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ON GENERALIZED MANNHEIM CURVES IN
EUCLIDEAN 4-SPACE

HIROO MATSUDA AND SHINSUKE YOROZU

ABSTRACT. We give a definition of generalized Mannheim curve in Euclidean
4-space E*. We show some characterizations and examples of generalized
Mannheim curves.

1. Introduction

A regular smooth curve C' in Euclidean 3-space E? is called a Mannheim curve
if there exist another regular smooth curve C’, distinct from C', and a bijection
¢:C — C such that the principal normal line at each point of C is the binormal
line of C' at the corresponding point under ¢ ([2], [3], [4], [6]). Then C is called a
Mannheim mate curve of C. It is well-known that a regular smooth curve C' in E? is
a Mannheim curve if and only if its curvature function £, and its torsion function ko
satisfy the equality ky = af{(k1)? + (k2)?} on each point of C', where « is a positive
constant number ([2], [3], [4], [6]).

In the present paper, we try to construct a notion of Mannheim curve in E*.
That is, we give a definition of generalized Mannheim curve in E*. We prove some
characterizations of the generalized Mannheim curve and we show examples of gen-
eralized Mannheim curves in Euclidean 4-space E*. We take “smooth” to mean “of
class C>”

2. Mannheim curves in E®

In many books, it is described that a regular smooth curve in E? is a Mannheim
curve if and only if its curvature function k; and its torsion function ks satisfy the
equality k; = af(k1)? + (k2)?} on each point of the curve, where «a is a positive
constant number. But, a formula of parametric equation of Mannheim curve in E3
is not described. We found that Eisenhart’s book ([2]) had given us a formula of
parametric equation of Mannheim curve in E? as follows:
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Theorem 2.1 ([2, p.51]) Let C be a curve defined by

[ a/ h(u) sinu du

x(u) = a/h(u)cosudu , ueUCR.

o / h(u)g(u) du

Here R denotes the set of all real numbers, « is a positive constant number, g : U —
R is any smooth function and h : U — R s given by

{1+ (g(w)* + (9()*} + {1 + (9(u)*}*{§(u) + g(u)}*
{14 (9(u))?}2{1 + (9(w))? + (9(u))? 2 ’

here the dot (") denotes the derivative with respect to u. Then the curvature function
k and the torsion function T of C satisfy

h(u) =

on each point x(u) of C.

Remark 2.1 (1) If g(u) = ¢ (constant), then h(u) = 1. Thus the curve C is a
circular helix.
(2) If g(u) = tanu (=% <u < %), then a Mannheim curve C is given by

i / (5 + 3 cos?u) cosusinu
a u

(1 + cos? u)5/?

B (5 + 3cos?u) cos* u
x(u) = a/ (1 + cos? u)>/2 du ’

/ (54 3cos® u) sinud
a u
(1 + cos? u)5/? _

where « is a positive constant number.
(3) If g(u) =sinhu (u € R), then a Mannheim curve C is given by

/ 1+cosh w) smud

U
cosh? u

x(u) = / 1+cosh22 cosudu ’
cosh” u

/ (1+ cosh? u )sinh u
5 du
\/_ cosh” u ]

where « is a positive constant number.



3. Special Frenet curves in £*

Let C be a regular smooth curve in Euclidean 4-space E* defined by x: L 3 s —
x(s) € E*, where L denotes a subset of the set R of all real numbers, and s is the
arc-length parameter of C'. The curve C'is called a special Frenet curve if there exist
three smooth functions ki, ks, k3 on C' and smooth frame field {e;, e,, e3, €4} along
the curve C such that these satisfy the following properties:

e The formulas of Frenet-Serret holds:

ei(s) = x/(s)

ej(s) = ki(s)ea(s)

ey(s) = —ki(s)ei(s) ka(s)es(s)

es(s) = —ka(s)ex(s) k3(s)ea(s)
ey(s) = —ks(s)es(s)

for s € L, where the prime ( 7 ) denotes differentiation with respect to s.
e The frame field {eq, e, €3,€,} is of orthonormal positive orientation.
e The functions k; and ko are of positive, and the function k3 doesn’t vanish.

e The functions ki, ks, and k3 are called the first, the second, and the third
curvature function of C| respctively. The frame field {e;, ey, e3,e4} is called
the Frenet frame field on C'. We refer this notion to [§].

