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AN ESTIMATION OF QUASI-ARITHMETIC MEAN
BY ARITHMETIC MEAN AND ITS APPLICATIONS

MASARU TOMINAGA

ABSTRACT. The quasi-arithmetic mean inequality says that if f is an increasing
strictly convex function on an interval I, then f~! ({f(A)z,z)) > (Az,z) for all
unit vectors x in a Hilbert space H and a selfadjoint operator A on H, whose
spectrum is contained in I. In this paper, we consider reverse inequalities of the
quasi-arithmetic mean inequality. For each A > 0 we observe an upper bound of
a difference
f_l ((f(A)x3$>) - /\(AJJ,CL‘)

We find a condition on vectors  which attain the optimal bounds.

Replacing a given function f(t) by a power, the logarithmic and the exponential
function, we show these reverse quasi-arithmetic mean inequalities and equality
conditions, in which the obtained constants are expressed by a generalized Kan-
torovich constant, the Specht ratio and the logarithmic mean.

1. INTRODUCTION

Let f be a strictly increasing continuous function on an interval I. Then
1l
(11) = Zlf(az-))

is called the quasi-arithmetic mean of a = (ay,... ,a,) € I"(C R"™) by f (cf. [15]).
Typical examples are arithmetic, geometric and harmonic means which correspond
to functions f(t) =t, logt and —$, respectively.

Throughout this paper, an operator means a bounded linear operator on a Hilbert
space H. For each unit vector x € H, we consider

(1.2) T f(A)z, 7))

for all selfadjoint operators A whose spectra are contained in I, as an operator

version of the quasi-arithmetic mean (1.1). Incidentally, (Az,z) is regarded as the

arithmetic mean. Indeed, (1.1) is obtained by putting A = diag(as,... ,a,) and
1

z=—2=| ] in(1.2), and obviously (Az,x) = £ > a;. If we choose the logarithmic
1 .
function f(t) = logt, then its quasi-arithmetic mean exp((log A)z, z) for a fixed unit
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vector = € H is called the determinant of a positive invertible operator A in (3], [5].
It is known that if A satisfies 0 < m < A < M, then

(1.3) exp{(log A)z, z) < (Az,z) < S(h)exp((log A)z, x)
where h := X and S(h) is the Specht ratio [22] defined by

(1.4) S(h) := —hh_l—l for h >0 with h #1 and S(1):=1.
elog h#-1

The Specht ratio S(h) is an upper bound of the arithmetic mean by the geometric
one (cf. [2], [5], [24]). In general, for every (strictly increasing) convex (resp. concave)
f, the quasi-arithmetic mean inequality

15)  f(f(A)z,2) > (Az,z)  (resp. f({f(A)z,2)) < (Az,2))

holds for all unit vectors £ € H which is equivalent to the Jensen inequality

(f(A)z,z) = f((Az,z)) (resp. (f(A)z,z) < f({Az,z))).

On the other hand, the following reverse inequality of (1.5) for f(t) = t? is given by
Furuta [8]: For p > 1 (resp. 0 <p < 1)

(Az,z)? < (APz,z) < K(h,p)(Az,z)?
(1.6) (resp. (Az,z)? > (APz,z) > K(h,p)(Az, z)P)

where K (h,p) is a generalized Kantorovich constant (cf. [2], [9], [10]) defined by

1 WP—h(p—1h—1\°

for all A > 0 and p € R.
In this paper, we give bounds of a difference

(1.8) FH(f(A)x, ) — MAz, z)

for each A > 0. Precisely, we determine the optimal constant F'(\) = F(m, M, f, X)
(resp. G(A) = G(m, M, f,\)) such that

(1.9) _
FH(f(A)z,z)) = MAz,z) S F(X)  (resp. 71 ((f(A)z,z)) — MAz,2) > G(N))

for strictly increasing convex (resp. concave) functions f on [m, M] without differ-
entiability. Next we obtain useful estimations by applying it to functions #*, logt, €
and tlogt. In particular, we have bounds of the ratio f~1({f(A)z,z))/(Az,z) and
the difference f~!({f(A)z,z)) — (Az, z) which include (1.3), (1.6) and other known
results. Furthermore, we investigate a specific vector £ which gives the equality for
the obtained inequality (1.9).
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2. MAIN RESULTS

In this section, we consider an optimal estimation of a difference f~* ((f(A)z, z))—
A Az, z) for each A > 0 under some conditions. '

For the sake of convenience, we define two constants oy and 3y for all real valued
function f(t) on the interval [m, M| with m < M as follows:

f(M)—f(m) Mf(m) —mf(M)

af =T and ff:= M —m

In particular, if f(¢) is strictly increasing, then ay > 0.
We first estimate the quasi-arithmetic mean f='({f(A)z,z)) by the arithmetic
mean (Az, x) for an increasing function f. We use the Mond-Pecari¢ method [12].

