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CASCADE OF PHASE SHIFTS AND CREATION OF NONLINEAR

FOCAL POINTS FOR SUPERCRITICAL SEMICLASSICAL

HARTREE EQUATION∗

SATOSHI MASAKI†

Abstract. We consider the semiclassical limit of the Hartree equation with a data causing
a focusing at a point. We study the asymptotic behavior of phase function associated with the
WKB approximation near the caustic when a nonlinearity is supercritical. In this case, it is known
that a phase shift occurs in a neighborhood of focusing time in the case of focusing cubic nonlinear
Schrödinger equation. Thanks to the smoothness of the nonlocal nonlinearities, we justify the WKB-
type approximation of the solution for a data which is larger than in the previous results and is
not necessarily well-prepared. We also show by an analysis of the limit hydrodynamical equaiton
that, however, this WKB-type approximation breaks down before reaching the focal point: Nonlinear
effects lead to the formation of singularity of the leading term of the phase function.
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1. Introduction. This paper is devoted to the study of the semiclassical limit
ε→ 0 for the Cauchy problem of the semiclassical nonlinear Schrödinger equation for
(t, x) ∈ R+ × R

n

iε∂tu
ε +

ε2

2
∆uε =εαN(uε), uε

|t=0(x) =a0(x)e
−i |x|2

2ε(1.1)

with the nonlocal nonlinearity of Hartree type

(1.2) N(uε) = λ(|x|−γ ∗ |uε|2)uε,

where n > 3, λ is a real number, and γ is a positive number. In this paper we consider
the small-nonlinearity case α > 0. The case α = 0 is studied in [1, 9]. In the case of
linear equation N ≡ 0, the quadratic oscillation in the initial data causes a caustic at
the origin at t = 1. In [4, 5], R. Carles justified the general heuristics presented in
[20] in the case of (1.1) with N(y) = |y|βy (see, also [7]), and two different notions
of the criticality for α are realized. One is concerned with the nonlinear effect on the
behavior far from the focal point, and the other with that near the focal point. The
situation is similar in the case of Hartree equation

iε∂tu
ε +

ε2

2
∆uε = λεα(|x|−γ ∗ |uε|2)uε,(1.3)

uε
|t=0(x) = a0(x)e

−i |x|2
2ε .(1.4)

(see, [8, 10, 27]). The two critical indices are α = 1 (far from focal point) and
α = γ (near the focal point). They are completely different notions. For example,
the second index α = γ depends on the shape of the nonlinearity while the first not.
Using terminologies in [6], we have the following nine cases:
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α > 1 α = 1 α < 1
α > γ linear WKB nonlinear WKB supercritical WKB

linear caustic linear caustic linear caustic
α = γ linear WKB nonlinear WKB supercritical WKB

nonlinear caustic nonlinear caustic nonlinear caustic
α < γ linear WKB nonlinear WKB supercritical WKB

supercritical caustic supercritical caustic supercritical caustic

Roughly speaking, the term “linear WKB” means that, far from the caustic, the
propagation of uε does not involve the nonlinear effect at leading order. The term
“linear caustic” means that the nonlinear effect is negligible at leading order when
the solution crosses the focal point.

Now, let us be more precise about this problem with (1.3)–(1.4). Let wε be the
solution of the linear equation (iε∂t + (ε2/2)∆)wε = 0 with the same initial data as
in (1.4). Note that wε is approximated by the WKB-type approximate solution

(1.5) vε
lin =

1

(1 − t)n/2
a0

(
x

1− t

)
ei

|x|2
2ε(t−1)

as long as ε/(1− t) is small. In the linear WKB case α > 1, it is shown in [8, 26, 27]
that the solution uε is close to wε (and so to vε

lin) before caustic. The time interval
in which uε is approximated by wε depends on the latter critical notion α = γ: If
α > γ then uε → wε as ε → 0 for all t 6 1; if α = γ then it holds for 1 − t > Λε
with a large Λ; if α < γ then it holds for 1 − t > Λεµ with a large Λ and some
µ = µ(α, γ) 6 (α − 1)/(γ − 1). In the case α > γ, the asymptotic profile of the
solution beyond the caustic is also given in [8]. Let us proceed to the supercritical
caustic case α < γ. In this case, infinitely many phase shifts occur between the

time 1 − t = Λ1ε
α−1
γ−1 , called a first boundary layer, and the time 1 − t = Λεα/γ ,

called a final layer. This phenomena, called cascade of phase shifts, is first shown
in [6] for (1.1) with certain class of nonlinearities including the cubic nonlinearity
N(y) = |y|2y, and the asymptotic behavior of the solution is given before the final
layer, 1 − t ≫ εα−1/γ−1, in the case (γ >)α > 1. The similar result is proven also
in the nonlinear and supercritical WKB case α 6 1, provided the initial data is a
properly-modified one of the form

(1.6) uε
|t=0(x) = b0(ε

α
γ , x)e−i

|x|2
2ε exp(iε

α
γ −1φ0(ε

α
γ , x)),

where (b0(t, x), φ0(t, x)) is a suitable function defined in terms of a0. Let us call this
type of data as a well-prepared data.

The aim of this paper is to give an explicit asymptotic profile of the solution of
(1.3)-(1.4) (before and) on the final layer for whole γ > α > 0 with a not-modified
data. In particular, the behavior of the solution is new in the following situations:

• On the final layer, that is, at t = 1 − T−1εα/γ with not necessarily small
T > 0.
• α 6 1 with an initial data which is not necessarily of the form (1.6).

Moreover, it will be shown that the WKB-type approximation of the solution breaks
down at some time on the final layer, that is, at t = tc := 1 − (T ∗)−1εα/γ for some
T ∗ > 0 for a certain class of initial data.

For our analysis, we apply the following transform introduced in [6]:

(1.7) uε(t, x) =
1

(1− t)n/2
ψε

(
ε

α
γ

1− t ,
x

1− t

)
exp

(
i
|x|2

2ε(t− 1)

)
.
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Then, (1.3)–(1.4) becomes

iε1−
α
γ ∂τψ

ε +
(ε1−

α
γ )2

2
∆yψ

ε = λτγ−2(|y|−γ ∗ |ψε|2)ψε, ψε
|τ=εα/γ (y) = a0(y),

where τ = εα/γ/(1− t) and y = x/(1− t). The quadratic oscillation of the initial data
is canceled out. This transformation clarifies the problem; if the nonlinear effect is
weak and so if uε behaves like wε and vε

lin, then ψε is close to a0; if the solution has
a rapid oscillation other than exp(i|x|2/2ε(t − 1)), then ψε becomes oscillatory. We
change the parameter into h = ε1−α/γ . The limit ε → 0 is equivalent to h → 0 as
long as α < γ. Denoting ψε by ψh, our problem is reduced to the limit h→ 0 of the
solution to

ih∂τψ
h +

h2

2
∆yψ

h = λτγ−2(|y|−γ ∗ |ψh|2)ψh, ψh

|τ=h
α

γ−α
(y) = a0(y).(1.8)

Since τ = hα/(γ−α)/(1 − t), the correspondence between boundary layers of t and τ
variables is as follows:

(1.9)

initial time: t = 0 ←→ τ = h
α

γ−α ,

first layer: t = 1− Λ1ε
α−1
γ−1 ←→ τ = Λ−1

1 h
1

γ−1 ,

final layer: t = 1− T−1ε
α
γ ←→ τ = T.

Our analysis of (1.8) is based on a generalized WKB method by Gérard [15] and
Grenier [18]. We apply a modified Madelung transformation

(1.10) ψh = ah exp

(
i
φh

h

)

to (1.8), where ah is complex valued and φh is real valued. This choice is slightly
different from the usual Madelung transformation

ψh =
√
ρh exp

(
i
Sh

h

)

(see [14]) which leads us to an equation of compressible fluid with the quantum pres-
sure. It is essential that ah takes complex value and, therefore, φh 6= Sh in general.
The choice (1.10) allows us to rewrite (1.8) as the system for the pair (ah, φh):

(1.11)





∂τa
h +∇φh · ∇ah +

1

2
ah∆φh = i

h

2
∆ah,

∂τφ
h +

1

2
|∇φh|2 + λτγ−2(|y|−γ ∗ |ah|2) = 0,

ah

|τ=h
α

γ−α
= a0, φh

|τ=h
α

γ−α
= 0.

If we approximate the solution of (1.11) up to h1 order, that is, if we establish an
asymptotics such as

ah = b0 + hb1 + o(h1), φh = φ0 + hφ1 + o(h1),(1.12)

then, by means of (1.10), we immediately obtain the WKB-type approximate solution
of ψh. This method is first employed for nonlinear Schrödinger equation with a certain
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class of defocussing local nonlinearity including the cubic nonlinearity N(y) = |y|2y
for analytic data [15] and for Sobolev data [18] (see, also [2, 11]), and is extended to
the Gross-Pitaevskii equation [3] (see, also [22]) and to the equation with (de)focusing
nonlocal nonlinearities: Schrödinger-Poisson equation [1, 23] (see, also [21, 30]) and
Hartree equation [9].

Our goal is to justify (1.12). The natural choice of the main part (b0, φ0) may be
(ah, φh)|h=0. Letting h = 0 in (1.11), we obtain a hydrodynamical system

(1.13)





∂τ b0 +∇φ0 · ∇b0 +
1

2
b0∆φ0 = 0,

∂τφ0 +
1

2
|∇φ0|2 + λτγ−2(|y|−γ ∗ |b0|2) = 0,

b0|τ=0 = a0, φ0|τ=0 = 0.