Remark 3.1 For s € L, the frame field {eq, e, €3, €4} and curvature functions ky,
ko and k3 are determined by the following steps:
(1st step)

e(s) :=x(s).
(2nd step)
ki (s) == He'i(S)H >0,
e (s) == i) e (s).
(3rd step)
ka(s) == He%( s) + ki(s) - ex(s)]| > 0,
e3(s) == o (s) - (e5(s) + ki(s) - ex(s)).
(4th step)

1 , .

es(s) :=¢- ) T Tals) )] (e5(s) + ka(s) - ea(s)) (e = £1), and sign of €
is determined by the fact that the orthonormal frame field {e;(s), es(s), e3(s), es(s)}
is of positive orientation, and

ks(s) := (€5(s),es(s)), and the function k3 doesn’t vanish.
In order to make sure that the curve C' is a special Frenet curve, we must check the
above steps (from (1st step) to (4th step)) for s € L.




At each point of C, a line ¢; in the direction of e, is called the first normal line, a
line /5 in the direction of ez is called the second normal line, and a line /3 in the
direction of ey is called the third normal line. We remark that, at each point of a
curve in Euclidean 3-space E2, the first normal line and the second normal line are
called the principal normal line and the binormal line, respectively.

4. Generalized Mannheim curves in E* and results

We already had a generalized Bertrand curve in E* ([5]). By the same idea, we have
a generalization in E* for the notion of Mannheim curve in E3.

Definition 4.1 A special Frenet curve C' in E* is a generalized Mannheim curve if
there exists a special Frenet curve C' in E* such that the first normal line at each
point of C' is included in the plane generated by the second normal line and the
third normal line of C' at corresponding point under ¢. Here ¢ is a bijection from
C to C. The curve C is called the generalized Mannheim mate curve of C.

Hereafter, a special Frenet curve C' in E? is parametrized by the arc-length
parameter s, that is, C'is given by x : L 3 s — x(s) € E*. Let C be a generalized
Mannheim curve in 4. Then, by the definition, a generalized Mannheim mate curve
C is given by the map % : L — E* such that

x(s) =x(s) + a(s) -exs), seL, (4.1)

where « is a smooth function on L. We remark that the parameter s generally is
not an arc-length parameter of C'. Let § be the arc-length of C' defined by

L / dx(s)

ds
We can consider a smooth function f: L — L given by f(s) = s. Then we have

f'(s) = V{1 —als) - ku(s)}? + {a/(s)}2 + {als) - ka(s)}?

for s € L. The representation of C by arc-length parameter s is denoted by x : L>
5 x(8) € E*, here we use the same letter “X” for simplicity. Then we can simply
write

‘ ds.

X(f(s)) = x(s) + as) - ex(s)
for curve C, and a bijection ¢ : €' — C'is given by ¢(x(s)) = %(f(s)). This notation
is used in section 5. Thus we have
dx(f(s)) _  dx(3)
ds

for s € L.
In the present paper, our results are Theorems 4.1, 4.2, 4.3, 4.4, and 4.5.



Theorem 4.1 If a special Frenet curve C' in E* is a generalized Mannheim curve,
then the first curvature function ki and second curvature functions ko of C' satisfy
the equality:

ki(s) = af(ki(s)) + (ka(s))’}, s € L, (4.2)

where « 1s a positive constant number.

Theorem 4.2 Let C be a special Frenet curve in E* whose curvature functions k;
and ky are non-constant functions and satisfy the equality: ki(s) = af{(ki(s))?* +
(ko(s))?}, s € L. Here « is a positive constant number. If the curve C' given by
x(s) = x(s) + o - es(s),s € L is a special Frenet curve, then C is a generalized

A

Mannheim curve and C' is the generalized Mannheim mate curve of C.

Remark 4.1 For a special Frenet curve C' with (4.2), it is not clear that the smooth
curve C given by (4.1) is a special Frenet curve. It is unknown whether the reverse
of Theorem 4.1 is true or false.

Theorem 4.3 Let C be a special Frenet curve in E* such that its third curvature
function ks doesn’t vanish. The curvature functions ki and ko of C' are constant
functions if and only if there exists a special Frenet curve C in E* such that the first
normal line at each point of C is the third normal line of C at corresponding each
point under a bijection ¢ : C' — C.

Remark 4.2 In n-dimensional Euclidean space, curves with constant curvatures
are given in [1].

The following theorem gives a parametric representation of generalized Mannheim
curves in E*. We have this theorem under the referee’s advice.

