ON GENERALIZED MANNHEIM CURVES IN EUCLIDEAN 4-SPACE

HIROO MATSUDA AND SHINSUKE YOROZU

ABSTRACT. We give a definition of generalized Mannheim curve in Euclidean 4-space E^4 . We show some characterizations and examples of generalized Mannheim curves.

1. Introduction

A regular smooth curve C in Euclidean 3-space E^3 is called a Mannheim curve if there exist another regular smooth curve \hat{C} , distinct from C, and a bijection $\phi: C \to \hat{C}$ such that the principal normal line at each point of C is the binormal line of \hat{C} at the corresponding point under ϕ ([2], [3], [4], [6]). Then \hat{C} is called a Mannheim mate curve of C. It is well-known that a regular smooth curve C in E^3 is a Mannheim curve if and only if its curvature function k_1 and its torsion function k_2 satisfy the equality $k_1 = \alpha\{(k_1)^2 + (k_2)^2\}$ on each point of C, where α is a positive constant number ([2], [3], [4], [6]).

In the present paper, we try to construct a notion of Mannheim curve in E^4 . That is, we give a definition of generalized Mannheim curve in E^4 . We prove some characterizations of the generalized Mannheim curve and we show examples of generalized Mannheim curves in Euclidean 4-space E^4 . We take "smooth" to mean "of class C^{∞} "

2. Mannheim curves in E^3

In many books, it is described that a regular smooth curve in E^3 is a Mannheim curve if and only if its curvature function k_1 and its torsion function k_2 satisfy the equality $k_1 = \alpha\{(k_1)^2 + (k_2)^2\}$ on each point of the curve, where α is a positive constant number. But, a formula of parametric equation of Mannheim curve in E^3 is not described. We found that Eisenhart's book ([2]) had given us a formula of parametric equation of Mannheim curve in E^3 as follows:

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 53A04. Key words and phrases. Generalized Mannheim curve.

Theorem 2.1 ([2, p.51]) Let C be a curve defined by

$$\mathbf{x}(u) = \begin{bmatrix} \alpha \int h(u) \sin u \, du \\ \alpha \int h(u) \cos u \, du \\ \alpha \int h(u) g(u) \, du \end{bmatrix}, \quad u \in U \subset \mathbf{R}.$$

Here **R** denotes the set of all real numbers, α is a positive constant number, $g: U \to \mathbf{R}$ is any smooth function and $h: U \to \mathbf{R}$ is given by

$$h(u) = \frac{\{1 + (g(u))^2 + (\dot{g}(u))^2\}^3 + \{1 + (g(u))^2\}^3 \{\ddot{g}(u) + g(u)\}^2}{\{1 + (g(u))^2\}^{3/2} \{1 + (g(u))^2 + (\dot{g}(u))^2\}^{5/2}},$$

here the dot () denotes the derivative with respect to u. Then the curvature function κ and the torsion function τ of C satisfy

$$\kappa(u) = \alpha \{ (\kappa(u))^2 + (\tau(u))^2 \}$$

on each point $\mathbf{x}(u)$ of C.

Remark 2.1 (1) If g(u) = c (constant), then h(u) = 1. Thus the curve C is a circular helix.

(2) If $g(u) = \tan u \ (-\frac{\pi}{2} < u < \frac{\pi}{2})$, then a Mannheim curve C is given by

$$\mathbf{x}(u) = \begin{bmatrix} \alpha \int \frac{(5+3\cos^2 u)\cos u \sin u}{(1+\cos^2 u)^{5/2}} du \\ \alpha \int \frac{(5+3\cos^2 u)\cos^2 u}{(1+\cos^2 u)^{5/2}} du \\ \alpha \int \frac{(5+3\cos^2 u)\sin u}{(1+\cos^2 u)^{5/2}} du \end{bmatrix},$$

where α is a positive constant number.

(3) If $g(u) = \sinh u$ $(u \in \mathbf{R})$, then a Mannheim curve C is given by

$$\mathbf{x}(u) = \begin{bmatrix} \frac{\alpha}{\sqrt{2}} \int \frac{(1 + \cosh^2 u) \sin u}{\cosh^2 u} du \\ \frac{\alpha}{\sqrt{2}} \int \frac{(1 + \cosh^2 u) \cos u}{\cosh^2 u} du \\ \frac{\alpha}{\sqrt{2}} \int \frac{(1 + \cosh^2 u) \sinh u}{\cosh^2 u} du \end{bmatrix},$$

where α is a positive constant number.

3. Special Frenet curves in E^4

Let C be a regular smooth curve in Euclidean 4-space E^4 defined by $\mathbf{x}: L \ni s \mapsto \mathbf{x}(s) \in E^4$, where L denotes a subset of the set \mathbf{R} of all real numbers, and s is the arc-length parameter of C. The curve C is called a *special Frenet curve* if there exist three smooth functions k_1, k_2, k_3 on C and smooth frame field $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ along the curve C such that these satisfy the following properties:

• The formulas of Frenet-Serret holds:

$$\begin{cases}
\mathbf{e}_{1}(s) = \mathbf{x}'(s) \\
\mathbf{e}'_{1}(s) = k_{1}(s)\mathbf{e}_{2}(s) \\
\mathbf{e}'_{2}(s) = -k_{1}(s)\mathbf{e}_{1}(s) & k_{2}(s)\mathbf{e}_{3}(s) \\
\mathbf{e}'_{3}(s) = -k_{2}(s)\mathbf{e}_{2}(s) & k_{3}(s)\mathbf{e}_{4}(s) \\
\mathbf{e}'_{4}(s) = -k_{3}(s)\mathbf{e}_{3}(s)
\end{cases}$$

for $s \in L$, where the prime (\prime) denotes differentiation with respect to s.

- The frame field $\{e_1, e_2, e_3, e_4\}$ is of orthonormal positive orientation.
- The functions k_1 and k_2 are of positive, and the function k_3 doesn't vanish.
- The functions k_1 , k_2 , and k_3 are called the first, the second, and the third curvature function of C, respectively. The frame field $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ is called the Frenet frame field on C. We refer this notion to [8].

Remark 3.1 For $s \in L$, the frame field $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ and curvature functions k_1 , k_2 and k_3 are determined by the following steps:

$$(1st step) \mathbf{e}_1(s) := \mathbf{x}'(s).$$

(2nd step)

$$k_1(s) := \|\mathbf{e}'_1(s)\| > 0,$$

 $\mathbf{e}_2(s) := \frac{1}{k_1(s)} \cdot \mathbf{e}'_1(s).$

(3rd step)

$$k_2(s) := \|\mathbf{e}_2'(s) + k_1(s) \cdot \mathbf{e}_1(s)\| > 0,$$

$$\mathbf{e}_3(s) := \frac{1}{k_2(s)} \cdot (\mathbf{e}_2'(s) + k_1(s) \cdot \mathbf{e}_1(s)).$$

(4th step)

$$\mathbf{e}_4(s) := \varepsilon \cdot \frac{1}{\|\mathbf{e}_3'(s) + k_2(s) \cdot \mathbf{e}_2(s)\|} \cdot (\mathbf{e}_3'(s) + k_2(s) \cdot \mathbf{e}_2(s)) \ (\varepsilon = \pm 1), \text{ and sign of } \varepsilon$$

is determined by the fact that the orthonormal frame field $\{e_1(s), e_2(s), e_3(s), e_4(s)\}$ is of positive orientation, and

 $k_3(s) := \langle \mathbf{e}'_3(s), \mathbf{e}_4(s) \rangle$, and the function k_3 doesn't vanish.

In order to make sure that the curve C is a special Frenet curve, we must check the above steps (from (1st step) to (4th step)) for $s \in L$.

At each point of C, a line ℓ_1 in the direction of \mathbf{e}_2 is called the first normal line, a line ℓ_2 in the direction of \mathbf{e}_3 is called the second normal line, and a line ℓ_3 in the direction of \mathbf{e}_4 is called the third normal line. We remark that, at each point of a curve in Euclidean 3-space E^3 , the first normal line and the second normal line are called the principal normal line and the binormal line, respectively.

4. Generalized Mannheim curves in E^4 and results

We already had a generalized Bertrand curve in E^4 ([5]). By the same idea, we have a generalization in E^4 for the notion of Mannheim curve in E^3 .

Definition 4.1 A special Frenet curve C in E^4 is a generalized Mannheim curve if there exists a special Frenet curve \hat{C} in E^4 such that the first normal line at each point of C is included in the plane generated by the second normal line and the third normal line of \hat{C} at corresponding point under ϕ . Here ϕ is a bijection from C to \hat{C} . The curve \hat{C} is called the generalized Mannheim mate curve of C.

