METHODS AND APPLICATIONS OF ANALYSIS. (© 2009 International Press
Vol. 16, No. 4, pp. 521-534, December 2009 007

SPECTRUM AND FUNCTIONS OF OPERATORS ON DIRECT
FAMILIES OF BANACH SPACES*

M. L. GIL’f

Abstract. We investigate the spectrum, resolvent and analytic functions of bounded linear
operators on so called direct families of Banach spaces. The direct families of Banach spaces can
be considered on the one hand as a particular generalization of the notion of the direct integral of
Hilbert spaces introduced by von Neumann, and on the other hand as a generalization of Banach
spaces with mixed norms. As it is shown in the paper, the direct families of Banach spaces is a
natural tool for the investigation of partial integral operators of the type

o(x)
u = w(z, yYu(z,y) + /0 K(z,y, s)u(e, s)ds (a < = < b0 < y < $(x))

where w(.,.) and K(.,.,.) and ¢ are given functions. Partial integral operators play an essential role
in numerous applications, in particular, in physics, mechanics, kinetic and transport theories, etc.
We also discuss applications of our results to the Barbashin type integro-differential equations.
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1. Definitions and preliminaries. Let Z = Z(w) be a Banach space of real
scalar valued functions defined on a locally compact set w with a norm |.|z. For any
T € w, let H(x) be a Banach space with a norm |.|f (). Introduce the Banach space
X of mappings f : x € w — H(x), such that |f(z)|pg ) € Z(w), and X is equipped
with the norm

(1.1) [flx = [1f(@)|a@) |z

Then we will call X a direct family of spaces H(x) with the basic space Z(w) and write
X =X(Z(w),H()), and [ = (f(z))zew-

For example, let Z(w) = LP(w) (1 < p < o0) be the space of functions defined
on a set w with the finite norm

o]z = [oloe = [ / o) Pda] /7.

Then X = X(LP(w), H(.)) and

Sl = [ 15@ydal”? (= (F@)oews @) € Hw) o € ).

Below we consider more concrete examples of space X.

In the present paper we investigate the spectrum, resolvent and analytic functions
of bounded linear operators on the direct families of Banach spaces. The direct
families of Banach spaces can be considered on the one hand as a partial generalization
of the notion of the direct integral of Hilbert spaces introduced by von Neumann,
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cf. [19], and on the other hand as a generalization of Banach spaces with mixed
norms, e.g. [1, 5]. The direct families of Banach spaces is a natural tool for the
investigation of partial integral operators discussed in Section 6 below. Partial integral
operators play an essential role in numerous applications, in particular, in kinetic
theory [16], in physics and mechanics [3]. About other applications see [4, 14, 18].
In contrast to the usual (ordinary) integral operators, partial integral operators have
rather unpleasant properties: they are noncompact even if the kernels are continuous.
This is probably the reason why the partial integral operators have not been studied
yet as systematically as the ordinary integral operators. In the sequel I is the unit
operator in the corresponding space. For a linear operator A, o(A) is the spectrum;
Ak(A), k= 1,2,... are the eigenvalues with their multiplicities and R,(A) = (A—z1)~!
(z € 0(A)) is the resolvent. By M(Y') the set of bounded linear operators acting in a
Banach space Y is denoted.

For any = € w, let A(x) be a bounded linear operator in H(z), such that the
function x — A(z)f(x) is in X for any f € X. Introduce in X the operator A by

(1.2) (Af)(x) = Ax) f(z) (f = (f(2))eew)-

Then we will call A a direct family of operators A(x) and write A = (A())zew.
We need the following simple lemma.

LEMMA 1.1. Let A(x) € M(H(z)), = € w, and

stép |A(2)| f(a) < 00.

Then A = (A(z))zcw is a bounded operator in X, and

[Alx < Slelp |A(2)| B () -

Proof. Denote wa = sup,.c,, |A(*)|g(z). Then for a f(.) € X we have

[AfO)lx = 1A@) (@)@ |z < wall f(@) @)z = wal ()] x-
As claimed. O
The previous lemma implies the following result.

COROLLARY 1.2. Let A(x) € M(H(z)),z € w, and for a A € C, let the inequality

(1.3) sup |RA(A(2))| g (a) < 00

rew
hold. Then X is a regular point of A and

(1.4) [RA(A)|x < sup |Rx(A(2))| 51 (a)-

rTEW
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2. Spectral variations and operator functions. Let A and T be linear op-
erators in an arbitrary Banach space Y. Then the quantity

sva(T) := sup inf - A
(T) JSup  adiy = Al

is called the spectral variation of T with respect to A.