Theorem 4.4 Let C be a curve defined by
a/f(u)sinudu
a/f(u)cosudu

x(u) = , ueUCR.
o / £ (w)g(u) du

a/ f(u)h(u) du |

Here o 1s a positive constant number, g and h are any smooth functions : U — R,



and f:U — R is given by
fu)
= (1+ (9(w)* + (h(u)?)

for w € U. Here the dot ("~ ) denotes the derivative with respect to u. Then the
curvature functions ki and ko of C satisfy

ki(u) = af (ki (u)* + (ka(u))*}
on each point x(u) of C.

Let C be a generalized Mannheim curve in E*, and let e; be the second vector
field in the Frenet frame field along C'. We can consider a ruled surface S in E* by
the curve C' and the first normal lines of C. Let S be a surface in E* defined by
X : LxR — E* where X(s,t) = x(s) +tes(s). The ruled surface S is generated by
the motion of a straight line (first normal line) ¢ along the curve C. The curve C' is
called the directrix (or base curve) of S, and a straight line ¢ is called a generating line
(or generator, ruling) of S. We remark that the ruled surface S is, as a submanifold
in £*, not a totally geodesic submanifold in E*. The striction curve of S is defined
by

< x/(s),€5(s) >
A A
for s € L. The geometric meaning of the striction curve of a ruled surface is referred
to [4], [7] and [8]. Since C'is a genealized Mannheim curve in E*, we have

_ <X(s),€5(s) > _ —k1(s) .

les(s)l] (k1(s))? + (ka(s))?
Thus, by the definition of Mannheim mate curve, we easily prove the following
theorem:




Theorem 4.5 Let S be a ruled surface in E* such that its directriz is a generalized
Mannheim curve C' and its generating line is the first normal line of C. Then the
Mannheim mate C is the striction curve of S.

5. Proofs of Theorems

Let C be a special Frenet curve in E* whose Frenet frame field is denoted by
{e1, e, e3,e4}. Let ky, ko, k3 be curvature functions of C'. The arc-length parametriza-
tion of C'is given by x : L — E* (s — x(s)).

5.1. Proof of Theorem 4.1

Let C' be a generalized Mannheim curve in E*and let C be the generalized Mannheim
mate curve of C. The curve C'is reparametrized by x(s) = x(s) 4+ a(s) -ea(s), where
a:L>s— afs) € Ris asmooth function. A smooth function f: L > s+ f(s) =

§ € L is defined by f(s) = / dx(s)
0

ds

parameter of C', and the bijection ¢ : C'— C'is defined by ¢(x(s)) = %(f(s)). Since
the first normal line at each point of C' is included in the plane generated the second
normal line and the third normal line of C' at corresponding point under a bijection
¢, for each s € L, the vector eq(s) is given by linear combination of é3(f(s)) and
€4(f(s)), that is, we can set ex(s) = g(s)-e3(f(s)) +h(s)-es(f(s)) for some smooth
functions g and h on L.

We differentiate both sides of equality: x(f(s)) = x(s)+ a(s)-ex(s) with respect
to s. Then we have

ds = 5. We remark that 5 is the arc-length

for s € L. Let <, > denote the inner product of vectors. By the fact:

< @€1(f(5)), g(s) - €3(f(s)) + h(s) - €a(f(s)) >= 0,

we have o/(s) = 0 for any s € L so that the function « is of constant, say «. Thus
we have

f'(s) - €1(f(s)) = (1 — aki(s)) - ex(s) + aka(s) - es(s),
that is,

o (F(s)) — 1 —aki(s) aks(s)
1(f( )) f/<8)




where f'(s) = \/(1 — aki(s))? + (akso(s))? for s € L. By differentiation of both sides
of the above equality with respect to s, we have

PR (F(s) - 2(/(5))
(1 —ak(s) ,-e .
‘( 705 ) 1(s)
(1 ok (hi(9) — alba(s)?)
*( 7(s) ) 2(s)

(D) e

(5

for s € L. By the fact:
< &(f(s)),9(s) - &s(f(s)) + h(s) - €s(f(s)) >=0,s € L,
we have that coefficient of e, in the above equation is zero, that is,
(1 — aki(8))k1(s) — a(ky(s)*=0,s € L.
Thus we have ki (s) = af{(ki(s))? + (k2(s))?} for s € L. This completes the proof.