Hereafter, a special Frenet curve C in E^4 is parametrized by the arc-length parameter s, that is, C is given by $\mathbf{x}: L \ni s \mapsto \mathbf{x}(s) \in E^4$. Let C be a generalized Mannheim curve in E^4 . Then, by the definition, a generalized Mannheim mate curve \hat{C} is given by the map $\hat{\mathbf{x}}: L \to E^4$ such that

$$\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha(s) \cdot \mathbf{e}_2(s), \quad s \in L, \tag{4.1}$$

where α is a smooth function on L. We remark that the parameter s generally is not an arc-length parameter of \hat{C} . Let \hat{s} be the arc-length of \hat{C} defined by

$$\hat{s} = \int_0^s \left\| \frac{d\hat{\mathbf{x}}(s)}{ds} \right\| ds.$$

We can consider a smooth function $f: L \mapsto \hat{L}$ given by $f(s) = \hat{s}$. Then we have

$$f'(s) = \sqrt{\{1 - \alpha(s) \cdot k_1(s)\}^2 + \{\alpha'(s)\}^2 + \{\alpha(s) \cdot k_2(s)\}^2}$$

for $s \in L$. The representation of \hat{C} by arc-length parameter \hat{s} is denoted by $\hat{\mathbf{x}} : \hat{L} \ni \hat{s} \mapsto \hat{\mathbf{x}}(\hat{s}) \in E^4$, here we use the same letter " $\hat{\mathbf{x}}$ " for simplicity. Then we can simply write

$$\hat{\mathbf{x}}(f(s)) = \mathbf{x}(s) + \alpha(s) \cdot \mathbf{e}_2(s)$$

for curve \hat{C} , and a bijection $\phi: C \to \hat{C}$ is given by $\phi(\mathbf{x}(s)) = \hat{\mathbf{x}}(f(s))$. This notation is used in section 5. Thus we have

$$\frac{d\hat{\mathbf{x}}(f(s))}{ds} = \frac{d\hat{\mathbf{x}}(\hat{s})}{d\hat{s}} \bigg|_{\hat{s}=f(s)} f'(s)$$
$$= f'(s) \cdot \hat{\mathbf{e}}_1(f(s))$$

for $s \in L$.

In the present paper, our results are Theorems 4.1, 4.2, 4.3, 4.4, and 4.5.

Theorem 4.1 If a special Frenet curve C in E^4 is a generalized Mannheim curve, then the first curvature function k_1 and second curvature functions k_2 of C satisfy the equality:

$$k_1(s) = \alpha \{ (k_1(s))^2 + (k_2(s))^2 \}, s \in L,$$
 (4.2)

where α is a positive constant number.

Theorem 4.2 Let C be a special Frenet curve in E^4 whose curvature functions k_1 and k_2 are non-constant functions and satisfy the equality: $k_1(s) = \alpha \{(k_1(s))^2 + (k_2(s))^2\}$, $s \in L$. Here α is a positive constant number. If the curve \hat{C} given by $\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha \cdot \mathbf{e}_2(s)$, $s \in L$ is a special Frenet curve, then C is a generalized Mannheim curve and \hat{C} is the generalized Mannheim mate curve of C.

Remark 4.1 For a special Frenet curve C with (4.2), it is not clear that the smooth curve \hat{C} given by (4.1) is a special Frenet curve. It is unknown whether the reverse of Theorem 4.1 is true or false.

Theorem 4.3 Let C be a special Frenet curve in E^4 such that its third curvature function k_3 doesn't vanish. The curvature functions k_1 and k_2 of C are constant functions if and only if there exists a special Frenet curve \hat{C} in E^4 such that the first normal line at each point of C is the third normal line of \hat{C} at corresponding each point under a bijection $\phi: C \to \hat{C}$.

Remark 4.2 In *n*-dimensional Euclidean space, curves with constant curvatures are given in [1].

The following theorem gives a parametric representation of generalized Mannheim curves in E^4 . We have this theorem under the referee's advice.

Theorem 4.4 Let C be a curve defined by

$$\mathbf{x}(u) = \begin{bmatrix} \alpha \int f(u) \sin u \, du \\ \alpha \int f(u) \cos u \, du \\ \alpha \int f(u) g(u) \, du \\ \alpha \int f(u) h(u) \, du \end{bmatrix}, \quad u \in U \subset \mathbf{R}.$$

Here α is a positive constant number, g and h are any smooth functions: $U \to \mathbf{R}$,

and $f: U \to \mathbf{R}$ is given by

$$\begin{split} f(u) &= \left(1 + (g(u))^2 + (h(u))^2\right)^{-\frac{3}{2}} \\ &\times \left\{1 + (g(u))^2 + (h(u))^2 + (\dot{g}(u))^2 + (\dot{h}(u))^2 \right. \\ &\quad \left. + \left(g(u)\dot{h}(u) - \dot{g}(u)h(u)\right)^2\right\}^{-\frac{5}{2}} \\ &\quad \left. \times \left[\left\{1 + (g(u))^2 + (h(u))^2 + (\dot{g}(u))^2 + (\dot{h}(u))^2 \right. \\ &\quad \left. + \left(g(u)\dot{h}(u) - \dot{g}(u)h(u)\right)^2\right\}^3 \right. \\ &\quad \left. + \left(1 + (g(u))^2 + (h(u))^2\right)^3 \times \left\{ (g(u) + \ddot{g}(u))^2 + \left(h(u) + \ddot{h}(u)\right)^2 \right. \\ &\quad \left. + \left(\left(g(u)\dot{h}(u) - \dot{g}(u)h(u)\right) - \left(\dot{g}(u)\ddot{h}(u) - \ddot{g}(u)\dot{h}(u)\right)\right)^2 \right. \\ &\quad \left. + \left(g(u)\ddot{h}(u) - \ddot{g}(u)h(u)\right)^2\right\}\right], \end{split}$$

for $u \in U$. Here the dot () denotes the derivative with respect to u. Then the curvature functions k_1 and k_2 of C satisfy

$$k_1(u) = \alpha \{ (k_1(u))^2 + (k_2(u))^2 \}$$

on each point $\mathbf{x}(u)$ of C.

Let C be a generalized Mannheim curve in E^4 , and let \mathbf{e}_2 be the second vector field in the Frenet frame field along C. We can consider a ruled surface S in E^4 by the curve C and the first normal lines of C. Let S be a surface in E^4 defined by $\mathbf{X}: L \times \mathbf{R} \to E^4$, where $\mathbf{X}(s,t) = \mathbf{x}(s) + t\mathbf{e}_2(s)$. The ruled surface S is generated by the motion of a straight line (first normal line) ℓ along the curve C. The curve C is called the directrix (or base curve) of S, and a straight line ℓ is called a generating line (or generator, ruling) of S. We remark that the ruled surface S is, as a submanifold in E^4 , not a totally geodesic submanifold in E^4 . The striction curve of S is defined by

$$\mathbf{y}(s) = \mathbf{x}(s) - \frac{\langle \mathbf{x}'(s), \mathbf{e}'_2(s) \rangle}{\|\mathbf{e}'_2(s)\|} \mathbf{e}_2(s)$$

for $s \in L$. The geometric meaning of the striction curve of a ruled surface is referred to [4], [7] and [8]. Since C is a genealized Mannheim curve in E^4 , we have

$$-\frac{\langle \mathbf{x}'(s), \mathbf{e}'_2(s) \rangle}{\|\mathbf{e}'_2(s)\|} = -\frac{-k_1(s)}{(k_1(s))^2 + (k_2(s))^2} = \alpha.$$

Thus, by the definition of Mannheim mate curve, we easily prove the following theorem:

Theorem 4.5 Let S be a ruled surface in E^4 such that its directrix is a generalized Mannheim curve C and its generating line is the first normal line of C. Then the Mannheim mate \hat{C} is the striction curve of S.

5. Proofs of Theorems

Let C be a special Frenet curve in E^4 whose Frenet frame field is denoted by $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$. Let k_1, k_2, k_3 be curvature functions of C. The arc-length parametrization of C is given by $\mathbf{x} : L \to E^4$ $(s \mapsto \mathbf{x}(s))$.