LEMMA 2.1. Let A be defined by (1.2) and T be a bounded linear operator in X .
In addition, with the notation v = |A — T|x, let the condition

vsup |R.(A())|g@) <1

rTEW

hold. Then X is a regular point of T. Therefore, for each u € o(T) there is at least
one x € w, such that either p € o(A(x)), or

(2.1) VIR, (A(@)) () = 1.

Proof. The required result is due to (1.4). O
Let p(A, A) denote the distance between a point A € C and o(A):

AN = inf |s— A
p(A,N) Selg(A)ls |

LEMMA 2.2. Let A be defined by (1.2) and T be a bounded linear operator in
X =X(Z(w),H(.)). In addition, let

[BA(A(@)) (@) < (2, 1/p(A(2), A)) (A € o(A(2)); © € w)

where ®(x,y) for each x € w, is a continuous monotonically increasing non-negative
function of a non-negative variable y, such that ®(x,0) = 0 and ®(z,00) = oo.
Then for any p € o(T), there is at least one © € w and an s € o(A(z)), such that
| — 8| < z(z,v), where z(x,v) is the unique positive Toot of the equation

v®(x,1/2) = 1.

Proof. By (2.1)
vz, o (Al ) > 1.

Since ® monotonically increases in y, p(A(x), ) < z(x,v). This proves the lemma. O

Let X = X(Z(w), H(.)) and A = (A(x)) be defined by (1.2), where A(z) (z € w)
is a bounded operator in H(x). Let F be a scalar-valued function, which is analytic on
a neighborhood of o(A(x)). Let a contour C,, consist of a finite number of rectifiable
Jordan curves, oriented in the positive sense customary in the theory of complex vari-
ables. Suppose that C, is contained in the domain of analyticity of F' and surrounds
o(A(z)) for all z € w. Then we put

(2.2) F(A@) = —-— | F()RA(A(x))dx
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and

(2.3) (F(A)f)(@) = FA@) @), (f = (f@))ew).
Suppose that

(2.4) sup [F(A(@))| () < 00.

Then by Lemma 1.1 F(A) is a bounded operator in X = X (Z(w), H(.)), and

(2.5) [F(A)|x < sup [F(A@)|a)-

rTEW

3. Operators with nilpotent parts from ideals of Hilbert spaces. In the
sequel, for each x € w, H(x) is a separable Hilbert space with a scalar product (.,.) g (z)
and the norm ||H(m) =./(, )H(m)

Furthermore, let H be an arbitrary separable Hilbert space. A compact qua-
sinilpotent operator will be called a Volterra operator, cf. [8]. Let E(t) be a left-
continuous orthogonal resolution of the identity in H, defined on a real segment [a, b].
E is called a maximal resolution of the identity (m.r.i.), if its every gap E(to+0)—E(to)
(if it exists) is one-dimensional, cf. [8]. An m.r.i. E(t) belongs to A € M(H) (or A
has an m.r.i. E(t)), if E(t)AE(t) = AE(t) (t € [a,b]). We will say that A € M(H)
is a E-triangular operator if it has an m.r.i. F defined on [a,b] and admits the repre-
sentation

(3.1) A=D+YV,

where D is a normal operator and V' is a Volterra one, having the following properties:
(3.2) E({)VE(t) =VE(t) and DE(t) = E(t)D (t € [a,b]).

A FE-triangular operator A has the property

(3.3) o(A) = o(D),

cf. [8, Lemma 7.5.1]. Each compact operator is E-triangular [12], each operator
having the Schatten-von Neumann Hermitian component is E-triangular; for more
details see [8, Chapter 7]. Note that the notion of the triangular representation of
operators similar to the notion of E-triangular operator was introduced in [12].