5.2. Proof of Theorem 4.2
Let § be the arc-length of C. That is, § is defined by

§::t/“ dx(s)

ds
for s € L. We can consider a smooth function f : L 3 s — f(s) = § € L. By the
assumption of the curvature functions k; and ks, we have

Fi(s) = VL —a ki(s)? + (o ka(s))?
= 1 —a-ki(s)

’ds

for s € L. The representation of C by arc-length parameter § is denoted by x($),
here we use the same letter “X” for simplicity. Then we can simply write

x(8) = x(f(s))
= x(8)+ a-eys).
for curve C. This notation is used in subsections 5.2 and 5.3. Thus we have

dx(3) _ dx(s) s
ds ds |

= f(s)-e(f(s))




and

f'(s)-e(f(s)) = els)
+a{—Fki(s) - e1(s) + ka(s) - es(s)}
= (1 —aki(s))-ei(s) + aka(s) - es(s).

Thus, we have

e(f(s)) = V1-aki(s)-ei(s)
iait) -e3(s)

+—
1 — ak(s)

for s € L. We differentiate both sides of the above equality with respect to s, then
we have

dé (3)

7).

Since C' is a special Frenet curve, we have

dé(3)
ds

= h(f(5) - &2 (5))-
5=f(s)

Thus we have

F(8)ka(f(5)) - €(f(s))
= ( 1—ak1(s)) -e1(s)

+| V1= aki(s)ki(s) — M) - es(s)

1 — ak(s)
—ak2(s) | - €3S
+ (8)) (s)

1— Oékl
aks(s)ks(s)
+ N T akl(s)) -ey(s).



Under the our assumption, it holds

AV 1-— Oékl(S)kl(S) + L<S)(—ICQ(S))

1 — akq(s)
1
= ——(ki(s) — a(ki(s))? — a(ka(s))?
/—1—04]{1(5)( (s) = alki(s))” — alka(s))")

= 0.

We have that the coefficient of es(s) in the above equality vanishes. Thus, for each
s € L, the vector éx(f(s)) is given by linear combination of e;(s), es(s) and ey(s).
And, as above, the vector &;(f(s)) is given by linear combination of e;(s) and e3(s).
Since the curve C'is a special Frennet curve in E*, the vector e,(s) is given by linear
combination of é3(f(s)) and é,(f(s)).

Therefore, the first normal line at each point of C' is included in the plane gener-
ated the second normal line and the third normal line of C' at corresponding point
under ¢. Here the bijection ¢ : C — C is defined by ¢(x(s)) = %(f(s)). This

completes the proof.

5.3. Proof of Theorem 4.3

(i) Let C be a special Frenet curve in E* with the Frenet frame field {e;, s, e3, €4}
and curvature functions kq, ko and k3. The first curvature function and the second
curvature function of C' are of positive constant, say k; and ks, respectively. Thus

ky
—————— is a positive constant number, say . We define a regular smooth curve
(k7 + (7 P ' °

C by
X:Lw— B
and
x(s) =x(s) +a-eys), se€L.

Let $ denote the arc-length parameter of C, and let f: L — L be a function defined
by

§=f(s) = V(1 —ak)?+ (aky)?s

= /1 — ak;s.
Then we have f’(s) = /1 — aky, and

f'(s)-e1(f(s)) = eils)+a-eys)
(1 —aky)-ei(s) + aks - es(s),

that is,

N aks
el(f(s)) = \/ 1-— Oékl . 91(8) + \/1?04]{;1 . 63(8).



Defferentiating both sides of the above equality with respect to s, we have

de; () ks
g) . 2212 — /1 ok € _ T e
f'(s) & | aky - € (s) + 1= ok, es(s)

= (lvi=ak - 2B e
akaks(s)

vV 1-— Oék‘l . 84(8)
akgkg(S)

= ook o

Thus, since k3 doesn’t vanish, we have

~ dél(g) . Oékgkg(S)
k =||— = k3)————= > 0.
) = | S| =i TS
Here sign(ks) denotes the sign of the function ks, that is, if k3 is positive valued
function(resp. negative valued function) then sign(ks) = +1 (resp. —1) so that
sign(ks)ks(s) is positive for any s € L. We can put
1 deéi(s
on(s) = . B8 o p
ki(8)  ds

Then we have
€ (f(s)) = sign(ks) - eq(s).

By differentiation of the above with respect to s, we have

dé(3)

/ ——

= —sign(ks)ks(s) - e3(s)
8=f(s)
and we have
dés(3)
ds

+ k1 (f(s)) - €(f(s))
5=1(5)

Ozkigkig(s) )
Vi e1(s) — sign(ks)ks(s)\/1 — aky - e3(s).