For a Sobolev data a0, (1.13) has a unique local solution (Theorem 1.3). Then, the
main task is to determine h1-term (b1, φ1). The difficulty of finding h1-term lies in
the following two respects:

1. The equaiton (1.11) itself depends on h through the term ih
2 ∆ah.

2. The initial time of (1.11) tends to τ = 0 at a speed h
α

γ−α .
We will see that the first becomes crucial when we consider the asymptotic behavior
of the solution on the final layer, and that a suitable choice of h1-term is the key
for overcoming this difficulty. We use (bequ, φequ) defined by (1.18), below, as an

h1-term and show an asymptotic behavior of ψh for τ ∈ [h
α

γ−α , T ] when α > 1,
where T is independent of h (Theorem 1.3). By (1.9), τ ∈ [h

α
γ−α , T ] is equivalent to

t ∈ [0, 1− T−1εα/γ ], from the initial time to the final layer. On the other hand, the
second becomes crucial in the supercritical case α < 1. This is because the moving
speed of initial time becomes too slow. In this case, we need three more kinds of
correction terms whose order are between h0 and h1. With them, we describe the
asymptotic behavior also for α ∈]0, 1[. A heuristic observation on these correction
terms is in Section 2.2. The rigorous result is in Theorem 5.1.

The well-prepared data (1.6) is closely related to the second problem listed above.
The function (b0, φ0) in (1.6) is the solution of (1.13). If we employ the well-prepared
data and consider (1.3) with (1.6), then (1.11) changes into

(1.14)





∂τa
h +∇φh · ∇ah +

1

2
ah∆φh = i

h

2
∆ah,

∂τφ
h +

1

2
|∇φh|2 + λτγ−2(|y|−γ ∗ |ah|2) = 0,

ah

|τ=h
α

γ−α
= b0(h

α
γ−α ), φh

|τ=h
α

γ−α
= φ0(h

α
γ−α ).

The initial time is still moving, however, the only difference between (1.14) and (1.13)
is the existence of ih

2 ∆ah. Thus, we will see that we do not meet with the second
problem any longer. This point is discussed in Sections 5.2.

We also consider the problem of global existence of the solution to (1.13). With
the notation (ρ, v) := (|b0|2,∇φ0), (1.13) is the compressible Euler equation with
time-dependent pressure term of Hartree type:

(1.15)






∂τρ+ div(ρv) = 0,

∂τv + (v · ∇)v + λτγ−2∇(|x|−γ ∗ ρ) = 0,

ρ|τ=0 = |a0|2, v|τ=0 = 0.
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We adapt results in [12, 25] (see also [24, 28]) to prove that C1-solution to (1.15)
cannot be global in time, in several situations (Theorems 1.5 and 1.6). This implies
(1.12) breaks down before caustic t = 1 (see Section 2.1).

1.1. Main result I. To state our result precisely, we introduce some notation.
For n > 3, s > n/2+1, p ∈ [1,∞], and q ∈ [1,∞], we define a function space Y s

p,q(R
n)

by

(1.16) Y s
p,q(R

n) = C∞
0 (Rn)

‖·‖Y s
p,q(Rn)

with norm

(1.17) ‖·‖Y s
p,q(Rn) := ‖·‖Lp(Rn) + ‖∇·‖Lq(Rn) +

∥∥∇2·
∥∥

Hs−2(Rn)
.

We denote Y s
p,q = Y s

p,q(R
n), for short. For q < n, we use the notation q∗ = nq/(n−q).

This space Y s
p,q is a modification of the Zhidkov space Xs, which is defined, for

s > n/2, by Xs(Rn) := {f ∈ L∞(Rn)|∇f ∈ Hs−1(Rn)}. The Zhidkov space was
introduced in [31] (see, also [13]). Roughly speaking, the exponents p and q in Y s

p,q

indicate the decay rates at the spatial infinity of a function and of its first derivative,
respectively. Moreover, the Zhidkov space Xs corresponds to Y s

∞,2 in a sense, if
n > 3. We discuss these points more precisely in Section 3.1. We also note that Y s

2,2

is the usual Sobolev space Hs. We use the following notation: Y∞
p,q := ∩s>0Y

s
p,q; for

intervals I1 and I2 of [1,∞], Y s
I1,q := ∩p∈I1Y

s
p,q and Y s

p,I2
:= ∩q∈I2Y

s
p,q. These notation

are sometimes used simultaneously, for example Y∞
I1,I2

:= ∩s>0,p∈I1,q∈I2Y
s
p,q. We also

use the operator

|Jε|s = ei |x|2
2ε(t−1) |(1− t)∇|se−i |x|2

2ε(t−1) .

This is the scaled version of the Galilean operator and is suitable for a study of rapid
phases other than ei|x|2/2ε(t−1).

We also introduce the following systems for a pair (bequ, φequ):

(1.18)


 ∂τbequ +∇φequ · ∇b0 +∇φ0 · ∇bequ +

1

2
bequ∆φ0 +

1

2
b0∆φequ =

i

2
∆b0,

∂τφequ +∇φ0 · ∇φequ + λτγ−2(|y|−γ ∗ 2 Re b0bequ) = 0,

where (b0, φ0) is a solution of (1.13). This will be posed with the zero data

bequ|τ=0 = 0, φequ|τ=0 = 0(1.19)

or the data

bequ|τ=0 = 0, φequ|τ=0 = λ(|y|−γ ∗ |a0|2)/(γ − 1).(1.20)

Notation 1.1. Let T > 0 and X be a Banach space. Let {kj} be an increasing
sequence of real number, φ(t, x) ∈ C([0, T ];X) be a function , and {φj} be a sequence
of function in X. We write

φ(t, x) ≍
∞∑

j=1

tkjφj in X
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if it holds that

∥∥∥∥∥∥
φ(t, x) −

J∑

j=1

tkjφj

∥∥∥∥∥∥
X

= o(tkJ )

as t→ 0 for all J > 1.

We now state our main result. To avoid complicity, here we state the result for
α > 1; the linear and nonlinear WKB cases. For the supercritical WKB case α < 1,
see Theorem 5.1.

Assumption 1.2. Let n ≥ 4 and λ ∈ R. The constants γ and α satisfy
max(1, n/2− 2) < γ ≤ n− 2 and 0 < α < γ, respectively. The initial data a0 ∈ H∞.

Theorem 1.3. Let assumption 1.2 be satisfied. Assume α > 1. Then, there exists
an existence time T > 0 independent of ε. There also exist (b0, φ0), (bequ, φequ) ∈
C([0, T ];H∞ × Y∞

(n/γ,∞],(n/(γ+1),∞]) such that:

1. φ0(τ, y) ≍
∑∞

j=1 τ
γj−1ϕj(y) in Y∞

(n/γ,∞],(n/(γ+1),∞].

2. The solution uε to (1.3) with (1.4) satisfies the following asymptotics for all
s > 0:
(1.21)

sup
t∈[0,1−T−1εα/γ ]

∥∥∥∥|J
ε|s
(
uε(t)e−iΦε(t) − 1

(1− t)n/2
Aε(t)ei |·|2

2ε(t−1)

)∥∥∥∥
L2

→ 0

as ε→ 0 with

(1.22) Φε(t, x) = ε
α
γ −1φ0

(
ε

α
γ

1− t ,
x

1− t

)

and

(1.23) Aε(t, x) = b0

(
ε

α
γ

1− t ,
x

1− t

)
exp

(
iφequ

(
ε

α
γ

1− t ,
x

1− t

))
,

where (b0, w0) solves (1.13) and (bequ, φequ) solves (1.18) with (1.19) if α > 1
and with (1.20) if α = 1.

Remark 1.4.
1. By the definition of “≍” sign, the expansion φ0(τ, y) ≍

∑∞
j=1 τ

γj−1ϕj(y)
implies

(1.24) φ0(τ) =

J∑

j=1

τγj−1ϕj + o(τγJ−1) in Y∞
(n/γ,∞],(n/(γ+1),∞]

as τ → 0 for all J > 1.
2. In Theorem 1.3, we only need a0 ∈ Hs0 with some s0 > n/2 + 3. Then,

(b0, φ0) belongs to C([0, T ], Hs0×Y s0+2
(n/γ,∞],(n/(γ+1),∞]) and (bequ, φequ) belongs

to C([0, T ], Hs0−2 × Y s0

(n/γ,∞],(n/(γ+1),∞]). The asymptotics (1.21) holds for

any s ∈ [0, s0 − 4].



CASCADE OF PHASE SHIFTS FOR HARTREE EQUATION 429

3. All ϕj are given explicitly (but inductively) in terms of a0. For example,
ϕ1 = λ(|x|−γ ∗ |a0|2)/(1− γ) and

ϕ2 = − λ2

2(γ − 1)2(2γ − 1)
|∇(|x|−γ ∗ |a0|2)|2

− λ2

γ(γ − 1)(2γ − 1)

(
|x|−γ ∗ (∇ · (|a0|2∇(|x|−γ ∗ |a0|2))

)

(see, Proposition 4.2).
4. Even if the system (1.18) is posed with zero initial condition, its solution

(bequ, φequ) is not identically zero because of the presence of the (nontrivial)
external force i

2∆b0.
5. The choice of the initial data (1.20) is the key for the analysis in the case
α = 1. We discuss this point more precisely in Section 2.2.

The asymptotics (1.21) reads

(1.25) uε(t, x) ∼ 1

(1 − t)n/2
Aε(t, x)eiΦε(t,x)ei |x|2

2ε(t−1)

as ε → 0. Indeed, this holds in L∞([0, 1 − T−1εα/γ ];L2). This explains the cascade
of phase shifts. We consider the case 1 < α(< γ). Combining (1.24) and (1.22), we
have

Φε(t, x) =
J∑

j=1

εαj−1

(1− t)γj−1
ϕj

(
x

1− t

)
+ o

(
εαJ−1

(1− t)γJ−1

)
.

We set gε
j (t, x) = εjα−1

(1−t)jγ−1ϕj(
x

1−t ). Then, the above asymptotics yields

Φε(t, x) ∼ 0 for 1− t≫ ε
α−1
γ−1 ,

Φε(t, x) ∼ gε
1(t, x) for 1− t≫ ε

2α−1
2γ−1 ,

Φε(t, x) ∼ gε
1(t, x) + gε

2(t, x) for 1− t≫ ε
3α−1
3γ−1 ,

...
...