Let A be defined by (1.2). We will say A is a locally triangular operator, if for
all z € w, A(z) is a E-triangular operator with an m.ri. E,(¢) dependent on z,
in general. Furthermore, let W (z) = W(H(x)) be a norm ideal of compact linear
operators in H(x). That is, W (z) is algebraically a two-sided ideal, which is complete
in an auxiliary norm Ny (,(.) for which Nyy () (CB) and N(BC)w (5 (B € W(z),C €
M(H (x))) are both dominated by |C|(z)Nw () (B). In addition, suppose that there

are positive numbers 6, (k = 1,2,...), independent on x with 9,1/16 — 0as k — oo,
such that for an arbitrary Volterra operator V(z) € W (x), the inequality

(3.4) VH@) @) < 06Ny (o) (V(2)) (2 €w)

holds. Below we show that the Schatten-von Neumann ideals are examples of ideals
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THEOREM 3.1. Let X be a direct family of separable Hilbert spaces H(x),x € w,
with an arbitrary basic space Z, and A be defined by (1.2), where A(z) are bounded
E-triangular operators. Suppose that for each x € w, the nilpotent part V(zx) of A(x)
belongs to a norm ideal W (z) with the property (3.4). In addition, for a X\ € C, let

(3.5) —supz k+1 ) < 0.

me

Then X is a regular point of A and |Rx(A)|x < ().

Proof. In this proof, for the brevity put A(z) = A,D(z) = D, H = H(x),
W =W(z) and V(z) =V with a fixed z € w.

Let A be a regular point of the operator D. According to the triangular represen-
tation A = D + V, we obtain

(3.6) Rx(A) = (D+V = XI)"' = R\(D)(I + VRA(D))™*.
Operator VR (D) for a regular point A of the operator D is a Volterra one due to
Lemma 7.3.4 from [8]. Therefore,

(I+VRA(D))™' => (VRA(D))¥(-1)*
k=0

and the series converges in the operator norm. Thus,

o0

3.7) Ra(4) = RA(D) Y _(VRA(D)*(-1)".

k=0
Since VRA(D) €Y is a Volterra operator, according to (3.4),

|(VRA(D))*| < 0k Ny (VRA(D)).

But Ny (VRA(D)) < Ny (V)|Ra(D)|s, and thanks to (3.3), [Rx(D)|# = sy =

—p(i)\). So

k
|(VRA(D)] < %

Relation (3.7) implies

- 0, NE
[Rx(A)lg < [BA(D)|a Y [(VRA(D)*|u < Z k+1WA )\
Now taking into account that A = A(z), by Corollary 2.3 we get the required result. O
4. Operators with variable Schatten-von Neumann nilpotent parts. Let
H be an arbitrary separable Hilbert space, again. For an integer ¢ = 1,2,.., let
Saq C M(H) be the Schatten-von Neumann ideal with the finite ideal norm

Noo(K) := [Trace (K*K)7)Y/?7 (K € Sy,).
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The asterisk means the adjoint. Let
(41) Ve qu

be a Volterra operator in H. Then due to Corollary 6.9.4 from [§],

(4.2) Vil <OONL(V) (G=1,2,..)
where

ol = L1

! [i/q]!

and [z] means the integer part of a positive number z. Inequality (4.2) can be written
as

. 2qk+m( )
qtm < 27 7 = : = —
(4.3) \% |y < N (k=0,1,2,...; m=0,...,q—1).
In particular if V' € S5, i.e. is a Hilbert-Schmidt operator, then
Ny (V)
VFg < 22=2 (k=0,1,2,..).
| |H = il ( y Ly 4y )

Theorem 3.1 and (4.2) imply

COROLLARY 4.1. Let A be defined by (1.2) where A(x) are E-triangular operators.
Let the nilpotent part V(z) of A(z),x € w, belong to Saq (¢ =1,2,...) and for a X € C,
let

(4.4) P(AA) = ;Ielf) p(A(z),\) >0
and
(4.5) Vg 1= ilelg Noy(V(z)) < 0.

Then X is a regular point of A, and

- © 9,(;1)1)]2“
(4.6) Ra(A)x <3 —h 20
E;M“MJ)

If V() is a Hilbert-Schmidt operator and (4.4), and (4.5) hold with ¢ = 1, then
due to the previous corollary

a1 o0 pak+i
q

=i ﬁqk+j+1([17 )\)\/H'
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Hence by the Schwarz inequality, we easily get

(4.7) [RA(A)]x < \/_Z pJ“ A A) xp[ﬁ2qz) v A)

Furthermore, let A be a bounded E-triangular operator in an arbitrary separable
Hilbert space H, again. Let its nilpotent part V € Sy and F be a holomorphic
function on a neighborhood of the closed convex hull co (A) of the spectrum of A.
Then by Theorem 6.9.1 [8],

F < sup FEI (X .
IF(4)]x ;OAGCO(A)| Oy

By this inequality and (2.5) we can assert the following result.