Since sign(ks)ks(s) is positive for s € L,

= sign(ks)

ka(f(s))
_ d‘z;s) +Er(f(s)) - éﬂf(s))H
5=1(s)
a2k522(k3(8))2 2
_ \/1_—akl+(1—ak1)(k3(5))

(k3 (s))?
= sign(ks)ks(s) > 0.



Thus we can put
1 dey(s
es(f(s) = ( 25

CY]CQ
= el - Vi-aki-els)

for s € L. By differentiation of the above with respect to s, we have

k
= \/1—270‘/]{;1 . 82(8) — \/ 1— Oéklkg(S) : 94(8).
5=f(s) o

Since f'(s) = /1 — aky and ko(f(s)) - €x(f(s)) = ks(s) - es(s), we have

dé,(3) A _ R
]_—O./k‘l

7(s) - )

S

82(8).

Thus, taking note of (4th step) in Remark 2.1, we have é,(f(s)) = cea(s) for s € L,
where ¢ = +1. We must determine whether € is 1 or —1 under the condition that

the frame field {&;, €,, &3, €4} is of positive orentation.
We have, by det[ei(s), ea(s),es(s),es(s)] =1 for s € L.

det[ei(f(s)), €2(f(s)), €s(f(s)), €a(f(s))]
= det [\/1 — aky - e(s), sign(ks)es(s), —v/'1 — aky - e3(s), 5e2(s)]

ako . ako
Nierh es(s), sign(ks)es(s), Vi '81(8)7862(8)]

_ oky”
= szgn(kg)s((l —aky) + T Oi/ﬁ)

+det [

= sign(ks)e

and det[e;(f(s)),€2(f(s)),es(f(s)),es(f(s))] = 1 for any s € L. Thus we have

e = sign(ks). Therefore, we have

€4(f(s)) = sign(ks)ea(s)

and
ko
1— Oékl

) é4(f(5))> = sign(ks)
5=f(s)
for s € L.
By the above facts, Cis a spacial Frenet curve in E* and the first normal line
at each point of C is the third normal line of C' at corresponding each point under
the bijection ¢ : C' 3 x(s) — ¢(x(s)) = %(f(s)) € C.



(ii) Let C be a special Frenet curve in E* with the Frenet frame field {e;, €5, 3, e4}
and curvature functions ki, ky and k3. Let C be a special Frenet curve in E* with
the Frenet frame field {é;,é,,é3,€,4} and curvature functions kl, kz and kg We
assume that the first normal line at each point of C' is the third normal line of C'
at corresponding each point under a bijection ¢ : C' — C. Then the curve C is
parametrized by

x(s) =x(s) + a(s) - exs),s € L.
Let s be the arc-length parameter of C given by

s =

_ /OS V(1= a(s)ki(s))2 + (/(5))2 + (as)ka(s))2 ds.

Here f : L 3 s — f(s) = § € L. A bijection ¢ : C — C is given by ¢(x(s)) =
x(f(s)). Thus our assumption implies that é4(f(s)) = tes(s) for s € L.
Now, we have

f'(s)-ei(f(s)) = (L—als)k(s))-e(s)
+a/(s) - ea(s) + as)ka(s) - esz(s).

Taking the inner product of f(s) - é;(f(s)) and é4(f(s)), we have
< f'(s) - e1(f(s)), u(f(s)) >=0.

On the other hand, we have

< f'(s)-e(f(s)), es(f(s)) >
= (1 —a(s)ki(s)) - e1(s) + a'(s) - ea(s) + a(s)ka(s) - e3(s), tes(s) >
= +d/(s).

Thus «(s) = « for s € L, where o denotes a constant number. From this fact, we

have
F1(s) = /(1 — aki(s))? + (aks(s))2 > 0

= () i+ (38

We differentiate the above equality with respect to s, then we have
F(8)ka(f(5)) - €(f(s))
= (PO ey (Rl R o

and

Oy 71s)
R ()



By the fact:
< ['(s)k(f(s)) - &x(f(s)), es(f(s)) >= 0,5 € L,
it holds that
ki(s) = a{(ki(s))* + (ka(s))*} s € L
so that « is a “positive” constant number. Thus we have

e2(f(s))

= e () e

PR <af<(>)) “esle)

1 aks(s)ks3(s) Ceuls
e () el

for s € L. Here we set K(s) = ki(f(s)),s € L. By differentiation of the above
equality with respect to s, we have