Lemma 2.1. Let A be a selfadjoint operator on a Hilbert space H such that m <
A < M for some scalars m < M. Let f(t) be a strictly increasing continuous
function on the interval [m, M]. If there exists to € [m, M) where it satisfies an
inequality f(t) < as(t — to) + f(to), then for each A > 0

21)  fT{f(A)z,2)) - MAz,2) < max {fTH(as(t —to) + f(to)) — Mt}

m<t<M

holds for all unit vectors x € H.

Proof. The inequality f(t) < at+ @ implies f(A) < aA+ §. Since f~! is increasing
and m < (Az,z) < M, it follows that :

T{f(A)z, z))-MAz,z) < f! (a(Ax, z) + B)—A Az, z) < mrél%xM{f"l(at+ﬂ)—/\t}.

Moreover, if we put o = ay and 8 = —ayto + f(to), then (2.1) holds. O

Here we put
f( )(t) (t + h}i (t) and f(+) (t) h_’+0 f(t + hf)L - f(t)

if exist, and Iy means the interval spanned by 7?%(%4—) and ﬂ—+5%m—) (In particular,

if fO)(t), FH)(t) = oo for t € [m, M], then we put F%’W%L(t—) =0.) If f(¢) is
convex, then f(=)(t) < f()(t). Moreover we suppose that f(t) is increasing. Then
for each A € Iy, there exists a unique py € [m, M] such that f()(u,) < i<
FP(ur).

In our previous note [20], we gave reverse inequalities related to the Jensen one
under an assumption that f(t) is twice differentiable. But we have the following
theorem without differentiability.

Theorem 2.2. Let A be a selfadjoint operator on a Hilbert space H such that m <
A < M for some scalars m < M. Let f(t) be a real valued continuous increasing
and strictly convex (resp. strictly concave) function on [m, M] with f)(m) # 0
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(resp. fC)(M) #0). Then for each A >0
T (A)z,2)) — MAz,2) < F(m, M, f,\)
(resp. f7({f(A)z,2)) = MAz,z) > G(m, M, f, X))

holds for all unit vectors x € H where

(2.2)

( —A)M if0<A<f7%
F(m, M, f,)) = pm—HB ifx ey
(2.3) ( )m fA> 7o ™
(resp. Gm,M, f, ) := < u ("*)fﬁ A ifrel; )

Furthermore the equivalent condition for which the equality of (2.2) holds is as
follows:

1) Ifo< A< F%(%) (resp. 0< A< }7%1(7))’ then x is an eigenvector for M (resp.
m).
(ii) If A e If, then

o fe —gm) [F) = fm)
@4 w=z)= \/ L= 700 = fmy o T F00) = f(m) ™

where e,, and eps are corresponding unit eigenvectors to m and M, respectively.

(iii) If A > 7% (resp. X > T(%(LAT))’ then z is an eigenvector for m (resp. M).

Proof. We only prove the case that f(t) is convex. Then we have f(t) < oy(t —
m) + f(m) = ast + G5 for all t € [m, M]. Since f(t) is strictly increasing on [m, M],
f71(t) can be defined on [f(m), f(M)] and strictly increasing. If t, = m in (2.1),
then we have

F7 (F(A)z, 7)) — MAz,2) < max (F~(ast + Br) — M)
holds for all unit vectors x € H. We put
ha(t) := f Yozt + Bf) — At for t € [m, M].

Then we see the strict concavity of hy(t) by the strict convexity of f(t) and hf\i)(t) =
— ), respectively. We divide into three cases

f(i)(f—fé{)‘ft+ﬂf))
af ar
fO(M) )(M) fOM)” fH(m)
Firstly we suppose (ii), i.e., A € I5. Since hy(t) is strictly concave and hf\_)(M ) <
0< hf\+) (m), there exists a unique t5 € [m, M] such that hf\+)(t,\) <0< hf\_)(t,\) and
SO maxXm<t<p ha(t) = ha(tn). (If either hf\"') (m) or hf\—)(M ) = 0, then the maximum

of

() 0<A< ——I fH(m)’