THEOREM 4.2. Let A be a linear operator defined in X(Z(w), H(.)) by (1.2),
where A(z) (z € w) is a bounded E-triangular operator whose nilpotent part V(x) is
a Hilbert-Schmidt operator. In addition, for all x € w, let function F' be holomorphic
on a neighborhood of the closed convex hull co (A(x)) of the spectrum of A(z), and

o0

N§ (V(x))
F,A) :=sup sup  |[FP O 22 < .
n(rA) xewkZ:%)Aeco(A(m))' X (k!)3/2

Then |F(A)|x < n(F,A).

5. Variable compact and quasi-Hermitian operators. Let A(x) € Sy (z €
w). Then due to [8, Lemma 6.5.2)

(5.1) No(V(2)) = g(A(x))

where
g(A(z)) == ( Z [Ar(A H1/2 < N2(A(x)) — |Trace A%(z)|.

If A(x) is a normal operator, then g(A(x)) = 0. If
(5.2) sup Na(A(z)) < 00

rTEW

then

g :=supg(A(z)) < oo

TEW

and under condition (4.4), inequality (4.7) implies

- V2 G2
IRA(A)|x < ——eap [
P(AN) (AN
Now let A(x) € Soq (x € w; ¢ = 2,3,...). It is simple to check that Ny (V(x)) <
2Ns4(A(z)). Thus, if

] (Agoa(A)).

(5.3) Nog(A) := sup Noy(A(x)) < oo,

rTEW
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then (4.7) yields

1))J Vo (A))24 N
Ra(A)lx < V2 z O cop (L3 (g ()

A linear operator in a Hilbert space is called a quasi-Hermitian operator if it is a sum
of a selfadjoint operator and a compact one. Suppose that

Ar(z) = (A(z) — A" (x))/2i € Ss.
Then due to [8, Lemma 7.7.2]
(5.4) No(V(2)) = u(A(x))

where
w(A(z)) = V2[N2(Af(z Z [T AR (A(2))]2]Y2 < V2N (Af(2)).

If A(z) is a normal operator, then u(A(x)) = 0. Thus, if

(5.5) sup Na(Aj(x)) < oo,

rew

then @ := sup,,, u(A(z)) < oo, and under condition (4.4), according to (4.7), we get

- V2 2 -
(56) IRl < S=seap o] (A o).

Similarly, by Lemmas 7.7.2 [8] and 7.15.2 [8] the cases A*(x)—A(x) € S2q (¢ =2,3,...)
and

A@)A* () — T € Saq (q=1,2,..))

can be investigated.
Now let us turn to analytic functions. Theorem 4.2 and relation (5.1) imply

COROLLARY 5.1. Let X = X(Z,H(.)) and A be defined by (1.2), where
A(r) (z € w) is a Hilbert-Schmidt operator, satisfying condition (5.2). In addi-
tion, for all x € w, let F' be holomorphic on a neighborhood of the closed convex hull
co(A(x)) of the spectrum of A(x). If with the notation

[FO )
Y i=sup  sup =,
TEW Neco(A(x)) (k')3/2

the condition
- 1
limp—oo v/ 901 < 7

holds, then

(5.7) FA)x <3 ung".
k=0
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This result is sharp. Indeed, let Z = L*(w) and A(z) be normal operators for all
x € w. Then A is normal and § = 0. Besides (5.7) becomes the equality

(5.8) [F(A)|x =sup sup [F(N)],
rEW AET(A(x))

provided

(5.9) sup  |[F(A)[ = sup [F(})]

A€co(A(x)) A€o (A(x))

for all € w. Similarly, Theorem 4.2 and relation (5.4) imply

COROLLARY 5.2. Let X = X(Z,H(.)) and A be defined by (1.2), where
A(z) (z € w) satisfies condition (5.5). In addition, for all v € w, let F be holo-
morphic on a neighborhood of co (A(z)) and the condition

— 1
hmk—»oo k\/ wk <=,
u

hold. Then

(5.10) F(A)x <3 it
k=0

This result is also sharp. Namely, (5.10) becomes the equality (5.8), provided
A(z) is normal operators for all x € w, and (5.9) holds.