Fi(s){—ki(f(s)) - & <<>>+k2 £(s)) - &s(f(s)}
N K

U (e )}’
s (528
+{ F'(s (ak? ))
g

(7m
<f’<s>1f<<s> (ab}'()f)g(s >) f’(kffs(( ) (afk<()>>} el
By the facts

< fU(){=ki(f(5)) - &1(f(5)) + ka(f(5)) - €3(f(5))}, @4(f(5)) >=0

and
e(f(s)) = *ea(s)
we have
1 — aky(s) '_ . aks(s)\"
o) (P70 ) o) (i) =
that is,
ey (5)K,(5) £/(5) + by () (1 — k() £7(5)
+aks(s)ky(s) f'(s) — alk(s))?f"(s) = 0



We remark that
F(s) = V1—aki(s),  f'(s) = ___okil)
21— aky(s)

so that we have
20k (s)(1 — aky(s)) = 0.

The above equality yields k] (s) = 0 for any s € L. Thus the first curvature function
k1 is of constant( that is, of positive constant ). By the relation k1 = a{(k1)?+ (k2)?},
the second curvature function ks is of positive constant too. This completes the
proof.

5.4. Proof of Theorem 4.4

Let C' be a curve defined by
a/f(u)sinudu
a/f(u)cosudu

x(u) = , ueUCR.

o [ fwgtw du

i Oz/ f(u)h(u) du |

Here «v is a positive constant number, g and h are any smooth functions : U — R,
and f: U — R is a positive valued smooth function. Then we have
af(u)sinu
af(u)cosu
af(u)gu) |
af(u)h(u)

cos
ue U.

Here the dot (") denotes differentiation with respect to u. The arc-length parameter
s of C'is given by s = ¥(u) = / ||%(w)]|| du, where

uo

1%(w)|] = af(u){1 + (g(u)* + (h(u))*}'/2.
Let ¢ denote the inverse function of ¢ : U — L C R. Thus u = ¢(s), and we have

-1

dx(u)
du

¢'(s) = ,s€ L.

u=¢(s)



Here the prime ( /) denotes differentiation with respect to s.
Thus the unit tangent vector e;(s) to the curve C' at each point x(¢(s)) is given

by )
{1+ (g9(e(s)) )
{1+ (g9(e(s)) )

{14 (g(p(s
{1+ (g(()))? + (h(0(5)))*} 2h((s))

(
Hereafter, we use the following abbreviations for simple expression:

)* + (Ale(s)))*} /2 sin(io(s)) |
)+ (h((s)))*} 2 cos(p(s))
) ) )
)

)7} 2g(p(s)

S

e (s) = ,s € L.

)*+ (h(p(s

) )
) )

S

ds
A:=1+¢*+h® B:=gj+hh, C:=i+h?
D:=gj+hh, E:=§j+hh, F:=g§+h
Then we have
A=2B,B=C+D,C=2E,¢ =a ' f1A?
and
A~12gin
A2 cos
A—1/2g
A2,

In order to get the curvature functions k; and ks, we go on with calculation. Now
we have

e = el(s) =

[ —%A_?’/?A sin4+A"2cos | —A32Bsin +A"Y2 cos

/ / —1A732 A cos — A% sin | —AT?Bcos —A~?sin
€= —%A‘3/2Ag A1 - —A732Bg + A-1/2g
| LASPAR AT —AT2Bh+ A7)




Thus we have

ki o= ki (s) = ||e)]| = ¢’ A"N(A + AC — BY)V2,

Next, Since ey = (k;)~'e}, we have

—ATV2B(A+ AC — B?)Y25in + AY2(A + AC — B*)7/2 cos
—~AT2B(A + AC — B?)7Y2cos —AY2(A + AC — B?)~Y/?sin
CATV2B(A 4+ AC — BY)V2g 4+ AV2(A+ AC — B2)-1/2g
—A7Y2B(A+ AC — B?)"V2h + AY2(A + AC — B*) /2

After long process of calculation, we have
(P — @) sin —Rcos
(P — @) cos+Rsin

Pg— Rg+ Qg
Ph — Rh+ Qh

e+ k-eg =@ A2(A+ AC — B3/

where

P = (A+AC—B*?+(A+ AC — B*)(B®>— AC — AD)
+AB(B + AE — BD)

Q = A*(A+ AC - B?

R = A*B+ AE - BD).