Φε(t, x) ∼
J∑

j=1

gε
j (t, x) for 1− t≫ ε

Jα−1
Jγ−1 ,

...
...

as ε→ 0. On the other hand, the amplitude Aε satisfies

Aε(t, x) = a0

(
x

1− t

)
+ o(1)
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as ε
α
γ /(1− t)→ 0. Substitute these expansions to (1.25) to obtain

uε ∼ vε
lin =

1

(1− t)n/2
a0

(
x

1− t

)
ei |x|2

2ε(t−1) for 1− t≫ ε
α−1
γ−1 ,

uε ∼ vε
line

igε
1(t,x) for 1− t≫ ε

2α−1
2γ−1 ,

uε ∼ vε
line

igε
1(t,x)+igε

2(t,x) for 1− t≫ ε
3α−1
3γ−1 ,

...
...

uε ∼ vε
line

i
PJ

j=1 gε
j (t,x) for 1− t≫ ε

Jα−1
Jγ−1 ,

...
...

Recall that vε
lin, given in (1.5), is the approximate solution for the linear solution wε.

One sees that the solution behaves like a free solution in the region 1−t≫ ε
α−1
γ−1 where

the initial time t = 0 lies, and that, at each boundary layer of size 1− t ∼ ε Jα−1
Jγ−1 (the

J-th boundary layer), a new phase associated with gε
J becomes relevant.

1.2. Main result II. Our next result is the non-existence of a global solution
to (1.13). We further assume the radial symmetry and γ = n − 2 (n > 3) in (1.15).
A suitable change of λ yields the radial compressible Euler-Poisson equations

(1.26)





∂τ (ρrn−1) + ∂r(ρvr
n−1) = 0,

∂τv + v∂rv − λτn−4∂rVp = 0,

∂r(r
n−1∂rVp) = ρrn−1,

ρ|τ=0 = |a0|2, v|τ=0 = 0,

where r := |x|. We define the “mean mass” M0 in {|x| 6 r} by

M0(r) :=
1

rn

∫ r

0

|a0(s)|2sn−1ds.

Theorem 1.5. Let λ < 0 and n > 4. For every nonzero initial amplitude
a0 ∈ C1, the solution to (1.26) breaks down no latter than

T ∗ =

(
(n− 2)(n− 3)

|λ| supr>0M0(r)

) 1
n−2

<∞.

Theorem 1.6 ([12], Theorem 5.10). Let λ > 0 and n = 4. The radial C1-solution
(a, v) to (1.26) is global if and only if the initial amplitude a0 ∈ C1 satisfies

|a0(r)|2 > 2M0(r) =
2

r4

∫ r

0

|a0(s)|2s3ds

for all r > 0. In particular, if a0 ∈ L2(R4) then the solution breaks down in finite
time. Moreover, the critical time is given by

τc =

(
2

λmaxr>0 (2M0(r) − |a0(r)|2)

) 1
2

.
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Example 1.7 (An example of finite-time breakdown). Consider the equation
(1.26). Let n = 4 and λ > 0. Suppose

a0(x) = a0(r) = r−
5
2 e−

1
2r .

Then, an elementary calculation shows

M0(r) = r−4e−
1
r

and so that 2M0(r)−|a0|2 = (2r−1)r−5e−
1
r takes its maximum at r0 = (7+

√
17)/16 =

0.6951 . . . which is the root of

8r20 − 7r0 + 1 = 0.

By Theorem 1.6, the critical time is

τc =

(
2

|λ| (2M0(r0)− |a0(r0)|2)

) 1
2

=

√
3405 + 827

√
17

λ213
e

3(7−
√

17)
32 .

In fact, the solution to (1.26) is given by

|a|2(τ,X(t, R)) =
2R2

X2(τ, R)(2R5e
1
R − λ(2R − 1)τ2)

,

v(τ,X(τ, R)) =
λτ

X(τ, R)R2e
1
R

,

where

X(τ, R) = R

√
1 + λR−4e−

1
R τ2.

At the time τ = τc, the characteristic curves “touch” at r = rc := X(tc, r0), that is,
we have (∂RX)(τc, r0) = 0, which is one of the sufficient and necessary condition for
finite-time breakdown (see, [12]). More explicitly, we can see that, as τ tends to τc,
the amplitude |a|2 blows up at rc since the denominator

2r50e
1

r0 − λ(2r0 − 1)t2

tends to zero as τ → τc. We illustrate the calculation in Remark 6.2.

In this example, a0 ∈ H∞ ⊂ C1 and so Theorem 1.3 holds. We see that, however,
the asymptotics (1.21) is valid only for ε

α
γ /(1− t) < τc and it cannot hold for ε

α
γ /(1−

t) > τc.

The rest of the paper is organized as follows. In Section 2, we make a summary
of the results in this paper with previous results. Section 3 is devoted to preliminary
results. We prove Theorem 1.3 in Section 4. The strategy of the proof is illustrated
rather precisely in Section 4.1. In Section 5, we treat the supercritical WKB case
α < 1 (Theorem 5.1). The well-prepared data is discussed in Section 5.2 Finally, we
prove Theorems 1.5 and 1.6 in Section 6.
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2. Summary.

2.1. Cascade of phase shifts in the linear WKB case. We first discuss
about the linear WKB case α > 1. According to Theorems 1.3, 1.5, and 1.6, we
summarize the result in this case as follows. Recall several boundary layers:

(2.1)

initial time: t = 0 ←→ 1− t = 1,

first layer: t = 1− Λ1ε
α−1
γ−1 ←→ 1− t = Λ1ε

α−1
γ−1 ,

J-th layer: t = 1− ΛJε
Jα−1
Jγ−1 ←→ 1− t = ΛJε

Jα−1
Jγ−1 ,

final layer: t = 1− T−1ε
α
γ ←→ 1− t = T−1ε

α
γ ,

where ΛJ and T are positive constants.

• From the initial time to the first layer. Before the first layer, that is,

for 1 − t ≫ ε
α−1
γ−1 , the behavior of the solution is the same as in the linear case at

leading order. Indeed, the asymptotics (1.21) implies that the solution behaves like

vε
lin defined in (1.5) for 1 − t ≫ ε

α−1
γ−1 . The phase shifts disappear: From (1.22) and

the time expansion φ0(τ) ≍
∑∞

j=1 τ
γj−1ϕj , we see

‖Φε(t)‖L∞(Rn) 6 Cε
α
γ −1

∞∑

j=1

(
ε

α
γ

1− t

)γj−1

‖ϕj‖L∞(Rn) ≪ 1

if 1− t≫ ε
α−1
γ−1 . Moreover, the amplitude tends to a rescaling of a0: By (1.23),

Aε(t, x)→ b0

(
0,

x

1− t

)
exp

(
iφequ

(
0,

x

1− t

))
= a0

(
x

1− t

)

since εα/γ/(1− t)≪ 1 for 1− t≫ ε
α−1
γ−1 . This agrees with the analysis in [26]. On the

other hand, on the first layer 1 − t = Λ1ε
α−1
γ−1 the nonlinear effect becomes relevant.

The term τγ−1ϕ1 in the sum1
∑∞

j=1 τ
γj−1ϕj is no longer negligible.

• From the first layer to the J-th layer. Soon after the first layer, the solution
becomes strongly oscillatory by τγ−1ϕ1. Between the first and the second layers, only
τγ−1ϕ1 is effective because

∥∥∥∥∥∥
Φε(t)− εα

γ −1

(
ε

α
γ

1− t

)γ−1

ϕ1

( ·
1− t

)∥∥∥∥∥∥
L∞(Rn)

6 ε
α
γ −1

∞∑

j=2

(
ε

α
γ

1− t

)γj−1

‖ϕj‖L∞(Rn) ≪ 1

holds if 1−t≫ ε
2α−1
2γ−1 . When we reached to the second layer 1−t = Λ2ε

2α−1
2γ−1 , the phase

τ2γ−1ϕ2 become relevant. Similarly, at each J-th layer 1 − t = ΛJε
Jα−1
Jγ−1 new phase

ϕJ becomes relevant. This is the cascade of phase shift. In this regime, ε
α
γ /(1 − t)

converges to zero as ε→ 0, and so that the amplitude still stays the linear one.

1 This sum is the formal one: Here, we say “sum” in the sense that φ0(τ) ≍

P∞
j=1 τγj−1ϕj .
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• On the final layer. After a countable number of boundary layers, we reach to
the final layer. In this layer, ε

α
γ /(1− t) does not tend to zero any longer. Therefore,

the asymptotics of amplitude changes into a nonlinear one. It turns out that the
ratio T := εα/γ/(1 − t) plays the crucial role. If T > 0 is small, then the asymptotic
behavior of the solution is described by the asymptotics (1.21). It is essential to use Φε

and Aε defined in (1.22) and (1.23), respectively. Thanks to the nontrivial remainder
term given by φequ, (1.21) gives the asymptotic behavior of the solution on the final
layer.

On the other hand, (1.21) breaks down at T = T ∗ <∞ in several cases (Theorems
1.5 and 1.6). It is because the nonlinear effects cause a formation of singularity. These
focal points are moving: If the focal point is

(
ε

α
γ

1− tc
,

xc

1− tc

)
= (T ∗, X∗),

then, in the (t, x)-coordinates, this focal point is

tc =1− (T ∗)−1ε
α
γ , xc =X∗(T ∗)−1ε

α
γ ,

which tends to (t, x) = (1, 0) as ε → 0. Example 1.7 gives an example of this type
blowup.

• After the final layer. It remains open what happens after the breakdown
of (1.21). However, we can at least expect that more rapid oscillations might not
appear after the final layer. This is because, in the case of λ > 0, 2 6 γ < 4, and
α ∈] max(γ/2, 1), γ[, the order of the upper bound of ‖Jεuε‖L2 stays ε1−α/γ even after

the caustic ([26]). Recall that Jε = ei|x|2/2ε(t−1)i(t− 1)∇e−i|x|2/2ε(t−1) filters out the
main quadratic phase. Therefore, this divergent upper bound implies that the order
of magnitude of energy of the oscillation other than the main quadratic phase is at
most ε1−α/γ .