(i) A € Iy := [ ] and (i) A >
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is given by ¢ = ty = m or M, respectively.) Let px = f~ (aytr + B5) € [m, M].
Then we have ¢\ = w and

_ _ -1 My =
ax ha(t) = ha(ts) = 7 (afta + Bf) — Ata = pa

_ f(/-f')\) _ /Bf)‘
af .
Moreover we suppose that
f_1(<f(A)$,.’E>) - )\(A.’E, CC) = f_l(af<Axa 1L'> + ﬂf) - )\(A.’Z,‘, (L‘) = h/\(t/\)’
for some unit vector z = x5 ,. Then (f(A)z,z) = ay(Az,x) + By and (Az,z) = ¢,
by the strict concavity of hy. Since f(t) < ast+ g5 for t € (m, M), the former holds
if and only if z is a linear combination of eigenvectors e,, and ej; corresponding to

m and M, respectively. We may write z = /1 — s%e,,, + seps for some s € [0,1]. So
we have

—————f(u’\o)[ —br _ tr = (Az,z) = (1 — $*)m + s*M = (M — m)s* + m,
f
or s2 =1 ("&)J_jrfl = ’;w‘f = f,((‘ﬁ)):}c%)) and hence z is of form (2.4). On the other hand,

if z = z5(A) in (2.4), then we have

P (A5 ), 25 (0)) = Mz (), 2,(0)
(G — pon S Em) N
= 1 (a0 - sy FEI=II 4 fomy ) -3 (01 - m)
f(/h\)-f(m)"‘maf/\:ul\_ f(M/\)—ﬂf)\.
arf Qay

We suppose (i), i.e.,, 0 < A < f(_j)(cﬁ) Since h,(t) is strictly concave,

F(us) — f(m)
FO = f(m) © ’")

min{a{" (m), 7 (M), B () :m <t < M}
— h(—) M) = arf N = arf
VM= e gy N T Foan
Hence hy(t) is strictly increasing in [m, M]. Then we have
max ha(t) = ha(M) = £~ (ayM + B7) = AM = f(F(M)) = AM = (1 = \)M,

m<t<M :

- A>0.

Moreover we suppose that
Y {f(A)zx, ) — MAz,2) = f (o (Az, ) + Bf) — MAz,z) = (1 — A)M,

for some unit vector . Since hy({Azx,z)) = h\(M), we see that (Az,z) = M and
so z is an eigenvector for M.

We suppose (iii), i.e., A > f(—f;{m—) Then we see max{h{" (m), h{ (M), h{E(¢) :

m <t < M} <0. So the maximum of h,(t) attains at ¢ = m, and we have
max hy(t) = ha(m) = (1 — A\)m.

m<t<M
Moreover we suppose that
FH{(f(A)z, 7)) = MAz,z) = (1 = X)m
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if and only if z is an eigenvector for m by a similar way to (i). O

Under the same assumptions in Theorem 2.2, we denote the secant through two
points (m, f(m)) and (M, f(M)) as y = ayst + B . Suppose mM > 0. Since f(t)
is strictly convex, there exists a unique tangent line of the graph y = f(¢) through
(0, By)

y = f(vs) + fOvs)(t — vy)
where (v4, f(vf)) is the point of tangency and fO(v) := Wi Since we see that
v; € [m, M|, the equation 35 = f(v) — f°(v)v has a unique solution v = vy.
By using the above fact we give explicit estimations of the ratio and difference of

7 ({f(A)z, z)) by (Az,z).

Corollary 2.3. Suppose the hypothesis of Theorem 2.2.
(i) Suppose mM > 0. Then the ratio inequality

25)  F(f(A),2) < Mldz,z)  (resp. f((F(A)z, 7)) > As(Az,2))

holds for all unit vectors ¢ € H where Ay := ?og(’fw—) € Iy is a unique solution of
F(\) := F(m,M, f,\) = 0 (resp. G(A) := G(m,M, f,\) = 0). Moreover the
equality of (2.5) holds if and only if both m and M are eigenvalues of A and x =
zf(Ay) where x = x4(-) is defined in Theorem 2.2.

(ii) The difference inequality

£ (A ) — (A < g — L) =P
0 f( )f— Br\
(resp- T ({f(A)z, z)) — (Az,z) > 11 — _/flaf_i)

holds for all unit vectors x € H where p = py € (m, M) is a unique solution of the
equation fO(u) = ay. Moreover the equality of (2.6) holds if and only if both m and
M are eigenvalues of A and and z = z¢(1) where x = x4(-) is defined in Theorem
2.2.