Now, we have P = A*(1 +C + BE — D — CD). Thus we have

(P — Q)sin —Rcos |

P—-Q COS—{-RSin
e’2+k1 ‘e =<P/A1/2(A+AC—BZ)_3/2 ( Q)

Pg—Rj+ Qj
Ph — Rh+ Qh
where
P = 1+C+BE—-D-CD
Q = A+ AC - B?
R = B+ AFE — BD.



Consequently, we have
et + ki - e|?
= (¢)?A(A+ AC — B3 {152 —2PQ + Q* + R?
+P(g% + B%) + B2 (§° + 1°) + Q(* + 1)
—2PR(gg + hh) — 2RQG5 + hh) + 2PQ(gj + hir) }
= (¢)?A(A+ AC - B {A(1+C+ BE — D — CD)?
—2(1+C+ BE - D —CD)(A+ AC — B?) + (A+ AC — B?)?
+(B+ AE — BD)* + C(B+ AE — BD)* + F(A + AC — B?)?
—2B(1+C + BE - D —CD)(B+ AE — BD)
—2E(B + AE — BD)(A + AC — B?)
+2D(1+C+ BE — D — CD)(A+ AC — B%)}
= (¢)2A(A+ AC - B3
x {(A+AC — B*)*(1+F)
+2(A+ AC - B*)(D-1)(1+C+ BE - D —CD)
—2(A+ AC — B*)E(B + AE — BD)
+A(14+C+BE—-D—CD)*+ (B+ AE — BD)*(1+C)
—2B(1+C+BD—D—CD)(B+ AE — BD)}.
Now, calculating the last three terms of the above, we have
Al+C+BE—-D-CD)*+ (B+ AE — BD)*(1+C)
—2B(1+C+BD—D —CD)(B+ AE — BD)
= (A+AC-B*)(1+C—2D—-20D + D*+CD?
+2BE — 2BDE + AE?).

Thus we have

(k2)? = [ley+ k1 - e
= (¢ AA+AC-B?)?

x {(A+ AC — B*)(1+ F)
+2(D-1)(1+C+ BE - D -CD)
—2E(B + AE — BD)
+1+C —2D —2CD + D* + CD?
+2BE — 2BDE + AE®} .

= (¢)?A(A+AC-B*)7?

x {(A+ AC — B*)(1+ F)
—1—-C+2D+2CD —2BE
—AE? — D* = CD*+2BDE} .



Since we have (k;)? = (¢')?A72(A+ AC — B?), we have

(F1)? + (k2)?
= (¢)?A?(A+ AC - B*)?
x {(A+ AC - B*)?
+A*(A+ AC — B>+ AF + ACF — B*F —1—-C +2D
+2CD — 2BE — AE* — D* — CD*+2BDE)} .

By the fact: ¢’ = a ' f1A"'/2 we have

(k1)? + (k2)?
=a ?f?PAT(A+ AC - B*)?
x {(A+ AC — B?*)?
+A3(A+ AC — B>+ AF + ACF — B’°F —1—-C +2D
+2CD — 2BE — AE? — D* — CD? + 2BDE) }
and
ki =a YfTLAT2 (A + AC — B2

Thus, by setting

o= APPA+AC - B*)P
x {(A+ AC - B*)?
+A*(A+ AC — B>+ AF + ACF — B°F —1—-C +2D
+2CD — 2BE — AE* — D* — CD* + 2BDE)} .

we have
ki = a{(k1)? + (k2)?}.
We can show a clear expression of the function f with g, k, ¢, h, ---, that is, we
have
A=1+g>+1?
A+AC —B?>=1+¢*>+h*+ ¢*+ h>+ (gh — gh)?
and

A+ AC —B*+ AF+ ACF - B*F—-1-C
+2D +2CD —2BE — AE?> — D> — CD? + 2BDE
= (94§ + (h+h)*+{(gh — gh) — (gh — §h)}* + (gh — §h)*.



Therefore, we have

Nt

3
2

f= Q+g@+n)2x <1+g2+h2+92+h2+(gh—gh)z)_
. . 3
><{(1+92+h2+g2+h2+(gh—g‘h)2>
F(1 4+ g2+ 12 x (g + )2 + (h+ By
. ) e \2 S
+ ((gh — gh) — (gh — gh)) + (gh — gh) }} :
This completes the proof.