5.1. Proof of Theorem 4.1

Let C be a generalized Mannheim curve in E^4 and let \hat{C} be the generalized Mannheim mate curve of C. The curve \hat{C} is reparametrized by $\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha(s) \cdot \mathbf{e}_2(s)$, where $\alpha: L \ni s \mapsto \alpha(s) \in \mathbf{R}$ is a smooth function. A smooth function $f: L \ni s \mapsto f(s) = \hat{s} \in \hat{L}$ is defined by $f(s) = \int_0^s \left\| \frac{d\hat{\mathbf{x}}(s)}{ds} \right\| ds = \hat{s}$. We remark that \hat{s} is the arc-length parameter of \hat{C} , and the bijection $\phi: C \to \bar{C}$ is defined by $\phi(\mathbf{x}(s)) = \hat{\mathbf{x}}(f(s))$. Since the first normal line at each point of C is included in the plane generated the second normal line and the third normal line of \hat{C} at corresponding point under a bijection ϕ , for each $s \in L$, the vector $\mathbf{e}_2(s)$ is given by linear combination of $\hat{\mathbf{e}}_3(f(s))$ and $\hat{\mathbf{e}}_4(f(s))$, that is, we can set $\mathbf{e}_2(s) = g(s) \cdot \hat{\mathbf{e}}_3(f(s)) + h(s) \cdot \hat{\mathbf{e}}_4(f(s))$ for some smooth functions g and h on L.

We differentiate both sides of equality: $\hat{\mathbf{x}}(f(s)) = \mathbf{x}(s) + \alpha(s) \cdot \mathbf{e}_2(s)$ with respect to s. Then we have

$$f'(s) \cdot \hat{\mathbf{e}}_1(f(s))$$

$$= \mathbf{e}_1(s) + \alpha'(s) \cdot \mathbf{e}_2(s)$$

$$+\alpha(s)(-k_1(s) \cdot \mathbf{e}_1(s) + k_2(s) \cdot \mathbf{e}_3(s))$$

$$= (1 - \alpha(s)k_1(s)) \cdot \mathbf{e}_1(s) + \alpha'(s) \cdot \mathbf{e}_2(s)$$

$$+\alpha(s)k_2(s) \cdot \mathbf{e}_3(s),$$

for $s \in L$. Let <, > denote the inner product of vectors. By the fact:

$$<\hat{\mathbf{e}}_1(f(s)), g(s) \cdot \hat{\mathbf{e}}_3(f(s)) + h(s) \cdot \hat{\mathbf{e}}_4(f(s)) > = 0,$$

we have $\alpha'(s) = 0$ for any $s \in L$ so that the function α is of constant, say α . Thus we have

$$f'(s) \cdot \hat{\mathbf{e}}_1(f(s)) = (1 - \alpha k_1(s)) \cdot \mathbf{e}_1(s) + \alpha k_2(s) \cdot \mathbf{e}_3(s),$$

that is,

$$\hat{\mathbf{e}}_1(f(s)) = \frac{1 - \alpha k_1(s)}{f'(s)} \cdot \mathbf{e}_1(s) + \frac{\alpha k_2(s)}{f'(s)} \cdot \mathbf{e}_3(s),$$

where $f'(s) = \sqrt{(1 - \alpha k_1(s))^2 + (\alpha k_2(s))^2}$ for $s \in L$. By differentiation of both sides of the above equality with respect to s, we have

$$f'(s)\hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{2}(f(s))$$

$$= \left(\frac{1 - \alpha k_{1}(s)}{f'(s)}\right)' \cdot \mathbf{e}_{1}(s)$$

$$+ \left(\frac{(1 - \alpha k_{1}(s))k_{1}(s) - \alpha (k_{2}(s))^{2}}{f'(s)}\right) \cdot \mathbf{e}_{2}(s)$$

$$+ \left(\frac{\alpha k_{2}(s)}{f'(s)}\right)' \cdot \mathbf{e}_{3}(s)$$

$$+ \left(\frac{\alpha k_{2}(s)k_{3}(s)}{f'(s)}\right) \cdot \mathbf{e}_{4}(s)$$

for $s \in L$. By the fact:

$$<\hat{\mathbf{e}}_2(f(s)), g(s) \cdot \hat{\mathbf{e}}_3(f(s)) + h(s) \cdot \hat{\mathbf{e}}_4(f(s)) > = 0, s \in L,$$

we have that coefficient of \mathbf{e}_2 in the above equation is zero, that is,

$$(1 - \alpha k_1(s))k_1(s) - \alpha (k_2(s))^2 = 0, s \in L.$$

Thus we have $k_1(s) = \alpha\{(k_1(s))^2 + (k_2(s))^2\}$ for $s \in L$. This completes the proof.

5.2. Proof of Theorem 4.2

Let \hat{s} be the arc-length of \hat{C} . That is, \hat{s} is defined by

$$\hat{s} = \int_0^s \left\| \frac{d\hat{\mathbf{x}}(s)}{ds} \right\| ds$$

for $s \in L$. We can consider a smooth function $f: L \ni s \mapsto f(s) = \hat{s} \in \hat{L}$. By the assumption of the curvature functions k_1 and k_2 , we have

$$f'(s) = \sqrt{(1 - \alpha \cdot k_1(s))^2 + (\alpha \cdot k_2(s))^2}$$

= $\sqrt{1 - \alpha \cdot k_1(s)}$

for $s \in L$. The representation of \hat{C} by arc-length parameter \hat{s} is denoted by $\hat{\mathbf{x}}(\hat{s})$, here we use the same letter " $\hat{\mathbf{x}}$ " for simplicity. Then we can simply write

$$\hat{\mathbf{x}}(\hat{s}) = \hat{\mathbf{x}}(f(s))$$

= $\mathbf{x}(s) + \alpha \cdot \mathbf{e}_2(s)$.

for curve \hat{C} . This notation is used in subsections 5.2 and 5.3. Thus we have

$$\frac{d\hat{\mathbf{x}}(\hat{s})}{ds} = \frac{d\hat{\mathbf{x}}(\hat{s})}{d\hat{s}} \Big|_{\hat{s}=f(s)} f'(s)$$
$$= f'(s) \cdot \hat{\mathbf{e}}_1(f(s))$$

and

$$f'(s) \cdot \hat{\mathbf{e}}_1(f(s)) = \mathbf{e}_1(s)$$

$$+\alpha \{-k_1(s) \cdot \mathbf{e}_1(s) + k_2(s) \cdot \mathbf{e}_3(s)\}$$

$$= (1 - \alpha k_1(s)) \cdot \mathbf{e}_1(s) + \alpha k_2(s) \cdot \mathbf{e}_3(s).$$

Thus, we have

$$\hat{\mathbf{e}}_{1}(f(s)) = \sqrt{1 - \alpha k_{1}(s)} \cdot \mathbf{e}_{1}(s) + \frac{\alpha k_{2}(s)}{\sqrt{1 - \alpha k_{1}(s)}} \cdot \mathbf{e}_{3}(s)$$

for $s \in L$. We differentiate both sides of the above equality with respect to s, then we have

$$f'(s) \cdot \frac{d\hat{\mathbf{e}}_{1}(\hat{s})}{d\hat{s}} \Big|_{\hat{s}=f(s)}$$

$$= \left(\sqrt{1 - \alpha k_{1}(s)}\right)' \cdot \mathbf{e}_{1}(s)$$

$$+ \sqrt{1 - \alpha k_{1}(s)} k_{1}(s) \cdot \mathbf{e}_{2}(s)$$

$$+ \left(\frac{\alpha k_{2}(s)}{\sqrt{1 - \alpha \cdot k_{1}(s)}}\right)' \cdot \mathbf{e}_{3}(s)$$

$$+ \frac{\alpha k_{2}(s)}{\sqrt{1 - \alpha \cdot k_{1}(s)}} \left(-k_{2}(s) \cdot \mathbf{e}_{2}(s) + k_{3}(s) \cdot \mathbf{e}_{4}(s)\right).$$

Since \hat{C} is a special Frenet curve, we have

$$\left. \frac{d\hat{\mathbf{e}}_1(\hat{s})}{d\hat{s}} \right|_{\hat{s}=f(s)} = \hat{k}_1(f(s)) \cdot \hat{\mathbf{e}}_2(f(s)).$$

Thus we have

$$f'(s)\hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{2}(f(s))$$

$$= \left(\sqrt{1 - \alpha k_{1}(s)}\right)' \cdot \mathbf{e}_{1}(s)$$

$$+ \left(\sqrt{1 - \alpha k_{1}(s)}k_{1}(s) - \frac{\alpha(k_{2}(s))^{2}}{\sqrt{1 - \alpha k_{1}(s)}}\right) \cdot \mathbf{e}_{2}(s)$$

$$+ \left(\frac{\alpha k_{2}(s)}{\sqrt{1 - \alpha k_{1}(s)}}\right)' \cdot \mathbf{e}_{3}(s)$$

$$+ \left(\frac{\alpha k_{2}(s)k_{3}(s)}{\sqrt{1 - \alpha k_{1}(s)}}\right) \cdot \mathbf{e}_{4}(s).$$

Under the our assumption, it holds

$$\sqrt{1 - \alpha k_1(s)} k_1(s) + \frac{\alpha k_2(s)}{\sqrt{1 - \alpha k_1(s)}} (-k_2(s))$$

$$= \frac{1}{\sqrt{1 - \alpha k_1(s)}} (k_1(s) - \alpha (k_1(s))^2 - \alpha (k_2(s))^2)$$

$$= 0$$

We have that the coefficient of $\mathbf{e}_2(s)$ in the above equality vanishes. Thus, for each $s \in L$, the vector $\hat{\mathbf{e}}_2(f(s))$ is given by linear combination of $\mathbf{e}_1(s)$, $\mathbf{e}_3(s)$ and $\mathbf{e}_4(s)$. And, as above, the vector $\hat{\mathbf{e}}_1(f(s))$ is given by linear combination of $\mathbf{e}_1(s)$ and $\mathbf{e}_3(s)$. Since the curve \hat{C} is a special Frennet curve in E^4 , the vector $\mathbf{e}_2(s)$ is given by linear combination of $\hat{\mathbf{e}}_3(f(s))$ and $\hat{\mathbf{e}}_4(f(s))$.