2.2. Cascade of phase shifts in the nonlinear and supercritical WKB

case. We now turn to the case α < 1, the supercritical WKB case. Our goal is to
obtain a WKB-type approximation similar to (1.21), which explains the cascade of
phase shifts and gives the asymptotic profile of the solution before and on the final
layer. We do not use modified the initial data (1.6) and keep working with (1.3)–(1.4).
As stated above, the analysis of (1.3)–(1.4) is reduced to the analysis of (1.11) via
the transform (1.7). Recall that h = ε1−α/γ . The difficulty is the following:

1. The equaiton (1.11) itself depends on h through the term ih
2 ∆ah.

2. The initial time of (1.11) tends to τ = 0 at a speed h
α

γ−α .
The second is the main point of the supercritical case α < 1. In this section, we
discuss by heuristic arguments what happens, what is the problem, and how we can
overcome it. Then, it turns out that the situation becomes more complicated, and
the cascade of phase shifts phenomena involves more phase shifts and boundary layers
than the linear WKB case. The rigorous result is in Theorem 5.1 (see, also Remark
5.3).

• The transpose of the initial time and the first boundary layer. We see
from (2.1) that the relation α < 1 causes the transpose of the initial time t = 0 and
the first boundary layer, that is, the initial time t = 0 lies beyond the first boundary

layer t = 1 − Λ1ε
α−1
γ−1 because Λ1ε

α−1
γ−1 ≫ 1 for small ε. It means that there is no

linear regime and the behavior of the solution involves nonlinear effects at leading
order soon after the initial time.
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• The nonlinear behavior of the solution at the initial time. As a matter
of fact, the behavior of uε is already “nonlinear” at t = 0. More precisely, the principal
part of the phase shift of the solution uε other than exp(i|x|2/2ε(t− 1)) (we call this
as a principal nonlinear phase of uε) for α < 1 is given by

(2.2) exp

(
iε

α
γ −1φ0

(
ε

α
γ

1− t ,
x

1− t

))
,

where φ0 is the solution of (1.13). Here we remark that the principal nonlinear phase
is the same as in the case α > 1 (In Theorem 1.3, we denote this by exp(iΦε)). Since
φ0 is given as a solution of (1.13), the shape of φ0 is completely independent of α.
Moreover, the choice of φ0 is natural because the function φ0 is the unique limit of
the phase function φh which solves (1.11) with ah. Recall that ψh = ah exp(iφh/h) is
an exact solution of (1.8). Using the expansion φ0(τ) ≍

∑∞
j=1 τ

γj−1ϕj(y), we have

ε
α
γ −1φ0

(
ε

α
γ

1− t

)
∼ O


ε

α
γ −1

(
ε

α
γ

1− t

)γ−1



as long as ε
α
γ /(1− t)≪ 1. If the right hand side is small, then the phase shift caused

by nonlinear effects is negligible and so the solution behaves like the linear solution.
However, the right hand side is O(εα−1) at t = 0, which is not small if α < 1. In this
sense, the behavior of uε is nonlinear at t = 0.

• The initial condition as a constraint. On the other hand, we always have

uε(0, x) = a0(x) exp(−i |x|
2

2ε ) since, as stated above, we do not modify the initial data
and keep working with (1.4). This initial condition seems to be quite natural and the
simplest one for this problem. This is true if α > 1. However, in the supercritical case
α < 1, the meaning of this condition slightly changes and this condition becomes a sort
of constraint: The appearing nonlinear effects must disappear at t = 0. To achieve
this constraint, we need to employ some more nontrivial phase shifts as correction
terms in order to cancel out the nonlinear effect at t = 0. This modification with
correction terms is the heart of the matter. The main difference between two initial
data (1.4) and (1.6) is this point. A use of (1.6) enables us to leave the behavior of
the solution at the initial time nonlinear. Hence, we do not need any correction term.

• A formal construction of correction terms. Intuitively, this modification
is done as follows: First, we replace φ0(τ, y) in (2.2) by φ0(τ, y) −

∑k−1
j=1 τ

γj−1ϕj(y)
for some k > 2. This yields the following modified principal nonlinear phase

(2.3) exp



iεα
γ −1



φ0

(
ε

α
γ

1− t ,
x

1− t

)
−

k−1∑

j=1

(
ε

α
γ

1− t

)γj−1

ϕj

(
x

1− t

)





 .

At t = 0, it holds that

ε
α
γ −1



φ0

(
ε

α
γ

)
−

k−1∑

j=1

(
ε

α
γ

)γj−1

ϕj



 = O(εαk−1).

Therefore, if we take k large enough then the modified approximate solution which
the above principal phase (2.3) gives possesses the desired two properties: The leading
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term of the principal nonlinear phase is the same as (2.2); and the phase shifts tend
to zero at the initial time t = 0. Of course, this simple modification is too rude and
so valid only in the small neighborhood of t = 0. Hence, to obtain an approximation
also outside the small neighborhood, we replace each ϕj(y) by a function −φpha,j(τ, y)
which solves a kind of j-th linearized system of (1.11) with −φpha,j(0) = ϕj . This
yields the principal nonlinear phase like

(2.4) exp


iε

α
γ −1


φ0

(
ε

α
γ

1− t ,
x

1− t

)
+

k−1∑

j=1

(
ε

α
γ

)γj−1

φpha,j

(
tε

α
γ

1− t ,
x

1− t

)


 .

We note that tε
α
γ /(1− t) = ε

α
γ /(1− t)− εα

γ , which is zero at t = 0.

• Three kinds of correction terms. In fact, the above modified principal
nonlinear phase (2.4) is still insufficient. We need two more kinds of correction terms
which are essentially different from φpha,j . Now, let us list all kinds of correction
terms which we use:

1. Correction from phase. The first one is the above φpha,j . They satisfy
φpha,j(0) = −ϕj and remove the bad part of φ0.

2. Correction from amplitude. The amplitude b0 which pairs φ0 via (1.13) has
the expansion b0(τ) ≍ a0+

∑∞
j=1 τ

γjaj , where aj is a function of space defined
by a0 (see, Proposition 4.2). Hence, the principal part of the amplitude of uε

(principal amplitude of uε) is

b0

(
ε

α
γ

1− t ,
x

1− t

)
∼ a0

(
x

1− t

)
+

∞∑

j=1

(
ε

α
γ

1− t

)γj

aj

(
x

1− t

)

for ε
α
γ /(1− t)≪ 1. In particular, at t = 0 we have

(2.5) b0

(
ε

α
γ , x

)
∼ a0(x) +

k−1∑

j=1

εαjaj +O(εαk).

The principal amplitude converges to the given initial data for all α > 0, and
so one might expect this is harmless. However, it is understood that, when we
try to get the pointwise estimate of solution via Grenier’s method, we must
take ε1-term of the initial amplitude into account because it affects (implic-
itly) the approximate solution at leading order (see, [2, 9, 18]). Therefore, we
must remove εαjaj for all j > 1 such that αj 6 1 from (2.5), otherwise the
approximate solution will differ outside a small neighborhood of t = 0. To
do this, we construct bamp,j as a solution to a kind of j-th linearized system
of (1.11) with the condition bamp,j(0) = −aj. At that time, there appear a
phase correction φamp,j associated with bamp,j via the system which bamp,j

solves.
3. Correction from interaction. The third one comes from the structure of (1.11).

As stated in introduction, the problem boils down to determining the asymp-
totic behavior of the solution (ah, φh) to (1.11) up to O(h1). Suppose that
the solution has two terms (hp1b1, h

p1φ1) and (hp2b2, h
p2φ2) in its asymptotic

expansion as h → 0. Then, the quadratic terms in (1.11) produce nontriv-
ial hp1+p2-terms. For example, ∇φh · ∇ah has the terms hp1+p2∇φ1 · ∇b2
and hp1+p2∇φ2 · ∇b1 in its expansion. Again by (1.11), this implies that
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(∂tb
h, ∂tφ

h) (and so (bh, φh) itself) also contains a hp1+p2 -term in its expan-
sion. Repeating this argument, we see that (bh, φh) has hp-terms for all p
given by p = lp1 +mp2 with integers l,m > 0 such that l +m > 1. So far,
we have already obtained two kinds of correction terms, φpha,j and φamp,j .
Therefore, they interact each other to produce the third correction terms
φint,j .

• The supercritical cascade of phase shifts. We are now in a position to
understand the cascade of phase shifts phenomena in the supercritical case. With
the above three kinds of correction terms, we can describe the asymptotic behavior
of the solution before the final layer. Recall that, in the linear WKB case α > 1,
the principal nonlinear phase is given by only one phase function φ0(τ, y), and the
notion of boundary layer comes from its expansion with respect to τ around τ = 0.
In this case, not only φ0 but also all φpha,i, φamp,j , φint,k produce a countable number
of similar boundary layers. Thus, the cascade of phase shifts involves much “more”
phase shifts and boundary layers than the linear WKB case.

• One more correction at the final boundary layer. So far, the second
difficulty listed in the beginning of this section is solved by three kinds of correction
terms φpha,i, φamp,j , and φint,j . We can describe with them the asymptotic behavior
of the solution before the final layer. To give it also on the final layer, we need one
more correction term, φequ, as in the case α > 1. This correction term defeats the
first difficulty. This solves (1.18)–(1.19) and so it is independent of α. When α = 1,
φequ changes in to a solution of (1.18)–(1.20) (see Theorem 1.3). We next address
why we need a modified φequ.

• Resonance of correction terms and the nonlinear WKB case. Some
of the correction terms associated with φpha,i, φamp,j, φint,k, and φequ may have the
same order. This phenomena is a kind of resonance. The nonlinear case α = 1 is the
simplest example. In this case, it happens that φpha,1 and φequ have the same order.