EXAMPLE 5.3. Let condition (5.5) hold. Then

~ oA > tkgk
(5.11) et x < ey e (02 0),
k=0

where a(A) := sup, Re o(A(x)).
6. Partial integral operators. For finite real numbers a and b > a, let A =
{a <2 <b,0<y<é(x)}, where () is a continuous nondecreasing positive function

defined on [a, ], and X is the Banach space of complex functions f(.,.) defined on A
with the norm

b o(x)
(6.1) FGlx =1 / ( / () Pdy)?’2 de]? (1< p < o0).

Take w = [a,b], H(x) = L*(0,¢(x)) and Z = LP(a,b). So X = (LP(a,b), L*(0,¢(.)).
Besides,

o(x)
0]y = / o(y)Pdy (v € L2(0, 6(x))).

Our main object in this section is the partial integral operator B defined by

¢(x)
(Bf)(@,y) = wiz,y)f(z,y) + / K (., 5)f (z, 5)ds
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(6.2) (a<2<b 0<y<gx); feX)

where w(z,y) and K(x,y,s) are scalar functions satisfying the conditions pointed
below. We can write

(Bf)(z,y) = B(z)f(z,y),

where
@(x)
(B(x)o)(y) = w(z, y)o(y) + / Kz, s)(s)ds (v € L2(0, ().

So (1.2) holds. Operator B is called a partial integral operator, inasmuch as the inte-
gration is carried out only with respect to some arguments, while the other arguments
of the integrand are ”frozen”. The partial integral operators were investigated in the
well-known papers [13] and [15]. In the paper [13] the author gives us sufficient con-
ditions under which the spectral radius of a partial integral operator of Volterra type
is zero, or a partial integral operator of Volterra-Fredholm type has a trivial essential
spectrum. In the paper [15], interesting results on the existence, continuity and the
regularity of solutions of the equations with partial integral operators are given, in
particular applications to a linear integral equation, occurring in the mechanics of
continuous media, are discussed. Note that in the pointed literature mainly the case
¢(x) = const is investigated. The notion of the direct family of Banach spaces enables
us to apply many results on compact operators to partial integral operators. We con-
sider the case of two variables only for simplicity. The suggested approach allows us
to explore the operators acting in spaces of functions of several variables. Note that
the special case when Z is a Hilbert space was explored in [11].

Assume that w(z,y) is measurable, real and bounded on A, and K satisfies the
condition

~ 1

b o) -
(6.3) Na(Kp) := 5 sup [/ / K (z,y,s) — K(z,s,y)|%ds dy]'/* < co.
alz<b Ja JO

Since w is real, the operator B(x) satisfies the condition

sup Na(By(x)) = Na(K1) (Br = (B — B*)/2i).

a<x<b
Inequality (5.6) implies our next result.

THEOREM 6.1. Let B be the partial integral operator defined by (6.2) and condi-
tion (6.3) hold. In addition, for a A € C, let

p(B, ) == inf p(B(x),\) > 0.

Then

S
BB < =sean |

Now we are going to establish bounds for spectra of the considered partial integral
operator. Let

o(x) ry
v_ =] sup / / |K (2, y,s)|?ds dy]*/? < oo
z€la,b] JO 0
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and

#(z) o)
v4 = [ sup / / \K (,y,s)|? ds dy]*/? < cc.
z€la,b] JO y

THEOREM 6.2. Let B be the partial integral operator defined by (6.2). Then the
spectrum of B is included in the set
{Z eC: |U}(I,y) - Z| < T(K) < va (xvy) € A}a

where r(K) is the unique positive oot of the equation

2

v
1=v_ = —+
V-~ exp [22]
and
e/a ifa<e . ) el/?
= _ ; with the notation a = .
VK { [In(a)]"*? ifa>e V2v_

Proof. Define the operators D(z), V4 (z) and V_(x) by

#(z)
(D(z)v)(y) = wlz,y)v(y), (Vi(2)v)(y) :/ K(z,y, s)v(s)ds,
and
(V- (z)v)(y) = /U K(z,y,s)v(s)ds (v e L*(0,¢(x)).
0

Put By (z) = D(z) + Vi (z). Then the operator B, = (B4 (2))ze[a,p is locally E-
triangular. Now apply Lemma 2.2 with T' = Band A = B+. Then by Theorem 6.1,
for any p € o(B) we have

lw(z,y) —pl <r(K) (e <2 <b 0<y <))