Proof. We only prove the case that f(t) is convex. It follows from 0 < f(H)(m) <
ay < fO)(M) that we may consider the case A € Iy to estimate f~! ((f(A)z,z)) by
(Az,z) in (2.3). Indeed, we see A # 1 and F(\) # 0 in other two cases.

We put Ay := F?(% € I;. It implies that there exists a unique solution p =

px, € [m, M] such that fO)(u) < %f < f) (). Moreover the inequality f(~)(u) <

f(vs) < f®)(u) has a unique solution = vys. So it implies that py, = v and
hence

f(pay) ﬂf)\f —y— flvr) =Br _ .
of fOo(vy)

Hence (2.5) is ensured by (2.2). Next the difference inequality (2.6) is obtained
by A = 1 in (2.2), in which we remark 1 € Iy and u; € (m,M) by the mean
value theorem. Furthermore, equality conditions of inequalities (2.5) and (2.6) are
obtained by (2.4). a

F(m,Mafv)‘f):“’)\f—
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3. APPLICATIONS FOR THE POWER FUNCTION

We consider applications of Theorem 2.2 to the power function f(t) = t? (¢t > 0)
for p > 0. Here we cite the Holder-McCarthy inequality [18]: For p > 1 (resp.
0<p<1)

(3.1) (APz,z) > (Az,z)? (resp. (APz,z) < (Az,z)P)

(cf. [6], [8], [17]). We give a complementary inequality of (3.1), that is, the following
estimation of a difference (APx, z)'/P — A\(Az, z) for each )\ > 0. As a matter of fact,

we concentrate the case of A\ € I, = I» spanned by —h,,—l(h—ﬁ and p’ZZ i)

Theorem 3.1. Let A be a positive operator on a Hilbert space H such that0 < m <
A < M for some scalars m < M and h := %’{—(> 1). Ifp>1(resp. 0 <p< 1), then
for every A € I,

b 2 W —h [ (K(h,p)\7T
(Ax,m)p—A(Ax,m)Smm~1{< X ) —/\}

(TeSp' (APz, )5 — N(Az,z) > m’}t;:fll {(K(’;,p))ﬁ - ,\}>

holds for all unit vectors x € H where K(h,p) is defined by (1.7).

Moreover the equality of (3.2) holds if and only if both m and M are eigenvalues
of A and

(3.2)

(3.3)

T = zp(A)

- hﬂl—l{"’”“(ﬁh{h———}ﬁﬁ}em* hpl—l{(pf:h_—lloﬁ"l}w

where e, and epr are corresponding unit eigenvectors to m and M, respectively.

Proof. We suppose p > 1 and replace f(t) by t? for all ¢ > 0 in Theorem 2.2. Then

we have oy = Mp‘mp (_ P’lhp 1) By = Mmp‘mMp (— m”h hp) and I, := Iy =
[ph,,'f;(,}_l), p’(lz_i)] For each A e I, it follows that the equation (uP) = mi”_1 /\’(’2_1)
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1
has a unique solution yu = uy :=m (%—11—)) P (€ [m, M]), and

1

Cfua) = Bry =1\  h—1/( -1 \T h-—h?
PR P Vo) A =i\t n) w1
p—1 WP — 1 ﬁ h—h?
T pA(h —1) T —1

=m};:?[{<§_;p;1) (v fpl)_(zo—l))}p_hd}
L) {(K(hp) )\}
h? —1

which gives (3.2).
Moreover, since we have

f(M) — f(m) MP —mp pA(h—1)

f) = fomy ™ (Hn) ™ 4 {( N )*1_1}
h?r — 1 )

the equality condition is given in (3.3) by (2.4).
We can apply a similar discussion to the above in the case of 0 < p < 1. O

Comparing with our previous result [23, Corollary 2], the equivalent condition
(3.3) that the equality of (3.2) holds, is added. The following ratio inequality and
difference one were shown by Furuta [8] and Izumino [16], respectively. They are

obtained as a corollary of Theorem 3.1 by the facts that A\ = K(h, p)%(e I,) is a
=1
unique solution of the equation (ﬂ:—pl) —A=0and 1€,

Corollary 3.2. Assume that the conditions of Theorem 3.1 hold and p > 1 (resp.
0<p<l).
(1) The ratio inequality

(3.4)  (APz,z)% < K(h,p)?{Az, z) (resp. <Apx,x>%zK(h,p)%<Ax,x))

holds for all unit vectors x € H where K(h,p) is defined by (1.7). Moreover the
equality of (3.4) holds if and only if both m and M are eigenvalues of A and

z = z,(K(h,p)?)