Therefore, the first normal line at each point of C is included in the plane generated the second normal line and the third normal line of \bar{C} at corresponding point under ϕ . Here the bijection $\phi: C \to \hat{C}$ is defined by $\phi(\mathbf{x}(s)) = \hat{\mathbf{x}}(f(s))$. This completes the proof.

5.3. Proof of Theorem 4.3

(i) Let C be a special Frenet curve in E^4 with the Frenet frame field $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ and curvature functions k_1 , k_2 and k_3 . The first curvature function and the second curvature function of C are of positive constant, say k_1 and k_2 , respectively. Thus $\frac{k_1}{(k_1)^2 + (k_2)^2}$ is a positive constant number, say α . We define a regular smooth curve \hat{C} by

$$\hat{\mathbf{x}}: L \mapsto E^4$$

and

$$\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha \cdot \mathbf{e}_2(s), \quad s \in L.$$

Let \hat{s} denote the arc-length parameter of \hat{C} , and let $f: L \mapsto \hat{L}$ be a function defined by

$$\hat{s} = f(s) = \sqrt{(1 - \alpha k_1)^2 + (\alpha k_2)^2} s$$

= $\sqrt{1 - \alpha k_1} s$.

Then we have $f'(s) = \sqrt{1 - \alpha k_1}$, and

$$f'(s) \cdot \hat{\mathbf{e}}_1(f(s)) = \mathbf{e}_1(s) + \alpha \cdot \mathbf{e}'_2(s)$$

= $(1 - \alpha k_1) \cdot \mathbf{e}_1(s) + \alpha k_2 \cdot \mathbf{e}_3(s)$,

that is,

$$\hat{\mathbf{e}}_1(f(s)) = \sqrt{1 - \alpha k_1} \cdot \mathbf{e}_1(s) + \frac{\alpha k_2}{\sqrt{1 - \alpha k_1}} \cdot \mathbf{e}_3(s).$$

Defferentiating both sides of the above equality with respect to s, we have

$$f'(s) \cdot \frac{d\hat{\mathbf{e}}_{1}(\hat{s})}{d\hat{s}} \Big|_{\hat{s}=f(s)} = \sqrt{1 - \alpha k_{1}} \cdot \mathbf{e}'_{1}(s) + \frac{\alpha k_{2}}{\sqrt{1 - \alpha k_{1}}} \cdot \mathbf{e}'_{3}(s)$$

$$= \left(k_{1}\sqrt{1 - \alpha k_{1}} - \frac{\alpha (k_{2})^{2}}{\sqrt{1 - \alpha k_{1}}}\right) \cdot \mathbf{e}_{2}(s)$$

$$+ \frac{\alpha k_{2}k_{3}(s)}{\sqrt{1 - \alpha k_{1}}} \cdot \mathbf{e}_{4}(s)$$

$$= \frac{\alpha k_{2}k_{3}(s)}{\sqrt{1 - \alpha k_{1}}} \cdot \mathbf{e}_{4}(s)$$

Thus, since k_3 doesn't vanish, we have

$$\hat{k}_1(f(s)) := \left\| \frac{d\hat{\mathbf{e}}_1(\hat{s})}{d\hat{s}} \right\|_{\hat{s}=f(s)} = sign(k_3) \frac{\alpha k_2 k_3(s)}{1 - \alpha k_1} > 0.$$

Here $sign(k_3)$ denotes the sign of the function k_3 , that is, if k_3 is positive valued function(resp. negative valued function) then $sign(k_3) = +1$ (resp. -1) so that $sign(k_3)k_3(s)$ is positive for any $s \in L$. We can put

$$\hat{\mathbf{e}}_2(\hat{s}) := \frac{1}{\hat{k}_1(\hat{s})} \cdot \frac{d\hat{\mathbf{e}}_1(\hat{s})}{d\hat{s}}, s \in L.$$

Then we have

$$\hat{\mathbf{e}}_2(f(s)) = sign(k_3) \cdot \mathbf{e}_4(s).$$

By differentiation of the above with respect to s, we have

$$f'(s) \cdot \frac{d\hat{\mathbf{e}}_2(\hat{s})}{d\hat{s}} \bigg|_{\hat{s}=f(s)} = -sign(k_3)k_3(s) \cdot \mathbf{e}_3(s)$$

and we have

$$\frac{d\hat{\mathbf{e}}_{2}(\hat{s})}{d\hat{s}}\Big|_{\hat{s}=f(s)} + \hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{1}(f(s))$$

$$= sign(k_{3}) \frac{\alpha k_{2}k_{3}(s)}{\sqrt{1-\alpha k_{1}}} \cdot \mathbf{e}_{1}(s) - sign(k_{3})k_{3}(s)\sqrt{1-\alpha k_{1}} \cdot \mathbf{e}_{3}(s).$$

Since $sign(k_3)k_3(s)$ is positive for $s \in L$,

$$\hat{k}_{2}(f(s))
= \left\| \frac{d\hat{\mathbf{e}}_{2}(\hat{s})}{d\hat{s}} \right|_{\hat{s}=f(s)} + \hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{1}(f(s)) \right\|
= \sqrt{\frac{\alpha^{2}k_{2}^{2}(k_{3}(s))^{2}}{1 - \alpha k_{1}}} + (1 - \alpha k_{1})(k_{3}(s))^{2}
= \sqrt{(k_{3}(s))^{2}}
= sign(k_{3})k_{3}(s) > 0.$$

Thus we can put

$$\mathbf{e}_{3}(f(s)) = \frac{1}{\hat{k}_{2}(f(s))} \cdot \left(\frac{d\hat{\mathbf{e}}_{2}(\hat{s})}{d\hat{s}} \Big|_{\hat{s}=f(s)} + \hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{1}(f(s)) \right)$$
$$= \frac{\alpha k_{2}}{\sqrt{1 - \alpha k_{1}}} \cdot \mathbf{e}_{1}(s) - \sqrt{1 - \alpha k_{1}} \cdot \mathbf{e}_{3}(s)$$

for $s \in L$. By differentiation of the above with respect to s, we have

$$f'(s) \cdot \frac{d\hat{\mathbf{e}}_3(\hat{s})}{d\hat{s}} \bigg|_{\hat{s}=f(s)} = \frac{k_2}{\sqrt{1-\alpha k_1}} \cdot \mathbf{e}_2(s) - \sqrt{1-\alpha k_1} k_3(s) \cdot \mathbf{e}_4(s).$$

Since $f'(s) = \sqrt{1 - \alpha k_1}$ and $\hat{k}_2(f(s)) \cdot \hat{\mathbf{e}}_2(f(s)) = k_3(s) \cdot \mathbf{e}_4(s)$, we have

$$\frac{d\hat{\mathbf{e}}_{3}(\hat{s})}{d\hat{s}}\bigg|_{\hat{s}=f(s)} + \hat{k}_{2}(f(s)) \cdot \hat{\mathbf{e}}_{2}(f(s)) = \frac{k_{2}}{1 - \alpha k_{1}} \cdot \mathbf{e}_{2}(s).$$

Thus, taking note of (4th step) in Remark 2.1, we have $\hat{\mathbf{e}}_4(f(s)) = \varepsilon \mathbf{e}_2(s)$ for $s \in L$, where $\varepsilon = \pm 1$. We must determine whether ε is 1 or -1 under the condition that the frame field $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3, \hat{\mathbf{e}}_4\}$ is of positive orientation.