Recall that if α = 1 then we work with the modified φ̃equ solving (1.18)–(1.20),




∂τ b̃equ +∇φ̃equ · ∇b0 +∇φ0 · ∇b̃equ +
1

2
b̃equ∆φ0 +

1

2
b0∆φ̃equ =

i

2
∆b0,

∂τ φ̃equ +∇φ0 · ∇φ̃equ + λτγ−2(|y|−γ ∗ 2 Re b0b̃equ) = 0,

b̃equ|τ=0 ≡ 0, φ̃equ|τ=0 = λ(|y|−γ ∗ |a0|2)/(γ − 1) = −ϕ1

(see Theorem 1.3). We will see later that φpha,1 is the solution to




∂τ bpha,1 +∇φpha,1 · ∇b0 +∇φ0 · ∇bpha,1 +
1

2
bpha,1∆φ0 +

1

2
b0∆φpha,1 = 0,

∂τφpha,1 +∇φ0 · ∇φpha,1 + λτγ−2(|y|−γ ∗ 2 Re b0bpha,1) = 0,

bpha,1|τ=0 ≡ 0, φpha,1|τ=0 = λ(|y|−γ ∗ |a0|2)/(γ − 1) = −ϕ1

(see Remark 5.3). Let φequ be a solution to (1.18)–(1.19). One can check from above

systems that φ̃equ = φequ + φpha,1. Therefore, the modified correction term φ̃equ is
nothing but the superposition of the (usual) correction from equation φequ and the
correction from phase φpha,1.

3. Preliminary results.

3.1. Properties of the Y s
p,q(R

n) space. We first collect some facts about the
space Y s

p,q defined in (1.16)-(1.17) (see, also [1, 9]).
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1. Y s1
p,q ⊂ Y s2

p,q if s1 > s2.
2. Y s

p,q = Y s
p,[min(q,2∗),∞] and so Y s

p,q1
⊂ Y s

p,q2
if q1 6 q2.

3. If q < n then Y s
p,q = Y s

[min(p,q∗),∞],q. It implies Y s
p1,q ⊂ Y s

p2,q for p1 6 p2 under

q < n. In particular, Y s
p,q ⊂ Y s

[2∗∗,∞],[2∗,∞] if n > 5, where 2∗∗ := (2∗)∗ =

2n/(n− 4).
4. If n > 3 then any function f ∈ Xs is written uniquely as f = g + c, where
g ∈ Y s

∞,2(= Y s
2∗,2) and c is a constant.

The first property is obvious by definition. The others follow from the following lemma
which is a consequence of the Hardy-Littlewood-Sobolev inequality and found in [19,
Th. 4.5.9] or [16, Lemma 7]:

Lemma 3.1. If ϕ ∈ D′
(Rn) is such that ∇ϕ ∈ Lp(Rn) for p ∈]1, n[, then there

exists a constant c such that ϕ− c ∈ Lq(Rn), with 1/p = 1/q + 1/n.

We take a function f ∈ Y s
p,q. Then, the indices p and q almost indicate the decay

rates at spacial infinity of the function f and its first derivative ∇f , respectively.
The second property means that ∇f is always bounded and decays at the spacial
infinity so fast that ∇f ∈ L2∗

. What the third property says is that f has a similar
decay property. It can be said from the fourth property that Y s

∞,2 = Xs in a sense,
provided n > 3. Note that every g ∈ Y s

∞,2 satisfies g → 0 as |x| → ∞ by definition
(1.16)-(1.17). On the other hand, elements of Xs do not necessarily tend to zero at
the spacial infinity. We also note that if q = 2 then we have another definition of Y s

p,2:

(3.1) Y s
p,2(R

n) = Lp(Rn) ∩Xs(Rn),

which makes sense for s > n/2.

3.2. Basic existence and approximation results. Operate∇ to the equation
for φh in (1.11) and put wh := ∇φh. For our further application, we generalize the
system slightly. Let

Q1(a, v) = −(v · ∇)a− 1

2
a∇ · v,(3.2)

Q2(v1, v2) = −(v1 · ∇)v2,(3.3)

Q3(a1, a2) = −λ∇(|x|−γ ∗ (a1a2)),(3.4)

and consider a system of the following form:

(3.5)





∂tb
h = ch1Q1(b

h, wh) +Q1(B
h
1 , w

h) +Q1(b
h,Wh

1 ) +Rh
1 + irh∆bh,

∂tw
h = ch2Q2(w

h, wh) +Q2(W
h
2 , w

h) +Q2(w
h,Wh

2 )

+ fh(t)
(
ch2Q3(b

h, bh) +Q3(B
h
2 , b

h) +Q3(b
h, Bh

2 )
)

+Rh
2 ,

bh|t=0 = bh0 , wh
|t=0 = wh

0 ,(3.6)

where bh takes complex value and wh takes real value. Other notation will be made
precise in Assumptions 3.2 and 3.3, below. In [9], the existence of a unique solution
for this kind of system is shown with explicit coefficients. We shall summarize the
parallel result.

Assumption 3.2 (initial data). Let n > 3 and max(n/2 − 2, 0) < γ 6 n − 2.
We suppose the following conditions with some s > n/2 + 1: The initial amplitude
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bh0 ∈ Hs(Rn) and the initial velocity wh
0 ∈ Y s+1

q0,2 (Rn) for some q0 ∈]n/(γ + 1), n[,
uniformly for h ∈ [0, 1], that is, there exists a constant C independent of h such that
‖bh0‖Hs + ‖w0‖Y s+1

q0,2 (Rn) 6 C.

Assumption 3.3 (coefficients). Let ch1 and ch2 be complex constants bounded
uniformly in h, and let rh be a real constant bounded uniformly in h. Suppose for some
T ∗ > 0 and s > n/2+1 that fh is a real-valued function of time and fh ∈ L1((0, T ∗));
Bh

i and Rh
1 are complex-valued functions of spacetime, and Bh

i ∈ L1((0, T ∗);Hs+1)
and Rh

1 ∈ L1((0, T ∗);Hs); Wh
i and Rh

2 are real-valued functions of spacetime, and
Wh

i ∈ L1((0, T ∗);Y s+2
∞,2 ) and Rh

2 ∈ L1((0, T ∗);Y s+1
q0,2 ). Moreover, suppose all above

functions are bounded in the corresponding norms uniformly with respect to h.

Assumption 3.4 (existence of the limit). In addition to Assumptions 3.2 and
3.3, we suppose the existence of limits of all bh0 , wh

0 , chi , rh, fh, Bh
i , Wh

i , and Rh
i as

h → 0 in the corresponding strong topologies. These strong limits are denoted by b0,
w0, ci, r, f , Bi, Wi, and Ri, respectively.

Proposition 3.5. Let Assumptions 3.2 and 3.3 be satisfied. Then, there exists
T > 0 independent of h, s, and q0, such that for all h ∈ [0, 1] the system (3.5)–(3.6)
has a unique solution

(bh, wh) ∈ C
(
[0, T ];Hs × Y s+1

q0,2

)
.

Moreover, the norm of (bh, wh) is bounded uniformly for h ∈ [0, 1]. If, in addition,
Assumption 3.4 is satisfied, then the pair (bh, wh) converges to (b, w) := (bh, wh)|h=0

in C([0, T ];Hs−2 × Y s−1
q0,2 ) as h→ 0. Furthermore, (b, w) solves





∂tb = c1Q1(b, w) +Q1(B1, w) +Q1(b,W1) +R1 + ir∆b,

∂tw = c2Q2(w,w) +Q2(W2, w) +Q2(w,W2)

+ f(t) (c2Q3(b, b) +Q3(B2, b) +Q3(b, B2)) +R2,

b|t=0 = b0, w|t=0 = w0.

Proof. The key is the following energy estimate for s > n/2 + 1

d

dt
Eh

6 C(1 + |fh(t)|)
[
(|ch1 |+ |ch2 |)(Eh)

3
2

+ (‖Bh
1 ‖Hs+1 + ‖Bh

2 ‖Hs + ‖∇Wh
1 ‖Hs + ‖∇Wh

2 ‖Hs+1)Eh
]

+ C(‖Rh
1‖Hs + ‖∇Rh

2‖Hs)(Eh)
1
2 ,

where Eh := ‖bh‖2Hs + ‖∇wh‖2Hs . For more details, see the proof of Proposition 4.1
in [9].

Remark 3.6. We intend to apply this proposition to the system (1.11). In that
case, fh(t) corresponds to tγ−2, which is singular at t = 0 if γ < 2. Since fh(t) is only
supposed to be integrable, we will see that the system (1.11) (and so the equation
(1.8)) has a unique solution for γ > 1 while the singularity. We also note that this
corresponds to the fact that the Hartree nonlinearity is short range when γ > 1.
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Remark 3.7. In the convergence part of Proposition 3.5, it can happen that
n/2 + 1 > s− 1 > n/2. In this case, we use the definition (3.1) instead of (1.16).

We conclude this section with a lemma which we use for the construction of a
function φh from the corresponding solution wh = ∇φh to (3.5)–(3.6). This lemma is
a consequence of Lemma 3.1.

Lemma 3.8. If ϕ satisfies |ϕ| → 0 as |x| → ∞ and ∇ϕ ∈ Y s
q,2 for some s > n/2

and some q < n, q 6 2∗ then ϕ ∈ Y s+1
q∗,q .

4. Proof of Theorem 1.3.

4.1. Strategy. In this section, we illustrate the strategy of the proof of Theorem
1.3 rather precisely. As in Section 1, we first introduce the semiclassical conformal
transform:

(1.7) uε(t, x) =
1

(1− t)n/2
ψε

(
ε

α
γ

1− t ,
x

1− t

)
exp

(
i
|x|2

2ε(t− 1)

)
.

Putting τ := ε
α
γ /(1− t) and y := x/(1 − t), we find that (1.3)–(1.4) becomes

iε1−
α
γ ∂τψ

ε +
(ε1−

α
γ )2

2
∆yψ

ε = λτγ−2(|y|−γ ∗ |ψε|2)ψε, ψε
|τ=εα/γ = a0.