But by Lemma 8.3.2 from [8], the inequality r(K) < tx holds. This proves the
required result. O

Certainly, in the previous theorem, one can exchange the places of v_ and v..
By the previous theorem, the spectral radius of B satisfies the inequality

rs(B) < sup |w(z,y)| + VK-
z,yEA

In particular, if w(z,y) = 0, then r¢(B) < 1x. This inequality, in the case of
the operators which are ”close” to Volterra ones, is a refinement of the well-known
estimate

B #(x)
r(B) < vrai sup [ | (w.y.5)lds,
0

z,y

cf. [17, Section 16.6]. Note that the ”inner” bounds for the spectrum of operator B
can be derived by making use the results of the papers [7, 9]. Furthermore, we will
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say that a bounded linear operator A is stable if Re o(A) < 0. By Theorem 6.2, we
have

a(B) := Re o(B) < suepAw(x, Y) + VK.
@y

So B is stable, provided sup, yea W(z,y) < —YKk.
Furthermore, Theorem 6.1 and Theorem 3.1 imply

COROLLARY 6.3. Let B be defined by (6.2) and condition (6.3) hold. Let T be a
bounded linear operator acting in X = X (LP(a,b), L*(0,¢(.))) (1 < p < c0). Then for
any p € o(T), there are an x € [a,b] and an s € o(B(x)), such that |p—s| < r(K,T),
where (K, T) is the unique positive Toot of the equation

- V2 INZ(K
1=|B —T|X7 exp [17(21)]

Note that z(K,T') can be estimated by bounds for the zeros of entire functions
suggested in [10].

7. The Barbashin type equations. Let X, w(z,y) and ¢(x) be the same as
in the previous section. In this section we will consider the scalar Barbashin type
equation

u(t,z,y)

#(z)
S —wyultag) + [ K@ys)utos)ds + ¥ta.)
0

(7.1) (x,y € A; £ >0)

where U(t,.,.) € X,t > 0.

The integro-differential equations of Barbashin type, naturally arise from systems
of n differential equations after passing to the limit n — oo, or after replacing discrete
indices by continuous variables. Indeed, following [4, p. 431], consider, the system

(7.2) % _ Ma(t) + Su(t), =(t) = Cq(t) + Duz),

where the values of M, S, C, and D are m X m-matrices, and the values of ¢, z, and u
are m X n-matrices. That system represents the nonstationary balance equations for
certain quantities (called substances) over given balance spaces, and the state vector ¢
represents a distribution density function for these substances. Physically, n denotes
the number of independent balance spaces, while m is the number of independent
substances. Here passing to the limit n — oo has a natural physical meaning. In fact,
n — oo means that no more discrete balance spaces can be distinguished which occurs
in systems with spatially distributed parameters. The mathematical model leads here
to a system of m partial differential equations. On the other hand, m — oo means
that one has to deal with an arbitrarily large number of substances. In this case we
get the equation of the type

dq(s,t)
ot

d
(7.3) =v(s,t)q(s,t) + / My (s,v)q(v,t)dv + (s, t)
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where 7(s,t) and My(s,v) are matrix valued functions and (s, t) is a vector valued
function. Equation (7.3) is an example of Barbashin type integro-differential equation
with respect to ¢(s,t). The variable s € [¢, d] may have different meanings, according
to the physical setting. More general example of Barbashin type integro-differential
equation is given by the equation

0 t d(@)
WD osralssmnt) + [ Mo, 0o, 0o+ (5,20
e(@)
with a parameter z. For more details about the theory, history and applications of
the Barbashin type equations see [4] and [18].
Furthermore, let us turn to equation (7.1). It is equivalent to the following one:

u(t) :eétu(0)+/0 B (s)ds (u(t) = u(t,z,y), U(t) = U(t,z,y))

where the operator B is defined as in the previous section. Take into account that
(5.11) and (6.3) imply

Pt x < C(t) (t>0)
where

((t) 1= eotPr 35 VENKYT,

3/2
= (Y

Thus, for a solution u(t) to equation (7.1), we get the following estimate:

lu(®)x < C(0)]u(0)]x +/0 ((t = s)[W(s)|xds.

This inequality enables us to explore linear and nonlinear perturbations of the con-
sidered equations. To the best of our knowledge, such estimates are unknown in the
available literature.
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