We have, by $det[\mathbf{e}_1(s), \mathbf{e}_2(s), \mathbf{e}_3(s), \mathbf{e}_4(s)] = 1$ for $s \in L$.

$$\det[\hat{\mathbf{e}}_{1}(f(s)), \hat{\mathbf{e}}_{2}(f(s)), \hat{\mathbf{e}}_{3}(f(s)), \hat{\mathbf{e}}_{4}(f(s))] \\
= \det\left[\sqrt{1 - \alpha k_{1}} \cdot \mathbf{e}_{1}(s), sign(k_{3})\mathbf{e}_{4}(s), -\sqrt{1 - \alpha k_{1}} \cdot \mathbf{e}_{3}(s), \varepsilon \mathbf{e}_{2}(s)\right] \\
+ \det\left[\frac{\alpha k_{2}}{\sqrt{1 - \alpha k_{1}}} \cdot \mathbf{e}_{3}(s), sign(k_{3})\mathbf{e}_{4}(s), \frac{\alpha k_{2}}{\sqrt{1 - \alpha k_{1}}} \cdot \mathbf{e}_{1}(s), \varepsilon \mathbf{e}_{2}(s)\right] \\
= sign(k_{3})\varepsilon\left((1 - \alpha k_{1}) + \frac{\alpha^{2} k_{2}^{2}}{1 - \alpha k_{1}}\right) \\
= sign(k_{3})\varepsilon$$

and $\det[\hat{\mathbf{e}}_1(f(s)), \hat{\mathbf{e}}_2(f(s)), \hat{\mathbf{e}}_3(f(s)), \hat{\mathbf{e}}_4(f(s))] = 1$ for any $s \in L$. Thus we have $\varepsilon = sign(k_3)$. Therefore, we have

$$\hat{\mathbf{e}}_4(f(s)) = sign(k_3)\mathbf{e}_2(s)$$

and

$$\hat{k}_3(f(s)) = \left\langle \frac{d\hat{\mathbf{e}}_3(\hat{s})}{d\hat{s}} \Big|_{\hat{s}=f(s)}, \hat{\mathbf{e}}_4(f(s)) \right\rangle = sign(k_3) \frac{k_2}{1 - \alpha k_1}$$

for $s \in L$.

By the above facts, \hat{C} is a spacial Frenet curve in E^4 and the first normal line at each point of C is the third normal line of \hat{C} at corresponding each point under the bijection $\phi: C \ni \mathbf{x}(s) \mapsto \phi(\mathbf{x}(s)) = \hat{\mathbf{x}}(f(s)) \in \hat{C}$.

(ii) Let C be a special Frenet curve in E^4 with the Frenet frame field $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ and curvature functions k_1 , k_2 and k_3 . Let \hat{C} be a special Frenet curve in E^4 with the Frenet frame field $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3, \hat{\mathbf{e}}_4\}$ and curvature functions \hat{k}_1 , \hat{k}_2 and \hat{k}_3 . We assume that the first normal line at each point of C is the third normal line of \hat{C} at corresponding each point under a bijection $\phi: C \to \hat{C}$. Then the curve \hat{C} is parametrized by

$$\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha(s) \cdot \mathbf{e}_2(s), s \in L.$$

Let \hat{s} be the arc-length parameter of \hat{C} given by

$$\hat{s} = f(s) = \int_0^s \sqrt{(1 - \alpha(s)k_1(s))^2 + (\alpha'(s))^2 + (\alpha(s)k_2(s))^2} ds.$$

Here $f: L \ni s \mapsto f(s) = \hat{s} \in \hat{L}$. A bijection $\phi: C \to \hat{C}$ is given by $\phi(\mathbf{x}(s)) = \hat{\mathbf{x}}(f(s))$. Thus our assumption implies that $\hat{\mathbf{e}}_4(f(s)) = \pm \mathbf{e}_2(s)$ for $s \in L$. Now, we have

$$f'(s) \cdot \hat{\mathbf{e}}_1(f(s)) = (1 - \alpha(s)k_1(s)) \cdot \mathbf{e}_1(s) + \alpha'(s) \cdot \mathbf{e}_2(s) + \alpha(s)k_2(s) \cdot \mathbf{e}_3(s).$$

Taking the inner product of $f'(s) \cdot \hat{\mathbf{e}}_1(f(s))$ and $\hat{\mathbf{e}}_4(f(s))$, we have

$$< f'(s) \cdot \hat{\mathbf{e}}_1(f(s)), \hat{\mathbf{e}}_4(f(s)) >= 0.$$

On the other hand, we have

$$\langle f'(s) \cdot \hat{\mathbf{e}}_1(f(s)), \hat{\mathbf{e}}_4(f(s)) \rangle$$

$$= \langle (1 - \alpha(s)k_1(s)) \cdot \mathbf{e}_1(s) + \alpha'(s) \cdot \mathbf{e}_2(s) + \alpha(s)k_2(s) \cdot \mathbf{e}_3(s), \pm \mathbf{e}_2(s) \rangle$$

$$= \pm \alpha'(s).$$

Thus $\alpha(s) = \alpha$ for $s \in L$, where α denotes a constant number. From this fact, we have

$$f'(s) = \sqrt{(1 - \alpha k_1(s))^2 + (\alpha k_2(s))^2} > 0$$

and

$$\hat{\mathbf{e}}_1(f(s)) = \left(\frac{1 - \alpha k_1(s)}{f'(s)}\right) \cdot \mathbf{e}_1(s) + \left(\frac{\alpha k_2(s)}{f'(s)}\right) \cdot \mathbf{e}_3(s).$$

We differentiate the above equality with respect to s, then we have

$$f'(s)\hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{2}(f(s))$$

$$= \left(\frac{1 - \alpha k_{1}(s)}{f'(s)}\right)' \cdot \mathbf{e}_{1}(s) + \left(\frac{k_{1}(s) - \alpha \{(k_{1}(s))^{2} + (k_{2}(s))^{2}\}}{f'(s)}\right) \cdot \mathbf{e}_{2}(s)$$

$$+ \left(\frac{\alpha k_{2}(s)}{f'(s)}\right)' \cdot \mathbf{e}_{3}(s) + \left(\frac{\alpha k_{2}(s)k_{3}(s)}{f'(s)}\right) \cdot \mathbf{e}_{4}(s).$$

By the fact:

$$< f'(s)\hat{k}_1(f(s)) \cdot \hat{\mathbf{e}}_2(f(s)), \hat{\mathbf{e}}_4(f(s)) >= 0, s \in L,$$

it holds that

$$k_1(s) = \alpha \{ (k_1(s))^2 + (k_2(s))^2 \}, s \in L$$

so that α is a "positive" constant number. Thus we have

$$\hat{\mathbf{e}}_{2}(f(s)) \\
= \frac{1}{f'(s)K(s)} \left(\frac{1 - \alpha k_{1}(s)}{f'(s)}\right)' \cdot \mathbf{e}_{1}(s) \\
+ \frac{1}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)}{f'(s)}\right)' \cdot \mathbf{e}_{3}(s) \\
+ \frac{1}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)k_{3}(s)}{f'(s)}\right) \cdot \mathbf{e}_{4}(s)$$

for $s \in L$. Here we set $K(s) = \hat{k}_1(f(s)), s \in L$. By differentiation of the above equality with respect to s, we have

$$f'(s)\{-\hat{k}_{1}(f(s)) \cdot \hat{\mathbf{e}}_{1}(f(s)) + \hat{k}_{2}(f(s)) \cdot \hat{\mathbf{e}}_{3}(f(s))\}$$

$$= \left\{\frac{1}{f'(s)K(s)} \left(\frac{1 - \alpha k_{1}(s)}{f'(s)}\right)'\right\}' \cdot \mathbf{e}_{1}(s)$$

$$+ \left\{\frac{k_{1}(s)}{f'(s)K(s)} \left(\frac{1 - \alpha k_{1}(s)}{f'(s)}\right)' - \frac{k_{2}(s)}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)}{f'(s)}\right)'\right\} \cdot \mathbf{e}_{2}(s)$$

$$+ \left\{\left(\frac{1}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)}{f'(s)}\right)'\right)' - \frac{k_{3}(s)}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)k_{3}(s)}{f'(s)}\right)\right\} \cdot \mathbf{e}_{3}(s)$$

$$+ \left\{\left(\frac{1}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)k_{3}(s)}{f'(s)}\right)\right)' + \frac{k_{3}(s)}{f'(s)K(s)} \left(\frac{\alpha k_{2}(s)}{f'(s)}\right)'\right\} \cdot \mathbf{e}_{4}(s).$$

By the facts

$$< f'(s) \{ -\hat{k}_1(f(s)) \cdot \hat{\mathbf{e}}_1(f(s)) + \hat{k}_2(f(s)) \cdot \hat{\mathbf{e}}_3(f(s)) \}, \hat{\mathbf{e}}_4(f(s)) > = 0$$

and

$$\hat{\mathbf{e}}_4(f(s)) = \pm \mathbf{e}_2(s),$$

we have

$$k_1(s) \left(\frac{1 - \alpha k_1(s)}{f'(s)}\right)' - k_2(s) \left(\frac{\alpha k_2(s)}{f'(s)}\right)' = 0,$$

that is,

$$\alpha k_1(s)k_1'(s)f'(s) + k_1(s)(1 - \alpha k_1(s))f''(s) + \alpha k_2(s)k_2'(s)f'(s) - \alpha (k_2(s))^2 f''(s) = 0.$$

We remark that

$$f'(s) = \sqrt{1 - \alpha k_1(s)}, \qquad f''(s) = -\frac{\alpha k_1'(s)}{2\sqrt{1 - \alpha k_1(s)}},$$

so that we have

$$2\alpha k_1'(s)(1 - \alpha k_1(s)) = 0.$$

The above equality yields $k'_1(s) = 0$ for any $s \in L$. Thus the first curvature function k_1 is of constant (that is, of positive constant). By the relation $k_1 = \alpha\{(k_1)^2 + (k_2)^2\}$, the second curvature function k_2 is of positive constant too. This completes the proof.