Put h = ε1−α/γ and denote ψε by ψh. We note that ε→ 0 is equivalent to h→ 0 as
long as α < γ. Thus, our problem is reduced to the limit h→ 0 of the solution to

ih∂τψ
h +

h2

2
∆ψh = λτγ−2(|y|−γ ∗ |ψh|2)ψh, ψh

|τ=h
α

γ−α
(y) = a0(y).(1.8)

Our strategy is to seek a solution ψh to (1.8) represented as

(1.10) ψh(τ, y) = ah(τ, y)eiφh(τ,y)/h,

with a complex-valued space-time function ah and a real-valued space-time function
φh. Note that ah is expected to be complex-valued, even if its initial value a0 is
real-valued. Substituting the form (1.10) into (1.8), we obtain

− ah

(
∂τφ

h +
1

2
|∇φh|2 + λτγ−2(|y|−γ ∗ |ah|2)

)

+ ih

(
∂τa

h + (∇φh · ∇)ah +
1

2
ah∆φh − ih

2
∆ah

)
= 0.

To obtain a solution of the above equation (hence, of (1.8)), we choose to consider

(1.11)






∂τa
h +∇φh · ∇ah +

1

2
ah∆φh = i

h

2
∆ah,

∂τφ
h +

1

2
|∇φh|2 + λτγ−2(|y|−γ ∗ |ah|2) = 0,

ah

|τ=h
α

γ−α
= a0, φh

|τ=h
α

γ−α
= 0.

The point is that this system can be regarded as a symmetric hyperbolic system with
semilinear perturbation. In Section 4.2, we first prove that it admits a unique solution
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with suitable regularity (see Proposition 4.1), hence providing a solution to (1.8) and
(1.3)–(1.4).

By (1.10), in order to obtain a leading order WKB type approximate solution it
suffices to determine O(h0) and O(h1) terms of φh in the limit h→ 0. Letting h = 0
in (1.11), we formally obtain the O(h0) term (b0, φ0) which solves

(1.13)






∂tb0 +∇φ · ∇b0 +
1

2
b0∆φ0 = 0,

∂tφ0 +
1

2
|∇φ0|2 + λtγ−2(|y|−γ ∗ |b0|2) = 0,

b0|τ=0 = a0, φ0|τ=0 = 0

introduced in Section 1. The difficulty of finding h1-terms lies in the following two
respects; firstly, the equation (1.11) depends on h through the term ih

2 ∆ah; and

secondly the initial data of (1.11) is moving at a speed h
α

γ−α . In Section 4.3, we give
the time expansion of (b0, φ0) around t = 0. We will obtain an expansion of the form

b0(τ, y) ≍
∞∑

j=0

τγjaj(y), φ0(τ, y) ≍
∞∑

j=1

τγj−1ϕj(y)(4.1)

(Proposition 4.2). This expansion is essential in handling the moving initial-data.
In Section 4.4, we finally determine O(h1) term in the case α > 1. What to show

is the existence of the limits

ah(τ) − b0(τ)
h

→ bequ(τ),
φh(τ) − φ0(τ)

h
→ φequ(τ)

as h→ 0. A formal differentiation of (1.11) with respect to h suggests that (bequ, φequ)
may solve the linearized system

(1.18)



 ∂τbequ +∇φequ · ∇b0 +∇φ0 · ∇bequ +
1

2
bequ∆φ0 +

1

2
b0∆φequ =

i

2
∆b0,

∂τφequ +∇φ0 · ∇φequ + λτγ−2(|x|−γ ∗ 2 Re b0bequ) = 0.

By means of (4.1), the following estimates hold at the initial time:

ah(h
α

γ−α )− b0(h
α

γ−α )

h
= −b0(h

α
γ−α )− a0

h
= O(h

αγ
γ−α−1),

φh(h
α

γ−α )− φ0(h
α

γ−α )

h
= −φ0(h

α
γ−α )

h
= O(h

α(γ−1)
γ−α −1).

Note that αγ
γ−α > 1 for all α > 1, however, α(γ−1)

γ−α > 1 if α > 1 and α(γ−1)
γ−α = 1 if

α = 1. In particular,

φh(h
α

γ−α )− φ0(h
α

γ−α )

h
→
{

0 if α > 1,

−ϕ1 if α = 1,

where ϕ1 is defined in (4.1). Therefore, the O(h1) term is described by (bequ, φequ)
solving (1.18) with (1.19) if α > 1 and with (1.20) if α = 1. In Section 5, we consider

the case α < 1. In this case, the above powers αγ
γ−α and α(γ−1)

γ−α are less than one,

in general. Therefore, there appear several terms which is order less than O(h1) in
the expansion of (ah, φh). We determine all these terms and obtain the asymptotic
behavior of (ah, φh) (see, Theorem 5.1).

In Sections 4 and 5, we mainly work with vh = ∇φh instead of φh itself. Note
that, by means of Lemma 3.8, it is easy to construct φh from vh.
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4.2. Existence of phase-amplitude form solution. According to the strat-
egy in Section 4.1, we first show that the system (1.11) has a unique solution.

Proposition 4.1. Let Assumption 1.2 be satisfied. Assume 0 < α < γ. Then,
there exists T > 0 independent of h such that, for all h ∈ (0, 1], there exists a unique
solution ψh ∈ C([h

α
γ−α , T + h

α
γ−α ];H∞) to (1.8). Moreover, ψh is written as

ψh = ahei φh

h ,

where

ah ∈ C([h
α

γ−α , T + h
α

γ−α ];H∞) ∩ C∞((h
α

γ−α , T + h
α

γ−α ];H∞)

and

φh ∈C([h
α

γ−α , T + h
α

γ−α ];Y∞
(n/γ,∞],(n/(γ+1),∞])

∩ C∞((h
α

γ−α , T + h
α

γ−α ];Y∞
(n/γ,∞],(n/(γ+1),∞]).

Moreover, there exists a limit (b0, φ0) := (ah, φh)|h=0 belonging the same function

space as (ah, φh) (h > 0), and (ah, φh) converges strongly to (b0, φ0) as h → 0.
Furthermore, (b0, φ0) solves (1.13).

Proof. We set velocity vh = ∇φh. Then, the pair (ah, vh) solves

(4.2)





∂τa

h = Q1(a
h, vh) + i

h

2
∆ah,

∂τv
h = Q2(v

h, vh) + τγ−2Q3(a
h, ah),

ah

|τ=h
α

γ−α
= a0, vh

|τ=h
α

γ−α
= 0,(4.3)

where Q1, Q2, and Q3 are defined by (3.2), (3.3), and (3.4), respectively. To fix the
initial time, we employ the time translation τ = t+ h

α
γ−α . Then, the equation is

(4.4)




∂ta

h = Q1(a
h, vh) + i

h

2
∆ah,

∂tv
h = Q2(v

h, vh) + (t+ h
α

γ−α )γ−2Q3(a
h, ah),

ah
|t=0 = a0, vh

|t=0 = 0.(4.5)

Now, the assumption γ > 1 implies that (t + h
α

γ−α )γ−2 is integrable over (0, T ∗) for
some T ∗ > 0 and its integral is uniformly bounded with respect to h. Fix s > n/2+1.
Then, applying Proposition 3.5 with ch1 = ch2 = 1, rh = h/2, fh(t) = (t + h

α
γ−α )γ−2,

and Bh
i ≡ Wh

i ≡ Rh
i ≡ 0, we obtain the existence time 0 < T 6 T ∗ independent of ε

and the unique solution

(ah, vh) ∈ C([0, T ];Hs × Y s+1
(n/(γ+1),∞],2)

to (4.4)–(4.5) such that ‖ah‖2Hs + ‖∇vh‖2Hs is bounded uniformly with respect to
t ∈ [0, T ]. The upper bound depends only on ‖a0‖Hs . Notice that Assumption 3.2 is
satisfied for all s > n/2 + 1 and q0 ∈]n/(γ + 1), n[.
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By the equation and the Hardy-Littlewood-Sobolev inequality, ∂tv
h belongs

to C([0, T ];Y s
(n/(γ+1),∞],2). Hence, we see from Lemma 3.8 that ∂tφ

h ∈
C([0, T ];Y s+1

(n/γ,∞],(n/(γ+1),∞]). Since φh
|t=0 = 0, we also have

φh ∈ C([0, T ];Y s+1
(n/γ,∞],(n/(γ+1),∞]).

Therefore, we have φh → 0 as |x| → ∞. Then, again applying Lemma 3.8 to vh,
we conclude that φh ∈ C([0, T ];Y s+2

(n/γ,∞],(n/(γ+1),∞]). Since the existence time T is

independent of s, we have ah ∈ C([0, T ];H∞) and φh ∈ C([0, T ];Y∞
(n/γ,∞],(n/(γ+1),∞]).

The bootstrap argument gives the C∞ regularity with respect time. The existence of
the limit (b0, φ0) and the convergence (ah, φh) → (b0, φ0) as h → 0 follow from the
latter part of Proposition 3.5 and Lemma 3.8.

4.3. Time expansion of the limit solution near τ = 0. By Proposition
4.1, the system (4.2)–(4.3) has a unique solution even if h = 0. We keep working
with vh = ∇φh instead of φh Write (b0, w0) := (ah, vh)|h=0. The main difficulty of

describing the asymptotic behavior of (ah, vh) as h→ 0 comes from the fact that the
initial data is given at τ = h

α
γ−α . In order to handle this h-dependence of the initial

time, we give a time expansion of (b0, w0) around τ = 0.
Note that (b0, w0) solves

∂τb0 = Q1(b0, w0), ∂τw0 = Q2(w0, w0) + τγ−2Q3(b0, b0),(4.6)

b0|τ=0 = a0, w0|τ=0 = 0,(4.7)

where the quadratic forms Qi are defined by (3.2)–(3.4).

