to consider the cases (1), (2) and (3).

The case (1). Consider the slice representation fi »;. By a result of Borel ([1]) and
the following proposition, it follows that a principal isotropy subgroup H is split.

ProrosiTiON 1. Let G= Gy X Gy, where each Gi is a simple compact connected Lie group
with rank =5 and H is a closed subgroup of G. Assume that G/H is a positive dimensional
sphere. Then H= Gy X H, or Hy X G, and G1/ Hy or G/ H; is equal to G/ H, respectively. Moreover
principal isotropy subgrops are conjugate to Hy X Hy, where G/ Hy and G,/ H, are spheres.

Consider the induced action of G, on X=F(Gy;, R™). Since F(G, R™) is empty, G, acts
on X with only one orbit type (G, x,) such that G/Gy, «, is sphere. The Z,-Gysin sequence
of fibering G,/ G;, xr,—>X—> X"’ induces a contradiction. Thus the graph (1) is impossible.

The case (2). In this case, we may assume the graph is; €:p)
consider the induced action of G, on X=F(G;, R™). It is clear
that this action has only one orbit type and hence the following ()
proposition, which is proved by similar arguments in the case % N
(1), implies that F(G,, X) is non-empty. This is a contradiction. (Gxy) (Gx,)

ProPOSITION 2. Let X be a Zy-acyclic manifold and f be a differentiable action of a con-
nected Lie group G on X with only one orbit type. Then G acts trivally on X.

The case (3). The same arguments as in the case (2) show that this case is also im-
possible.
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Thus we have proved that any almost effective differentiable action of G; X G,, where
Gi’s are simple compact connected Lie groups with rank =5 has fixed points.

We shall investigate the acyclicity of the fixed points set. Let X=F(G, R™) and
Xi=F(Gi, R™). Consider the restricted action fi of Gi on X3_i(i=1, 2). When one of fi’s has
only one orbit type, say f;, proposition 2 implies that X=X,. Hence X is Z,-acyclic. Assume
that both f; and f; have at least two orbit types. Then it is clear that both 7; and 7, must

have two orbit types and hence both f; and f, have two orbit types.

ProposITION 3. Let G be a simple compact connected Lie group of rank =5 and f be dif-
Sferentiable action of G on R™ with two orbit types. Then G is a classical Lie group and all isotropy
subgroups are conjugate to standardly embedded subgroup.

From this proposition, we can prove the following

ProOPOSITION 4. Let Gy X G, act almost effectively on R™ with four orbit types. Then the
fixed poin set is Zy-acyclic.

Summing up above arguments, we have proved the following

THEOREM 1. Let G be a compact connected Lie group, locally isomorphic to Gy X Gy, where
each Gi is a simple compact connected Lie group of rank =5, and f be an almost effective differ-
entiable action of G on R™ with four orbit types. Then the fixed point set of f is Zy-acyclic.

Next we shall consider the case G is locally isomorphic to G; X G,, where G, is a semi-
simple compact connected Lie group and G, is a simple compact connected Lie group of
rank =>5. Let f be an effective differentiable action of G on R” with four orbit types.
Assume that the fixed point set of the restricted action of f to G, is Z;-acyclic. By the same
arguments used in the proof of Theorem 1, we can prove the fixerd point set of f is Z,-
acyclic. By the induction on the number of simple factors of G, we can prove the following.

THEOREM 2. Let G be a semi-simle compact connected Lie group, locally iosmorphic to
Gi1X... X Gs, where each Gi is simple of rank =5, and f be an effective differerentiable action
of G on R™ with four orbit types. Thne the fixed point set of f is Zy-acyclic.

Every compact connected Lie group G is locally isomorphic to 77 X Gy X ... X Gs, where
T is r-dimensional torus and each G; is a simple compact connected Lie group. From
theorem 2 and Smith’s theorem, it follows immeadiately that the fixed point set of any
effective differentiable action of G on R™ with four orbit types is Z,-acyclic. This com-
pletes the proof of the theorem mentioned in Introduction.

2. Proof of lemmas and propositions

Proof of Lemma 1. Note that Gy is a normal subgroup of G. Define a map p: G/G,
—>G, by p(gG), where p, : G—> G, is the projection. Then p is a well defined homo-
morphism and the following diagram is commutative;
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1—G;—>G—>G/Gi—>1
Il ! Ip
1—G—>G—>G,; —>1.
23
Hence p is injective. Put K,= the image of p. Then K, is a subgroup of G,. Define a
map % : Gy X K,—>G by h(gy, p(gG))=(g1,g)). Then it is clear that % is a well defined
isomorphism.
We omit the proof of lemma 2 since it is elementary.

Proof of Proposition 1. It is known that a compact connected Lie group which acts
transitively and effectively on a sphere is one of the followings; classical groups, excep-
tional group of rank 2, KX L/N, where K is classical, L=(e), SO(2) or Sp(1) and Nisa
finite group ([56]). Hence G=G;X G, where each G; is simple, cannot act on the sphere
effectively and the ineffective kernel W is not a finite group. Therefore W containes G; or
G, and hence H must contain G; or G,. Then H= Gy X Hy or H; X G,, where H; is a subgroup
of Gi.

Proof of proposition 3. Choose x¢ F(G R™) and consider the local representation fx
at x. By a result in [1]., the non-trivial orbits are spheres. Since G is simple of rank =5,
G is SU(n), Sp(n) or SO(n) and non-trivial isotropy subgroups are conjugate to standardly
embedded subgroups SU(k), Sp(k) or SO(k) respectivey (cf. [3], [4]).

Proof of Proposition 4. It suffices to prove that if a classical Lie group G acts on Z,-
acyclic manifold X with two orbit types and standardly embedded subgroups as non-trival
isotropy subgroups, then the fixed point set is also Z,-acyclic. Since the proofs for the
four cases of Su(n), Sp(n) and SO (%) are almost parallel, we shall only prove the SO(%)
case. First consider the case of SO(2k). By assumption, all isotropy subgroups are con-
jugate to SO(2k) or SO(2k—1). Let T be a maximal torus and F=F(T, X). Itis known
that F is Z,-acyclic manifold. It is easy to see that F(SO(2k), X)=F. Next consider the
case of SO(2k+1). Let (Z,)%* be a Z,-maximal torus of SO(2k+1). It is not difficult to
see that F(SO(2k+1), X)=F((Z,)?*, X), which is Z,-acyclic by Smith s theorem.
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