5.4. Proof of Theorem 4.4

Let C be a curve defined by

$$\mathbf{x}(u) = \begin{bmatrix} \alpha \int f(u) \sin u \, du \\ \alpha \int f(u) \cos u \, du \\ \alpha \int f(u) g(u) \, du \\ \alpha \int f(u) h(u) \, du \end{bmatrix}, \quad u \in U \subset \mathbf{R}.$$

Here α is a positive constant number, g and h are any smooth functions : $U \to \mathbf{R}$, and $f: U \to \mathbf{R}$ is a positive valued smooth function. Then we have

$$\dot{\mathbf{x}}(u) = \begin{bmatrix} \alpha f(u) \sin u \\ \alpha f(u) \cos u \\ \alpha f(u) g(u) \\ \alpha f(u) h(u) \end{bmatrix}, \quad u \in U.$$

Here the dot () denotes differentiation with respect to u. The arc-length parameter s of C is given by $s = \psi(u) = \int_{u_0}^{u} \|\dot{\mathbf{x}}(u)\| du$, where

$$\|\dot{\mathbf{x}}(u)\| = \alpha f(u) \{1 + (g(u))^2 + (h(u))^2\}^{1/2}$$

Let φ denote the inverse function of $\psi: U \to L \subset \mathbf{R}$. Thus $u = \varphi(s)$, and we have

$$\varphi'(s) = \left\| \frac{d\mathbf{x}(u)}{du} \right\|_{u=\varphi(s)}^{-1}, s \in L.$$

Here the prime (\prime) denotes differentiation with respect to s.

Thus the unit tangent vector $\mathbf{e}_1(s)$ to the curve C at each point $\mathbf{x}(\varphi(s))$ is given by

$$\mathbf{e}_{1}(s) = \begin{bmatrix} \{1 + (g(\varphi(s)))^{2} + (h(\varphi(s)))^{2}\}^{-1/2} \sin(\varphi(s)) \\ \{1 + (g(\varphi(s)))^{2} + (h(\varphi(s)))^{2}\}^{-1/2} \cos(\varphi(s)) \\ \{1 + (g(\varphi(s)))^{2} + (h(\varphi(s)))^{2}\}^{-1/2} g(\varphi(s)) \\ \{1 + (g(\varphi(s)))^{2} + (h(\varphi(s)))^{2}\}^{-1/2} h(\varphi(s)) \end{bmatrix}, s \in L.$$

Hereafter, we use the following abbreviations for simple expression:

$$\sin := \sin(\varphi(s)), \quad \cos := \cos(\varphi(s)),$$

$$f := f(\varphi(s)), \quad g := g(\varphi(s)), \quad h := h(\varphi(s))$$

$$\dot{g} := \dot{g}(\varphi(s)) = \frac{dg(u)}{du} \bigg|_{u = \varphi(s)}, \quad \dot{h} := \dot{h}(\varphi(s)) = \frac{dh(u)}{du} \bigg|_{u = \varphi(s)},$$

$$\ddot{g} := \ddot{g}(\varphi(s)) = \frac{d^2g(u)}{du^2} \bigg|_{u = \varphi(s)}, \quad \ddot{h} := \ddot{h}(\varphi(s)) = \frac{d^2h(u)}{du^2} \bigg|_{u = \varphi(s)},$$

$$\varphi' := \varphi'(s) = \frac{d\varphi(s)}{ds} \bigg|_{s},$$

$$A := 1 + g^2 + h^2, \quad B := g\dot{g} + h\dot{h}, \quad C := \dot{g}^2 + \dot{h}^2$$

$$D := g\ddot{g} + h\ddot{h}, \quad E := \dot{g}\ddot{g} + \dot{h}\ddot{h}, \quad F := \ddot{g}^2 + \ddot{h}^2.$$

Then we have

$$\dot{A} = 2B, \ \dot{B} = C + D, \ \dot{C} = 2E, \ \varphi' = \alpha^{-1} f^{-1} A^{-1/2},$$

and

$$\mathbf{e}_{1} = \mathbf{e}_{1}(s) = \begin{bmatrix} A^{-1/2} \sin \\ A^{-1/2} \cos \\ A^{-1/2} g \\ A^{-1/2} h \end{bmatrix}.$$

In order to get the curvature functions k_1 and k_2 , we go on with calculation. Now we have

$$\mathbf{e}_{1}' = \varphi' \begin{bmatrix} -\frac{1}{2}A^{-3/2}\dot{A}\sin + A^{-1/2}\cos \\ -\frac{1}{2}A^{-3/2}\dot{A}\cos - A^{-1/2}\sin \\ -\frac{1}{2}A^{-3/2}\dot{A}g + A^{-1/2}\dot{g} \\ -\frac{1}{2}A^{-3/2}\dot{A}h + A^{-1/2}\dot{h} \end{bmatrix} = \varphi' \begin{bmatrix} -A^{-3/2}B\sin + A^{-1/2}\cos \\ -A^{-3/2}B\cos - A^{-1/2}\sin \\ -A^{-3/2}Bg + A^{-1/2}\dot{g} \\ -A^{-3/2}Bh + A^{-1/2}\dot{h} \end{bmatrix}.$$

Thus we have

$$k_1 := k_1(s) = \|\mathbf{e}_1'\| = \varphi' A^{-1} (A + AC - B^2)^{1/2}.$$

Next, Since $\mathbf{e}_2 = (k_1)^{-1} \mathbf{e}'_1$, we have

$$\mathbf{e}_{2} = \begin{bmatrix} -A^{-1/2}B(A + AC - B^{2})^{-1/2}\sin + A^{1/2}(A + AC - B^{2})^{-1/2}\cos \\ -A^{-1/2}B(A + AC - B^{2})^{-1/2}\cos -A^{1/2}(A + AC - B^{2})^{-1/2}\sin \\ -A^{-1/2}B(A + AC - B^{2})^{-1/2}g + A^{1/2}(A + AC - B^{2})^{-1/2}\dot{g} \\ -A^{-1/2}B(A + AC - B^{2})^{-1/2}h + A^{1/2}(A + AC - B^{2})^{-1/2}\dot{h} \end{bmatrix}.$$

After long process of calculation, we have

$$\mathbf{e}_{2}' + k_{1} \cdot \mathbf{e}_{1} = \varphi' A^{-3/2} (A + AC - B^{2})^{-3/2} \begin{bmatrix} (P - Q)\sin - R\cos \\ (P - Q)\cos + R\sin \\ Pg - R\dot{g} + Q\ddot{g} \\ Ph - R\dot{h} + Q\ddot{h} \end{bmatrix},$$

where

$$P = (A + AC - B^{2})^{2} + (A + AC - B^{2})(B^{2} - AC - AD) + AB(B + AE - BD)$$

$$Q = A^{2}(A + AC - B^{2})$$

$$R = A^{2}(B + AE - BD).$$

Now, we have $P = A^2(1 + C + BE - D - CD)$. Thus we have

$$\mathbf{e}_{2}' + k_{1} \cdot \mathbf{e}_{1} = \varphi' A^{1/2} (A + AC - B^{2})^{-3/2} \begin{bmatrix} (\tilde{P} - \tilde{Q}) \sin - \tilde{R} \cos \\ (\tilde{P} - \tilde{Q}) \cos + \tilde{R} \sin \\ \tilde{P}g - \tilde{R}\dot{g} + \tilde{Q}\ddot{g} \\ \tilde{P}h - \tilde{R}\dot{h} + \tilde{Q}\ddot{h} \end{bmatrix},$$

where

$$\tilde{P} = 1 + C + BE - D - CD$$

 $\tilde{Q} = A + AC - B^2$
 $\tilde{R} = B + AE - BD$.