B 1 (L k) 1 1 W—h_,
w1 h—1p-1)" " \\w_1\h—-1p-1 M-
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(ii) The difference inequality

3=

h? — h 1
p —_ — p—1 —
(APz, ) — (Az,x) < M 1 (K(h,p) 1)

(3.5)

1 h? — h 1
p ; —_ p—1 —
(resp. (A x, ) (Az,z) > m — (K(h,p) 1) )

holds for all unit vectors x € H where K(h,p) is defined by (1.7). Moreover the
equality of (3.5) holds if and only if both m and M are eigenvalues of A and

z = zp(1)

e o ) e R (R

We have the following result which is given in [25] as a modification of [20, Corol-
laries 7 and 15]:

Corollary 3.3. (Yamazaki [25]) Let A be a positive operator on H such that 0 <
m < A< M for some scalars m < M and h = An’{—(> 1). Then
(i) The ratio inequality

(3.6) (APz, )7 < K (R, Z:-)%(Arx, z)?
holds for p > r > 0 and all unit vectors x € H.
(ii) The difference inequality

h? — h
h—1
holds for p > 1 and all unit vectors x € H.

(3.7) (APz,z) — (Az, z)? < mP {K(h, p)ﬁ - 1}

Proof. In (3.4) we replace A and p by A" and &, respectively. Then we have (3.6).
In (3.5) we replace A and p by AP and %, respectively. Then it follows from the
inversion formula [2, Lemma 4] that

P‘% __ hP 1 1
e, = (wona) 2wt (K, T 1)

hPs — 1 p
h? — h 1.2
= — p P -pP —
mP——s (K(h,p)1 1)
h? — h 1
— P =7 _
=-—mPo— (K(h,p) 1 1).

Therefore we have (3.7). O
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4. APPLICATIONS FOR LOGARITHMIC AND EXPONENTIAL FUNCTIONS

We consider applications to the logarithmic function f(t) = logt in Theorem
2.2. Here we note that for a unit vector x € H, the determinant exp((log A)z, x)
for all positive invertible operators A is defined by J.I. Fujii and Y. Seo [3]. The
determinant is considered as a continuous (weighted) geometric mean (with the
weighted ). The following inequality is a variational expression of the arithmetic -
geometric mean inequality:

(4.1) exp((log A)z,z) < (Az,z).

We give a complementary inequality of (4.1), that is, a lower bound of a difference
exp((log A)z,z) — A{Az,z) for each A > 0. For the sake of convenient, we use the
logarithmic mean

M—-m

(4.2) L(m, M) i= 3o

and L(m,m):=m
for all 0 < m, M.

Theorem 4.1. Let A be a positive invertible operator on a Hilbert space H such
that 0 < m < A < M for some scalars m < M and h := 2(> 1). Then for each

X € Tog = | piatsgy» T
(4.3) exp{(log A)z, z) — \(Az,z) > —AL(m, M) log(AS(h))

holds for all unit vectors x € H where L(m, M) and S(h) are defined by (4.2) and
(1.4), respectively.

Moreover the equality of (4.3) holds if and only if both m and M are eigenvalues
of A and

. log (AL(1, h)) log (AL(1, h))
(4.4) T = Tiog(A) := \/1 - Tog em + \/ Togh em

where e, and ep; are corresponding unit eigenvectors to m and M, respectively.

Proof. We replace f(t) by logt in Theorem 2.2. Then we have af = L(m, M),
By = —A@%ZZ—I"&M and Iy = I,,. For every A € I, the equation (logpu) =
(AL(m, M))™! has a unique solution u = py = AL(m, M)(€ [m,M]). Hence we
have

My — M)\ = AL(m,M) — AL(m, M) (log()\L(m, M)) —

Mlogm — mlog M
ag

M-m
e(log M — log m)mvﬂ—%

= )\L(m, M) log L
AM —m)M¥-=
_1_
— AL(m, M) log 31)-‘:%-1—"— = ~AL(m, M) log(AS(h))
=)

which gives (4.3).
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Moreover, since we have

f(w) — f(m) _ log(AL(m, M)) —logm _ 1 1g( h—l)_ L 10s (AL, R)),

f(M)— f(m) log M — logm _logho )\logh ~ logh

the equality condition is given in (4.4) by (2.4). O

The following ratio inequality and difference one with equality conditions were
shown in [5] and [3], respectively. They are obtained as a corollary of Theorem
4.1 by the facts that A\ = S(h)™!(€ L) is a unique solution of the equation
—L(m, M)log(AS(h)) = 0and 1 € Liog. The constant L(m, M)log S(h) which is rep-
resented in the difference inequality is called the Mond-Shisha difference (cf. [3], [4], [12], [21]).