Proposition 4.2. Let (b0, w0) = (b0,∇φ0) be the unique solution to (4.6)–(4.7)
defined by Proposition 4.1. Then, it holds that

b0(τ, y) =

J∑

j=0

τγjaj(y) + o(τγJ ) in H∞,(4.8)

w0(τ, y) =
J∑

j=1

τγj−1vj(y) + o(τγJ−1) in Y∞
(n/(γ+1),∞],2(4.9)

as τ → 0 for all J , where a0 is the initial data for b0, aj and vj are defined by

aj =
1

γj

∑

k1>0,k2>1,k1+k2=j

Q1(ak1 , vk2)

for j > 1, v1 = Q3(a0, a0)/(γ − 1), and

vj =
1

γj − 1




∑

k1>1,k2>1,k1+k2=j

Q2(vk1 , vk2) +
∑

k1>0,k2>0,k1+k2=j−1

Q3(ak1 , ak2)




for j > 2 with the quadratic forms Qi defined by (3.2)–(3.4). Moreover, φ0 is expanded
as

(1.24) φ0(τ, y) =

J∑

j=1

τγj−1ϕj(y) + o(τγJ−1) in Y∞
(n/γ,∞],(n/(γ+1),∞]
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as τ → 0 for all J > 1, where ϕj is given by ϕ1 = λ
1−γ (|y|−γ ∗ |a0|2) and

ϕj =
1

1− γj

[
∑

k1>1,k2>1,k1+k2=j

1

2
(∇ϕk1 · ∇ϕk2)

+
∑

k1>0,k2>0,k1+k2=j−1

λ(|y|−γ ∗ (ak1ak2)

]
.

Remark 4.3. Using the “≍” sign defined in Notation 1.1, the above three expan-
sions (4.8), (4.9), and (1.24) can be written as b0(τ) ≍

∑J
j=0 τ

γjaj in H∞, w0(τ) ≍∑J
j=1 τ

γj−1vj in Y∞
(n/(γ+1),∞],2, and φ0(τ) ≍

∑J
j=1 τ

γj−1ϕj in Y∞
(n/γ,∞],(n/(γ+1),∞],

respectively

Proof. We first note that, by the definitions of Qi, it follows for all s > n/2 + 1
that

‖Q1(b, v)‖Hs 6 Cs ‖b‖Hs+1 ‖v‖Y s+1
(n/(γ+1),∞],2

,

‖Q2(v1, v2)‖Y s
(n/(γ+1),∞],2

6 Cs ‖v1‖Y s
(n/(γ+1),∞],2

‖v2‖Y s+1
(n/(γ+1),∞],2

,

‖Q3(b1, b2)‖Y s
(n/(γ+1),∞],2

6 Cs ‖b1‖Hs ‖b2‖Hs .

Therefore, we see that al and vl are bounded in H∞ and Y∞
(n/(γ+1),∞],2, respectively.

For simplicity, in this proof we denote Y s
(n/(γ+1),∞],2 by Y s. Denote

∑l
j=0 τ

γjaj and
∑l

j=1 τ
γj−1vj by ãl and ṽl, respectively. Then, it suffices to show that

‖b0 − ãl‖L∞([0,τ ];H∞) = o(τγl) ∀l > 0,(4.10)

‖w0 − ṽl‖L∞([0,τ ];Y ∞) = o(τγl−1) ∀l > 1.(4.11)

Step 1. Since b0 ∈ C([0, T ];H∞) and b0(0) = a0 = ã0, (4.10) is trivial if l = 0.
We show (4.11) for l = 1. By the second equation of (4.6), it holds for s > n/2 + 1
that

‖w0(τ)‖Y s 6 C1

∫ τ

0

‖w0(t)‖Y s dt+ C2

∫ τ

0

tγ−2dt,

6 C1τ ‖w0‖L∞((0,τ ];Y s) + C′
2τ

γ−1.

where C1 depends on s and C([0, T ];Y∞) norm of w0, and C2 depends on s and
C([0, T ];H∞) norm of b0. The right hand side is monotone increasing in time, hence
this gives

‖w0‖L∞((0,τ ];Y s) 6 C1τ ‖w0‖L∞((0,t];Y s) + C′
2τ

γ−1.

Choose τ so small that C1τ 6 1/2. Then, we obtain

‖w0‖L∞((0,τ ];Y ∞) = O(τγ−1)

since s > n/2 + 1 is arbitrary. Again by the equation, it holds that

w0 − ṽ1 =

∫ τ

0

Q2(w0, w0)dt+

∫ τ

0

tγ−2(Q3(b0, b0 − a0) +Q3(b0 − a0, a0))dt.
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Since w0 is order O(τγ−1) in L∞((0, τ ];Y∞), the first integral of the right hand side
is order O(τ2γ−1) in L∞((0, τ ];Y∞). Similarly, the fact that b0 − a0 is order o(1) in
L∞((0, τ ];H∞) shows the second integral is order o(τγ−1) in L∞((0, τ ];Y∞), which
proves (4.11) for l = 1.

Step 2. We prove (4.10) and (4.11) for large l by induction. By the definition of
aj , an explicit calculation shows

∂τ b0 = Q1(b0, w0) = Q1(b0, w0 − ṽ1) +Q1(b0 − ã0, τ
γ−1v1) + ∂τ (τγa1)

= Q1(b0, w0 − ṽ2) +Q1(b0 − ã0, τ
2γ−1v2) +Q1(b0 − ã1, τ

γ−1v1)

+ ∂τ (τγa1 + τ2γa2) = · · ·

= Q1(b0, w0 − ṽl) +

l−1∑

l1=0

Q1(b0 − ãl1 , τ
γ(l−l1)−1vl−l1) + ∂τ




l∑

j=1

τγjaj


 .

Similarly, it holds that

∂τw0 = Q2(w0, w0) + τγ−2Q3(b0, b0) = · · ·

= Q2(w0, w0 − ṽl) +

l∑

l1=1

Q2

(
w0 − ṽl1 , τ

γ(l−l1+1)−1vl−l1+1

)

+ τγ−2

(
Q3(b0, b0 − ãl) +

l∑

l1=0

Q3(b0 − ãl1 , τ
γ(l−l1)al−l1)

)

+ ∂τ




l+1∑

j=1

τγj−1vj


 .

Integrating these identities with respect to time, we obtain

(4.12) b0 − ãl =

∫ τ

0

(
Q1(b0, w0 − ṽl) +

l−1∑

l1=0

Q1(b0 − ãl1 , t
γ(l−l1)−1vl−l1)

)
dt

and

w0 − ṽl+1 =

∫ τ

0

(
Q2(w0, w0 − ṽl) +

l∑

l1=1

Q2

(
w0 − ṽl1 , t

γ(l−l1+1)−1vl−l1+1

))
dt

(4.13)

+

∫ τ

0

tγ−2

(
Q3(b0, b0 − ãl) +

l∑

l1=0

Q3(b0 − ãl1 , t
γ(l−l1)al−l1)

)
dt.

Now, let L > 1 be an integer. If (4.10) holds for l 6 L− 1 and (4.11) holds for l 6 L,
then we see that (4.12) gives (4.10) with l = L. On the other hand, if both (4.10) and
(4.11) hold for l 6 L, then we obtain (4.11) with l = L+ 1 from (4.13).

The expansion of φ0 is an immediate consequence of the expansion of w0 = ∇φ0.
Since

Q2(vk1 , vk2) +Q2(vk2 , vk1) = −∇(vk1 · vk2) = −∇
(

1

2
vk1 · vk2 +

1

2
vk2 · vk1

)
,



CASCADE OF PHASE SHIFTS FOR HARTREE EQUATION 445

we deduce from the definition vj that

∇ϕj = vj =
1

1− γj∇
[

∑

k1>1,k2>1,k1+k2=j

1

2
(∇ϕk1 · ∇ϕk2)

+
∑

k1>0,k2>0,k1+k2=j−1

λ(|y|−γ ∗ (ak1ak2)

]
.

By Lemma 3.8, ϕj belongs to Y∞
(n/γ,∞],(n/(γ+1),∞].

4.4. Asymptotic behavior of the phase-amplitude form solution. The
following proposition completes the proof of the theorem.

Proposition 4.4. Let Assumption 1.2 satisfied and α > 1. Let T > 0 and
(ah, vh) be as in Proposition 4.1. Let (b0, w0) := (ah, vh)|h=0. Then, there exists
(bequ, wequ) ∈ C([0, T ];H∞×Y∞

(n/(γ+1),∞],2) such that the following asymptotics holds:

(4.14)
ah(τ) = b0(τ) + hbequ(τ − h

α
γ−α ) + o(h) in C([h

α
γ−α , T ];H∞),

vh(τ) = w0(τ) + hwequ(τ − h α
γ−α ) + o(h) in C([h

α
γ−α , T ];Y∞

(n/(γ+1),∞],2).

Moreover, (bequ, wequ) solves
(4.15)




∂τbequ = Q1(b0, wequ) +Q1(bequ, w0) + i

1

2
∆b0,

∂τwequ = Q2(w0, wequ) +Q2(wequ, w0) + τγ−2 (Q3(b0, bequ) +Q3(bequ, b0))

with the data

bequ|τ=0 = 0, wequ|τ=0 =

{
0 if α > 1,

−v1 if α = 1,
(4.16)

where v1 is defined in Proposition 4.2.

Remark 4.5. Since

bequ(τ − h
α

γ−α ) = bequ(τ) + o(1), wequ(τ − h α
γ−α ) = wequ(τ) + o(1)

by continuity, (4.14) implies

ah(τ) = b0(τ) + hbequ(τ) + o(h) in C([h
α

γ−α , T ];H∞),

vh(τ) = w0(τ) + hwequ(τ) + o(h) in C([h
α

γ−α , T ];Y∞
(n/(γ+1),∞],2).

From this asymptotics and the transforms (1.7) and (1.10), we immediately obtain
the asymptotics (1.21).