Consequently, we have

$$\begin{split} \|\mathbf{e}_2' + k_1 \cdot \mathbf{e}_1\|^2 \\ &= (\varphi')^2 A (A + AC - B^2)^{-3} \left\{ \tilde{P}^2 - 2\tilde{P}\tilde{Q} + \tilde{Q}^2 + \tilde{R}^2 \right. \\ &+ \tilde{P}^2 (g^2 + h^2) + \tilde{R}^2 (\dot{g}^2 + \dot{h}^2) + \tilde{Q}^2 (\ddot{g}^2 + \ddot{h}^2) \\ &- 2\tilde{P}\tilde{R} (g\dot{g} + h\dot{h}) - 2\tilde{R}\tilde{Q} (\dot{g}\ddot{g} + h\ddot{h}) + 2\tilde{P}\tilde{Q} (g\ddot{g} + h\ddot{h}) \right\} \\ &= (\varphi')^2 A (A + AC - B^2)^{-3} \left\{ A (1 + C + BE - D - CD)^2 \\ &- 2 (1 + C + BE - D - CD) (A + AC - B^2) + (A + AC - B^2)^2 \\ &+ (B + AE - BD)^2 + C (B + AE - BD)^2 + F (A + AC - B^2)^2 \\ &- 2B (1 + C + BE - D - CD) (B + AE - BD) \\ &- 2E (B + AE - BD) (A + AC - B^2) \\ &+ 2D (1 + C + BE - D - CD) (A + AC - B^2) \right\} \\ &= (\varphi')^2 A (A + AC - B^2)^{-3} \\ &\times \left\{ (A + AC - B^2)^2 (1 + F) \right. \\ &+ 2 (A + AC - B^2) (D - 1) (1 + C + BE - D - CD) \\ &- 2 (A + AC - B^2) E (B + AE - BD) \\ &+ A (1 + C + BE - D - CD)^2 + (B + AE - BD)^2 (1 + C) \\ &- 2B (1 + C + BD - D - CD) (B + AE - BD) \right\}. \end{split}$$

Now, calculating the last three terms of the above, we have

$$A(1 + C + BE - D - CD)^{2} + (B + AE - BD)^{2}(1 + C)$$

$$-2B(1 + C + BD - D - CD)(B + AE - BD)$$

$$= (A + AC - B^{2})(1 + C - 2D - 2CD + D^{2} + CD^{2} + 2BE - 2BDE + AE^{2}).$$

Thus we have

$$(k_{2})^{2} = \|\mathbf{e}'_{2} + k_{1} \cdot \mathbf{e}_{1}\|^{2}$$

$$= (\varphi')^{2}A(A + AC - B^{2})^{-2}$$

$$\times \{(A + AC - B^{2})(1 + F)$$

$$+2(D - 1)(1 + C + BE - D - CD)$$

$$-2E(B + AE - BD)$$

$$+1 + C - 2D - 2CD + D^{2} + CD^{2}$$

$$+2BE - 2BDE + AE^{2}\}.$$

$$= (\varphi')^{2}A(A + AC - B^{2})^{-2}$$

$$\times \{(A + AC - B^{2})(1 + F)$$

$$-1 - C + 2D + 2CD - 2BE$$

$$-AE^{2} - D^{2} - CD^{2} + 2BDE\}.$$

Since we have $(k_1)^2 = (\varphi')^2 A^{-2} (A + AC - B^2)$, we have

$$(k_1)^2 + (k_2)^2$$

$$= (\varphi')^2 A^{-2} (A + AC - B^2)^{-2}$$

$$\times \{ (A + AC - B^2)^3$$

$$+ A^3 (A + AC - B^2 + AF + ACF - B^2F - 1 - C + 2D + 2CD - 2BE - AE^2 - D^2 - CD^2 + 2BDE) \}.$$

By the fact: $\varphi' = \alpha^{-1} f^{-1} A^{-1/2}$, we have

$$(k_1)^2 + (k_2)^2$$

$$= \alpha^{-2} f^{-2} A^{-3} (A + AC - B^2)^{-2}$$

$$\times \{ (A + AC - B^2)^3 + A^3 (A + AC - B^2 + AF + ACF - B^2F - 1 - C + 2D + 2CD - 2BE - AE^2 - D^2 - CD^2 + 2BDE) \}$$

and

$$k_1 = \alpha^{-1} f^{-1} A^{-3/2} (A + AC - B^2)^{1/2}.$$

Thus, by setting

$$f = A^{-3/2}(A + AC - B^2)^{-5/2} \times \{ (A + AC - B^2)^3 + A^3(A + AC - B^2 + AF + ACF - B^2F - 1 - C + 2D + 2CD - 2BE - AE^2 - D^2 - CD^2 + 2BDE) \}.$$

we have

$$k_1 = \alpha \{ (k_1)^2 + (k_2)^2 \}.$$

We can show a clear expression of the function f with $g, h, \dot{g}, \dot{h}, \cdots$, that is, we have

$$A = 1 + g^{2} + h^{2},$$

$$A + AC - B^{2} = 1 + g^{2} + h^{2} + \dot{g}^{2} + \dot{h}^{2} + (g\dot{h} - \dot{g}h)^{2}$$

and

$$\begin{split} A + AC - B^2 + AF + ACF - B^2F - 1 - C \\ + 2D + 2CD - 2BE - AE^2 - D^2 - CD^2 + 2BDE \\ = (g + \ddot{g})^2 + (h + \ddot{h})^2 + \{(g\dot{h} - \dot{g}h) - (\dot{g}\ddot{h} - \ddot{g}\dot{h})\}^2 + (g\ddot{h} - \ddot{g}h)^2. \end{split}$$

Therefore, we have

$$f = (1+g^2+h^2)^{-\frac{3}{2}} \times \left(1+g^2+h^2+\dot{g}^2+\dot{h}^2+(g\dot{h}-\dot{g}h)^2\right)^{-\frac{5}{2}} \times \left[\left(1+g^2+h^2+\dot{g}^2+\dot{h}^2+(g\dot{h}-\dot{g}h)^2\right)^3 + (1+g^2+h^2)^3 \times \left\{(g+\ddot{g})^2+(h+\ddot{h})^2 + \left((g\dot{h}-\dot{g}h)-(\dot{g}\ddot{h}-\ddot{g}h)\right)^2+(g\ddot{h}-\ddot{g}h)^2\right\}\right].$$

This completes the proof.

6. Examples of generalized Mannheim curves

(1) In Theorem 4.4, we set that $g(u) = \sinh(u)$, $h(u) = \cosh(u)$ for $u \in U \subset \mathbf{R}$ and α is a positive constant number. Then we have

$$f(u) = \frac{1 + \cosh^2 u}{\sqrt{2}\cosh^2 u}.$$

Thus a curve C in E^4 is given by

$$\mathbf{x}:U\to E^4$$

and

$$\mathbf{x}(u) = \begin{bmatrix} \frac{\alpha}{\sqrt{2}} \int \frac{1 + \cosh^2 u}{\cosh^2 u} \sin u \, du \\ \frac{\alpha}{\sqrt{2}} \int \frac{1 + \cosh^2 u}{\cosh^2 u} \cos u \, du \\ \frac{\alpha}{\sqrt{2}} \int \frac{1 + \cosh^2 u}{\cosh^2 u} \sinh u \, du \\ \frac{\alpha}{\sqrt{2}} \int \frac{1 + \cosh^2 u}{\cosh^2 u} \cosh u \, du \end{bmatrix}, u \in U.$$

Let s be the arc-length parameter of the curve C. Then u is given by $u = \varphi(s)$, and we have

$$\frac{du}{ds}\Big|_{s} = \varphi'(s) = \frac{\cosh \varphi(s)}{\alpha(1 + \cosh^{2} \varphi(s))}, \ s \in L.$$

The parametric representation of C with the arc-length parameter s is given by $\mathbf{x}(s) = \mathbf{x}(\varphi(s))$, that is,

$$\mathbf{x}(s) = \begin{bmatrix} \frac{1}{\sqrt{2}} \int \frac{1}{\cosh g(s)} \sin g(s) \, ds \\ \frac{1}{\sqrt{2}} \int \frac{1}{\cosh g(s)} \cos g(s) \, ds \\ \frac{1}{\sqrt{2}} \int \frac{\sinh g(s)}{\cosh g(s)} \, ds \\ \frac{1}{\sqrt{2}} \int 1 \, ds \end{bmatrix}, s \in L.$$