Corollary 4.2. Assume that the conditions of Theorem 4.1 hold.

(i) The ratio inequality

(4.5) exp((log A)z,z) > S(h)"'(Az, z)

holds for all unit vectors z € H. Moreover the equality of (4.5) holds if and only if
both m and M are eigenvalues of A and

h 1 1 1
_ -1y _ _ —_—
7= aen S0 = \/h 1 logh \/logh =1

(ii) The difference inequality
(4.6) exp((log A)z, z) — (Az,z) > —L(m, M)log S(h)

holds for all unit vectors x € H. Moreover the equality of (4.6) holds if and only if
both m and M are eigenvalues of A and

. . log L(1, h) [log L(1, h)
r = xlog(l) = \/ Tgh,_em + IOgh EnN.

We give an upper bound of a difference log(e4z, ) — A\(Ax,z) for each A > 0.
Ando, Hiai and Petz used this type inequality in [1] and [14]. We need a 2-variable
extension of the Specht ratio defined by

= e*
(4.7) S(hyA\) = ——— forh>0,A>0 and = S(1,A):=—.
elog h*—1 Ae

Theorem 4.3. Let A be a selfadjoint operator on a Hilbert space H such that m <

A < M for some scalars m < M. Then for each A € Iyxp := [CA‘}A{A;G_";”), e,‘ffa;i';)] .

(4.8) log(e?z, z) — MAz, z) < log{e=MmS(eM~™ \)}
holds for all unit vectors x € H where S(h, \) is defined by (4.7).
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Moreover the equality of (4.8) holds if and only if both m and M are eigenvalues
of A and

eM-m 1 1 1
(4.9) 2 = Zexp(Y) = \/eM—m “1 AM-m)™ M \/)\(M —m)  eM-m_1M

where e, and ep; are corresponding unit eigenvectors to m and M, respectively.

Proof. If we replace f(t) by €' in Theorem 2.2, then we have a; = e:;:f:, Bf =
Me™ —meM eM_em

M-m v A(M—m)
unique solution p = p := log 5 M__e;n") (€ [m, M]). Hence putting h := eM~™ we

have

has a

and Iy = I, For every A € I, the equation '(e“)’ =

f(pr) — By eM —em Me™ — meM

Al Vit i W PO [ Wb N it

e oy A=log A(M —m) + eM — em A
A
(h —1)e™ M—-m em(I-Npr=T 1o

= log =2 —m)A=1 — log{e@=Nmg(h )

8 Xelogh h—1 ™ 08 eloghﬁ og{e S(h, M)},

which gives (4.8).
Moreover, since we have
eM_em m
flur) — f(m)  x(pr=m) — € 1 1

FM)=f(m) ~ ~eM—em ~ X(M-m) eM-m—_1’
the equality condition is given in (4.9) by (2.4). | 0

Next we see that for mM > 0 the equation log{e~Y™S(eM~™ X)} = 0 has a
unique solution A = Aexp (€ Iexp), and moreover 1 € I,,. So we have the following
corollary:

Corollary 4.4. Assume that the conditions of Theorem 4.3 hold.
(i) Let mM > 0. Then the equation eA~Y™S(eM~™ X) = 1 has a unique solution
A = Aexp(€ Iexp), and the ratio inequality

(4.10) log(e, T) < Aexp(AT, T)

holds for all unit vectors x € H. Moreover the equality of (4.10) holds if and only
if both m and M are eigenvalues of A and

T = Texp(Aexp) = M = em+ = ! e
— Jdexp\Nexp) — e1\4’__"1‘_1 Aexp(M—m) m Aexp(M_m) eM—-m_l M-

(ii) The difference inequality
(4.11) log{e“r, z) — (Az, z) < log S(eM™™)
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holds for all unit vectors x € H. Moreover the equality of (4.11) holds if and only
if both m and M are eigenvalues of A and