6. Examples of generalized Mannheim curves

(1) In Theorem 4.4, we set that g(u) = sinh(u), h(u) = cosh(u) for v € U C R and
« is a positive constant number. Then we have

1+ cosh?u
Jlu) = V2cosh®u’
Thus a curve C in E* is given by
x:U — E*
and ~ -
/ 1 + cosh?u
=" sinu du
coS
1+ cosh®u
cosh2 cosu du
x(u) = ) ,uel
1+ cosh” u
h2 sinh v du
CoS
1 hu
\/_ / + sz cosh u du
CoS

Let s be the arc-length parameter of the curve C. Then w is given by u = ¢(s), and
we have

d_u
ds |,

cosh ¢(s)

,s€ L.
a(1 + cosh? ¢(s))

=¢'(s) =




The parametric representation of C' with the arc-length parameter s is given by
x(s) = x(¢(s)), that is,

sin g(s) ds

7 e

cos g(s)ds

1
T/COSth
/smhgs
cosh g(s)
— [ 1ds
)

Then the curve C is a special Frenet curve in E* and

1
ka(s) = a1 + cosh? g(s))’
o cosh g(s)
ka(s) a(1 4 cosh? g(s))’
ks(s) = :

a(1 + cosh? g(s))

for s € L. We obtain ki(s) = a{(k1)*(s) + (k2)*(s)}, s € L. We consider a regular
smooth curve C' defined by X(s) = x(s) + a - es(s), s € L, that is,

1 . sinh g(s)
- ds —
/ cosh 9(5) sin g(s) ds acosh o(5) sin g(s) + acos g(s)

;COS S S — ( )COS S —OéSin S
/ i el ds — 0SS cong(s) — ausing(s)

/1ds

We can prove that Cisa special Frenet curve in E*. Therefore, the curve C is a
generalized Mannheim curve in E* and the curve Cisa generalized Mannheim mate
curve of C.

(2) In Theorem 4.4, we set g(u) = asin(bu) and h(u) = acos(bu) for u € U C R,
where a is a positive constant number, and b is a constant number greater than one.
Then the function f is of constant, that is,

1+ a?b?

I= v awpe



Thus a curve C in E* is defined by

[ %/sin(u) du ] | —%COS(U) _
%/COS(U) du %sin(u}
%/sm(bu) du —%

_ %/cos(bu) du | %

cos(bu)

sin(bu)

for u € U. Let s be the arc-length parameter of C. Since we have

(a + a2b2)3/2

4= a(l+a?)1/2(1 + agb4)s’

the arc-length parametrization of C'is given by
_a(l+ a’b*) o (a + a?b?)3/? .
(1 + a2b?)3/2 a(l+ a2)2(1 + a2b%)
a(l + a?b?) (a + a®b?)3/?
—————=sin s
(1 + a2b?)3/2 a(l+ a2)72(1 + a2b%)
aa(l + a*b?*) bla + a*b?)3/?

- oS s
b(1 + a2h?)3/2 a(l+ a?)1/2(1 + a?b?)
aa(l + a*b?) bla + a®b?)>/?

sin S
b(1 + a?b?)3/2 a(l+a?)2(1 + a2b?)

for s € L. Then C' is a special Frenet curve and

(1+a2b2)2
fals) = a(l+ a?)(1 + a?b*)’
L a®? = 1)1+ a??)
S e T
B b(1+a21)2)
N G )

for s € L. The curvature functions k1, k2, k3 are constant functions, and it holds
that k1 = a{(k1)* + (k2)?}. We define a smooth curve C' by %(s) = x(s) + - e(s).
Let s be arc-length parameter of the curve C. Here we notice that

1+ a1+ e
a(b? —1)




The parametric representation of the curve C is given by
x:L— F*

and

aa?b?(b* — 1) o (14 a?b?)3/? .

(1 + a?b?)3/2 aa(b? —1)(1 + aQb4)1/28
202(p2 _ 27,2)3/2

aa®b*(b 1>Sin (14 a*b?) s

(1 + a2b2)3/2 aa(®? — 1)(1 + a2bh)1/2

aa(b? —1) o b(1 + a®b?)3/? ;
b(1 + a2b?)3/2 aa(b? — 1)(1 + a2b?)1/2

B aa(b* — 1) < b(1 + a?b?)3/? .
| b(1 + a?b?)3/2 o aa(b®> —1)(1 + a2b4)1/28 ]

for $ € L. Consequently, the curve Cisa special Frenet curve in £4 and there exists a

o ‘ . o L a(V® — 1)
bijection ¢ : C' — C' such that ¢(x(s)) = x(8), where § = (15 a2 (1 & a20) 12 S.
And the first normal line at each point of C' coincides the third normal line of C'
at corresponding point under ¢. Therefore the curve C' is a generalized Mannheim
curve in B4
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