Then the curve C is a special Frenet curve in E^4 and

$$k_1(s) = \frac{1}{\alpha(1 + \cosh^2 g(s))},$$

$$k_2(s) = \frac{\cosh g(s)}{\alpha(1 + \cosh^2 g(s))},$$

$$k_3(s) = \frac{1}{\alpha(1 + \cosh^2 g(s))}$$

for $s \in L$. We obtain $k_1(s) = \alpha\{(k_1)^2(s) + (k_2)^2(s)\}, s \in L$. We consider a regular smooth curve \hat{C} defined by $\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha \cdot \mathbf{e}_2(s), s \in L$, that is,

$$\hat{\mathbf{x}}(s) = \frac{1}{\sqrt{2}} \begin{bmatrix} \int \frac{1}{\cosh g(s)} \sin g(s) \, ds - \alpha \frac{\sinh g(s)}{\cosh g(s)} \sin g(s) + \alpha \cos g(s) \\ \int \frac{1}{\cosh g(s)} \cos g(s) \, ds - \alpha \frac{\sinh g(s)}{\cosh g(s)} \cos g(s) - \alpha \sin g(s) \\ \int \frac{\sinh g(s)}{\cosh g(s)} \, ds + \alpha \frac{1}{\cosh g(s)} \\ \int 1 \, ds \end{bmatrix}.$$

We can prove that \hat{C} is a special Frenet curve in E^4 . Therefore, the curve C is a generalized Mannheim curve in E^4 and the curve \hat{C} is a generalized Mannheim mate curve of C.

(2) In Theorem 4.4, we set $g(u) = a \sin(bu)$ and $h(u) = a \cos(bu)$ for $u \in U \subset \mathbf{R}$, where a is a positive constant number, and b is a constant number greater than one. Then the function f is of constant, that is,

$$f = \frac{1 + a^2 b^4}{(1 + a^2 b^2)^{3/2}}.$$

Thus a curve C in E^4 is defined by

$$\mathbf{x}(u) = \begin{bmatrix} \frac{\alpha(1+a^2b^4)}{(1+a^2b^2)^{3/2}} \int \sin(u) \, du \\ \frac{\alpha(1+a^2b^4)}{(1+a^2b^2)^{3/2}} \int \cos(u) \, du \\ \frac{\alpha a(1+a^2b^4)}{(1+a^2b^2)^{3/2}} \int \sin(bu) \, du \\ \frac{\alpha a(1+a^2b^4)}{(1+a^2b^2)^{3/2}} \int \sin(bu) \, du \end{bmatrix} = \begin{bmatrix} -\frac{\alpha(1+a^2b^4)}{(1+a^2b^2)^{3/2}} \cos(u) \\ \frac{\alpha(1+a^2b^4)}{(1+a^2b^2)^{3/2}} \sin(u) \\ -\frac{\alpha a(1+a^2b^4)}{b(1+a^2b^2)^{3/2}} \cos(bu) \\ \frac{\alpha a(1+a^2b^4)}{b(1+a^2b^2)^{3/2}} \sin(bu) \end{bmatrix}$$

for $u \in U$. Let s be the arc-length parameter of C. Since we have

$$u = \frac{(a+a^2b^2)^{3/2}}{\alpha(1+a^2)^{1/2}(1+a^2b^4)}s,$$

the arc-length parametrization of C is given by

$$\mathbf{x}(s) = \begin{bmatrix} -\frac{\alpha(1+a^2b^4)}{(1+a^2b^2)^{3/2}}\cos\left(\frac{(a+a^2b^2)^{3/2}}{\alpha(1+a^2)^{1/2}(1+a^2b^4)}s\right) \\ \frac{\alpha(1+a^2b^4)}{(1+a^2b^2)^{3/2}}\sin\left(\frac{(a+a^2b^2)^{3/2}}{\alpha(1+a^2)^{1/2}(1+a^2b^4)}s\right) \\ -\frac{\alpha a(1+a^2b^4)}{b(1+a^2b^2)^{3/2}}\cos\left(\frac{b(a+a^2b^2)^{3/2}}{\alpha(1+a^2)^{1/2}(1+a^2b^4)}s\right) \\ \frac{\alpha a(1+a^2b^4)}{b(1+a^2b^2)^{3/2}}\sin\left(\frac{b(a+a^2b^2)^{3/2}}{\alpha(1+a^2)^{1/2}(1+a^2b^4)}s\right) \end{bmatrix}$$

for $s \in L$. Then C is a special Frenet curve and

$$k_1(s) = \frac{(1+a^2b^2)^2}{\alpha(1+a^2)(1+a^2b^4)},$$

$$k_2(s) = \frac{a(b^2-1)(1+a^2b^2)}{\alpha(1+a^2)(1+a^2b^4)},$$

$$k_3(s) = \frac{b(1+a^2b^2)}{\alpha(1+a^2b^4)}$$

for $s \in L$. The curvature functions k_1, k_2, k_3 are constant functions, and it holds that $k_1 = \alpha\{(k_1)^2 + (k_2)^2\}$. We define a smooth curve \hat{C} by $\hat{\mathbf{x}}(s) = \mathbf{x}(s) + \alpha \cdot \mathbf{e}_2(s)$. Let \hat{s} be arc-length parameter of the curve \hat{C} . Here we notice that

$$s = \frac{(1+a^2)^{1/2}(1+a^2b^4)^{1/2}}{a(b^2-1)}\,\hat{s}.$$

The parametric representation of the curve \hat{C} is given by

$$\hat{\mathbf{x}}:\hat{L}\to E^4$$

and

$$\hat{\mathbf{x}}(\hat{s}) = \begin{bmatrix} -\frac{\alpha a^2 b^2 (b^2 - 1)}{(1 + a^2 b^2)^{3/2}} \cos\left(\frac{(1 + a^2 b^2)^{3/2}}{\alpha a (b^2 - 1)(1 + a^2 b^4)^{1/2}} \hat{s}\right) \\ \frac{\alpha a^2 b^2 (b^2 - 1)}{(1 + a^2 b^2)^{3/2}} \sin\left(\frac{(1 + a^2 b^2)^{3/2}}{\alpha a (b^2 - 1)(1 + a^2 b^4)^{1/2}} \hat{s}\right) \\ \frac{\alpha a (b^2 - 1)}{b(1 + a^2 b^2)^{3/2}} \cos\left(\frac{b(1 + a^2 b^2)^{3/2}}{\alpha a (b^2 - 1)(1 + a^2 b^4)^{1/2}} \hat{s}\right) \\ -\frac{\alpha a (b^2 - 1)}{b(1 + a^2 b^2)^{3/2}} \sin\left(\frac{b(1 + a^2 b^2)^{3/2}}{\alpha a (b^2 - 1)(1 + a^2 b^4)^{1/2}} \hat{s}\right) \end{bmatrix}$$

for $\hat{s} \in \hat{L}$. Consequently, the curve \hat{C} is a special Frenet curve in E^4 and there exists a bijection $\phi: C \to \hat{C}$ such that $\phi(\mathbf{x}(s)) = \hat{\mathbf{x}}(\hat{s})$, where $\hat{s} = \frac{a(b^2-1)}{(1+a^2)^{1/2}(1+a^2b^4)^{1/2}}s$. And the first normal line at each point of C coincides the third normal line of \hat{C} at corresponding point under ϕ . Therefore the curve C is a generalized Mannheim curve in E^4 .

Acknowledgments. The authors would like to thank the referee for his/her careful reading of the manuscript and valuable suggestions.

References

- [1] Yu. Aminov, "The Geometry of Submanifolds," Gordon and Breach Science Publishers, Singapore, 2001.
- [2] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces (Dover Edition), Dover Publication, 1960.
- [3] C. C. Hsiung, A First Course in Differential Geometry, International Press, 1997.
- [4] T. Otsuki, Differential Geometry (Japanese), Asakura Shoten, Tokyo, 1961, (Reprint, 2004).
- [5] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J. **50** (2003), 41–58.
- [6] S. Sasaki, Elementary Differential Geometry (Japanese), Hirokawa Shoten, Tokyo, 1965.
- [7] D. J. Struik, Lectures on Classical Differential Geometry (Second Edition), Dover Publication, 1988.
- [8] Y.-C. Wong and H.-F. Lai, A critical examination of the theory of curves in three dimensional differential geometry, Tohoku Math. J. 19 (1967), 1-31.

(Hiroo Matsuda) Department Mathematics, Kanazawa Medical University, Uchinada, Ishikawa, 920–0265, Japan

(Shinsuke Yorozu) Department of Mathematics Education, Miyagi University of Education, Sendai, Miyagi, 980–0845, Japan

E-mail address: matsuda@kanazawa-med.ac.jp (H. Matsuda), s-yoro@staff.miyakyo-u.ac.jp (S. Yorozu)

Received May 12, 2008 Revised January 19, 2009