R 1 N T
TR T eM-m 1 (M——m)em (M —m) eM-m _ 1M

Remark 4.5. Taking m = 0 in (4.10), we have A = Aexp = eAjW_I as the solution
of the equation log{e~Y™S(eM~™ X\)} = 0. Hence the following ratio inequality
related to (4.10) holds:

eM—1

M

log{ez, z) < (Az, ).
- Replacing A and X\ with log A and g, respectively in Theorem 4.3, we have the
following result by Furuta and Giga [11]:

Corollary 4.6. (Furuta and Giga [11, Theorem 5.1]) Let A be a positive invertible
operator on H such that0 < m < A < M for some scalarsm < M and h = —477’{—(> 1).
Then

(4.12) Sh(p, q) exp{(log Az, z) > (APz,x) (> exp((log AY)z, x))
hold for all unit vectors x and all p,q > 0 with q < }llcfg_f:tl < gh? where
(4.13) Sh(pyg) = o
. ,q) i=mP Tl — ————,
mp g elog R

The constant Si(p, q) (= mP~IS(hP, %)) has been already appeared in [19].
Concluding this section, we give reverse inequalities of the inequality

(4.14) log(Az,z) > ((log A)z, x)

for all unit vectors x and a positive invertible operator A.

Corollary 4.7. Let A be a positive invertible operator on H such that 0 < m

A < M for some scalars m < M and h = (> 1). Then for each A € I,
[L(m,M) L(m,M)]
i .

1 IA

(4.15) log(Az, z) — M (log A)z, z) < log{m'™*S(h,\)}

holds for all unit vectors x € H, where S(h,)) is defined in (4.7). Moreover the
equality of (4.15) holds if and only if both m and M are eigenvalues of A and

h 1 i i
4 _ _ _ _
(4.16) v \/h—l Nogh® +\/)\logh h_1oM

where e,, and ey are corresponding unit eigenvectors to m and M, respectively.

In particular, the following inequalities hold:
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(i) The ratio inequality
(4.17) log{Az, z) < Aog((log A)z, z)

holds form > 1 or 0 < M < 1 and all unit vectors x € H where A = Aog(€ Iiog) 1S
a unique solution of the equation m*~*S(h,\) = 1. Moreover the equality of (4.17)
holds if and only if both m and M are eigenvalues of A and

h 1 1 1
(4.18) ""\/h—1 _Alogloghe'"+\/Aloglogh-h—leM

where e,, and ep are corresponding unit eigenvectors to m and M, respectively.

(ii) The difference inequality
(4.19) log(Az,z) — ((log A)z,z) < log S(h).

holds for all unit vectors x € H. Moreover the equality of (4.19) holds if and only
if both m and M are eigenvalues of A and

h 1 1 1
(4.20) = \/h 1 logh™ \/m ThR_IM

where e, and ep; are corresponding unit eigenvectors to m and M, respectively.

Remark 4.8. We obtain (4.5) by taking exponential in both sides of (4.19). Inci-
dentally (4.19) has been given in [7).

5. FURUTA-PECARIC INEQUALITY

From the convexity of tlogt, the Jensen inequality implies
((Alog A)z,z) > (Az, x) log(Az, z)

for all unit vectors x and positive invertible operators A. In [13], Furuta and Pecari¢
showed the following difference inequality as a reverse inequality of it:

Theorem FP. (Furuta and Pecari¢ [13]) Let A be a positive invertible operator
on a Hilbert space H such that 0 < m < A < M for some scalars m < M and

h:= (> 1). Then the difference inequality
(5.1) (Az, 7) log(Asz, z) — ((Alog A)z,z) > —_L(TMh—)(S(h) ~1)

holds for all unit vectors x € H where S(h) is defined by (1.4).
From the viewpoint of the quasi-arithmetic mean inequality (1.5), we give an

estimation of a difference (Az, z) log(Az, z) — A\((Alog A)z, z) which is an extension
of Theorem FP. Moreover we discuss the case the equality holds for the obtained

. . . R21

lity. For the sake of , Il (4.7); S(h,A) := 2 h >
inequality. For the sake of convenience, we recall (4.7); S(h, ) Toan (
0, > 0) and S(h,1) = S(h) in particular.
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Theorem 5.1. Let A be a positive invertible operator on a Hilbert space H such
that 0 < m < A < M for some scalars m < M, h = %(> 1) and I, :=

['L—(};’ﬂ, I“—(-}z—hz 10g(eh)] . Then for each X € I

(Az, z) log(Az,z) — A{(Alog A)z, )
(5.2) AM
) > —_ —_——— —_
> (1= X)(logm)(Az, x) L) ("7 S(h,A) — 1)
holds for all unit vectors x € H.

Moreover the equality of (5.2) holds if and only if both m and M are eigenvalues
of A and

hh_'\—h—l/e—m h%—h'l/e-—m

(53) r = xo(A) = \/1 ———hj-l——-—em + h_1 EnM

where e, and ep; are corresponding unit eigenvectors to m and M, respectively.

Remark 5.2. Since 1 € Iy in Theorem 5.1, we obtain Theorem FP by putting
A =11n (5.2), and that the equality of (5.1) holds if and only if both m and M are
eigenvalues of A and

h h
_ h*T1/e —m h*1/e —m
(5.4) x-—\/l P em + M

where e, and ep; are corresponding unit eigenvectors to m and M, respectively.

For the proof of Theorem 5.1, we show the following lemma which represents a
lower bound of a difference (Az, x) log{Az,z) — A\((Alog A)z,z) under 1 <m < A <
M:

Lemma 5.3. Let A be a positive invertible operator on H such that 1 <m < A <
M, h= 4"{—(> 1) and I, := [—E% —MB—] Then for each A € I

log(MRF=T) log(MhF~T)
_ AM
(1, h)

(5.5) (Az, z) log(Az,z) — A((Alog A)z, z) > (M*1S(h,A) = 1)

holds for all unit vectors x € H.

Moreover the equality of (5.5) holds if and only if both m and M are eigenvalues
of A and

_ _ (Mh*1)X Je —m (MhF=1)X fe —m
(5.6) x—ml()\).—-\/l—— U = em+\/ = em

where e, and eps are corresponding unit eigenvectors to m and M, respectively.

Proof. We put fi(t) := tlogt for allt > 1. Moreover in Theorem 2.2, we replace f(t)
and A by fi° 1(¢t) and Alog A, respectively. Then we see that (f; 1) (f1(t)) = (fi(¢))™?
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and f{(t) = logte. So we have ay = {1og(Mh_h11)}—1, Bs = f"“‘l’wh and I; = I;. For
g T
every A € I; the inequality (2.2) is represented as follows:

(Az, z) log(Az, z) — A(Alog Az, x) > pyloguy — %&)\
f

where p = p € [m, M] is a unique solution of the equation (fi')(ulogp) =
More precisely, we investigate the right side of the above inequality. The equation

(fl—l)’(ﬂ log p) = a—,\'ﬁ ensures log ue = % and so

21 (MhF)

p= px = e S (€ [m, M)).
Hence we have
A
_ _A__ —
palog s — 2Py _ l(i—l)-——ﬁ,\—— ﬂf,\
(Mh#=1)*  log(Mh#*1)- Mlogh
= — + o A
€ lOg e
M (A= 1)MAREE .
~ L(1,h) AMelogh
- M
= — M 1 -
which gives (5.5).
The equality condition is given in (5.6) by (2.4). O

Proof of Theorem 5.1. In Lemma 5.3, we replace A by %, that is, 1 < A < h,
and the interval I; is corresponding to Iy. So by (5.5) we have for A\ € I

(Raeoe{ )5 (e )
= — {(Az,7)(log{ Az, 2) — log m) — A({(Alog A}z, 2) — (logm){Az, 2)}

_ %{(Aw, z) log(Az, 7) — M(Alog A)z, z) — (1 — A)(log m)(Az, )}

Ah
> — r*1S —1).
Hence we have the desired inequality (5.2). O

Next we note that the equation — L(l 7 (M>~18(h,A)—1) = 0 has a unique solution
A= A1 (€ I). So we have the following corollary:
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Corollary 5.4. Under the same assumption of Lemma 5.3, the ratio inequality
(5.7) (Az, x)log(Az,x) > A {(Alog A)z, x)

holds for all unit vectors v € H where \ = Ai(€ 1) is a unique solution of the

equation —L’(\fi) (M*~18(h,\) — 1) = 0. Moreover the equality of (5.7) holds if and

only if both m and M are eigenvalues of A and

MRF1)M Je —m MRh=1)M /e —m
(5.8) z=1z;(\) := \/1 _{ M)—éz em + ( M)_; em

where e, and epr are corresponding unit eigenvectors to m and M, respectively.

If m = 1 in Corollary 5.4, then we have \; = EQMl) So the following reverse of
the Jensen inequality is obtained:

(5.9) (Azx,z)log(Az,z) > %Ml((A log A)z,z) for all unit vectors z € H.
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