Proof. Let (ah, vh) be the solution to (4.2)–(4.3). Let (b0, w0) be the solution to
(4.6)–(4.7). We put

bh(τ, y) :=
ah(τ + h

α
γ−α , y)− b0(τ + h

α
γ−α , y)

h
,

wh(τ, y) :=
vh(τ + h

α
γ−α , y)− w0(τ + h

α
γ−α , y)

h
.
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Then, (bh, wh) solves

(4.17)






∂τb
h = hQ1(b

h, wh) +Q1(b0, w
h) +Q1(b

h, w0) + i
1

2
∆b0 + i

h

2
∆bh,

∂τw
h = hQ2(w

h, wh) +Q2(w0, w
h) +Q2(w

h, w0)

+ (τ + h
α

γ−α )γ−2
(
hQ3(b

h, bh) +Q3(b0, b
h) +Q3(b

h, b0)
)
,

bh|τ=0 =
b0|τ=0 − b0(h

α
γ−α )

h
, wh

|τ=0 =
w0|τ=0 − w0(h

α
γ−α )

h
.(4.18)

We apply Proposition 3.5 with these initial data and ch1 = ch2 = h, rh = h/2, fh(t) =
(t + h

α
γ−α )γ−2, Bh

1 = Bh
2 = b0, W

h
1 = Wh

2 = w0, R
h
1 = (i/2)∆b0, and Rh

2 = 0. Note
that the initial data (4.18) is uniformly bounded if α > 1 since an application of (4.8)
and (4.9) gives

b0|τ=0 − b0(h
α

γ−α )

h
= O(h

γ(α−1)
γ−α + α

γ−α ) in H∞,

w0|τ=0 − w0(h
α

γ−α )

h
= O(h

γ(α−1)
γ−α ) in Y∞

(n/(γ+1),∞],2.

The term Rh
1 satisfies ‖Rh

1‖Hs 6 ‖b0‖Hs+2/2. Therefore, if s − 2 > n/2 + 1, that is,
if s > n/2 + 3 then Proposition 3.5 provides the unique solution (bh, wh) ∈ C([0, T −
h

α
γ−α ];Hs−2 × Y s−1

(n/(γ+1),∞],2) for h ∈ [0, 1]. Moreover, (bh, wh) converges to (̃b, w̃) :=

(bh, wh)|h=0 in C([0, T − h
α

γ−α ];Hs−4 × Y s−3
(n/(γ+1),∞],2). It follows from (4.9) that

limh→0 w
h
|τ=0 = 0 if α > 1 and limh→0 w

h
|τ=0 = −v1 if α = 1. Hence, (bequ, wequ)

solves (4.15)–(4.16).

5. Supercritical caustic and Supercritical WKB case.

5.1. Result. In this section, we treat the case α < 1 < γ. As presented in
Section 4.1, the asymptotic behavior of the solution (1.3)–(1.4) boils down to the
asymptotic behavior of the solution to (1.11). By means of Lemma 3.8, we work with
(ah, vh) := (ah,∇φh) which solves (4.2)–(4.3).

The main difficulty lies in the fact that the initial data (4.3) is moving at the
speed h

α
γ−α (see Section 2.2). From the expansion (4.1) of (b0, w0) := (ah, vh)|h=0, we

deduce that (ah, vh) contains the terms of order

O(h
α(γi−1)

γ−α ) and O(h
jαγ
γ−α )

for all i, j > 0. Note that some of these orders are less than one if α < 1. This is
the feature of the supercritical WKB case, and the problem comes from this point.
Moreover, the above terms interact each other and there appear all the terms whose

order is given by the finite combination of h
α(γi−1)

γ−α and h
jαγ
γ−α . Thus, we see that

(ah, vh) contains all the terms whose order is written as

O(h
α(γl1−l2)

γ−α ), 0 6 l2 6 l1.

For our purpose, we determine all these terms up to O(h1). Therefore, it is natural
to introduce a set P defined by

(5.1) P :=

{
α(γl1 − l2)
γ − α ; 0 6 l2 6 l1, 0 6

α(γl1 − l2)
γ − α < 1

}
.
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Set N := ♯P − 1, and number the elements of P as 0 = p0 < p1 < · · · < pN < 1. For
any pi1 , pi2 ∈ P , either pi1 + pi2 ∈ P or pi1 + pi2 > 1 holds. For example, if γ =

√
3

and α =
√

3/4 then, p0 = 0,

(5.2)

p1 =

√
3− 1

3
=
α(γ − 1)

γ − α , p2 =
2(
√

3− 1)

3
=
α(2γ − 2)

γ − α ,

p3 =

√
3

3
=

αγ

γ − α, p4 =
√

3− 1 =
α(3γ − 3)

γ − α ,

p5 =
2
√

3− 1

3
=
α(2γ − 1)

γ − α ,

and N = 5; and if γ = 2 and α = 1/3, then p0 = 0,

(5.3)

p1 =
1

5
=
α(γ − 1)

γ − α , p2 =
2

5
=
α(2γ − 2)

γ − α =
αγ

γ − α,

p3 =
3

5
=
α(3γ − 3)

γ − α =
α(2γ − 1)

γ − α ,

p4 =
4

5
=
α(4γ − 4)

γ − α =
α(3γ − 2)

γ − α =
2αγ

γ − α,

and N = 4.
To state the result, we also introduce several systems. Let Q1, Q2, and Q3 be

quadratic forms defined in (3.2), (3.3), and (3.4), respectively. Let al and vl be
sequences given in Proposition 4.2. Then, for any 0 6 i 6 N , we introduce

(5.4)






∂τ bi =
∑

pj+pk=pi

Q1(bpj , wpk
),

∂τwi =
∑

pj+pk=pi

(
Q2(wpj , wpk

) + τγ−2Q3(bpj , bpk
)
)
,

(5.5)

bi(0) =

{
−al if ∃l such that pi = αγl

γ−α ,

0 otherwise,

wi(0) =

{
−vl′ if ∃l′ such that pi = αγl′−α

γ−α ,

0 otherwise.

We also introduce a system for (bequ, wequ)

(5.6)





∂τ bequ = Q1(b0, wequ) +Q1(bequ, w0) +
∑

pj+pk=1

Q1(bpj , wpk
) +

i

2
∆b0,

∂τwequ = Q2(w0, wequ) +Q2(wequ, w0) + τγ−2(Q3(b0, bequ) +Q3(bequ, b0))

+
∑

pj+pk=1

(
Q2(wpj , wpk

) + τγ−2Q3(bpj , bpk
)
)
,

(5.7)

bequ(0) =

{
−al if ∃l such that 1 = αγl

γ−α ,

0 otherwise,

wequ(0) =

{
−vl′ if ∃l′ such that 1 = αγl′−α

γ−α ,

0 otherwise,
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where (b0, w0) is the solution of (1.13). If there is no pair (j, k) such that pj +pk = 1,
we let

∑
pj+pk=1 ≡ 0. It may happen (see (5.2)).

Theorem 5.1. Let assumption 1.2 be satisfied. Assume 0 < α < 1. Let
P be as in (5.1) and N = ♯P − 1. Then, there exists an existence time T > 0
independent of ε. There also exist (bj , φj) ∈ C([0, T ];H∞ × Y∞

(n/γ,∞],(n/(γ+1),∞])

(0 6 j 6 N) such that (bi, wi) := (bi,∇φi) solves (5.4)–(5.5), and (bequ, φequ) ∈
C([0, T ];H∞ × Y∞

(n/γ,∞],(n/(γ+1),∞]) such that (bequ, wequ) := (bequ,∇φequ) solves

(5.6)–(5.7). Moreover, the followings hold:
1. φ0(τ) ≍

∑∞
j=1 τ

γj−1ϕj (in the sense of (1.24)).
2. The solution uε to (1.3)–(1.4) satisfies the following asymptotics for all s > 0:

(5.8)

sup
t∈[0,1−T−1εα/γ ]

∥∥∥∥|J
ε|s
(
uε(t)e−iΦε(t) − 1

(1− t)n/2
Aε(t)ei

|·|2
2ε(t−1)

)∥∥∥∥
L2

→ 0

as ε→ 0 with
(5.9)

Φε(t, x) = ε
α
γ −1


φ0

(
ε

α
γ

1− t ,
x

1− t

)
+

N∑

j=1

ε(1−
α
γ )pjφj

(
tε

α
γ

1− t ,
x

1− t

)


and

(5.10) Aε(t, x) = b0

(
ε

α
γ

1− t ,
x

1− t

)
exp

(
iφequ

(
ε

α
γ

1− t ,
x

1− t

))
.

Remark 5.2. In (5.9), the time variable of φj (j > 1) is not ε
α
γ /(1− t) but

tε
α
γ

1− t =
ε

α
γ

1− t − ε
α
γ .

Although this variable is not stable on the final layer 1 − t = T−1ε
α
γ , this choice is

suitable when we work with the well-prepared data (see Section 5.2). Of course, the
Taylor expansion

φj

(
tε

α
γ

1− t

)
=

∞∑

k=0

(−εα
γ )k(∂k

t φj)

(
ε

α
γ

1− t

)

will exclude the variable tε
α
γ /(1 − t) from Φε, however, we do not pursue this point

any more.

Remark 5.3. Let us classify the phase functions in (5.8) according to the notion
in Section 2.2. If φi(0) 6≡ 0 (resp. bi(0) 6≡ 0), that is, if there exists a number l > 1
such that pi = αγl−α

γ−α (resp. pi = αγl
γ−α ), then φi is the correction from phase (resp.

correction from amplitude); in particular φi = φpha,l (resp. φi = φamp,l). On the other
hand, if φi(0) ≡ bi(0) ≡ 0 then φi is the correction from interaction; in particular
φi = φint,l′ for some l′. Notice that the summation in the system (5.4) is decomposed
as

∑

pj+pk=pi

=
∑

(j,k)=(i,0),(0,i)

+
∑

pj+pk=pi,jk 6=0

.
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The second sum is the interaction term, which is an external force. When φi is the
correction from interaction, it always has a nonzero interaction term. Otherwise, φi ≡
0 since the system for φi is posed with the zero initial condition. There is a possibility
that the correction from phase (resp. correction from amplitude) has an interaction
term. Indeed, it happens if there is a triplet j, k, l such that pi = αγl−α

γ−α = pj + pk

(resp. pi = αγl
γ−α = pj + pk) and jk 6= 0. In this case, there is a resonance between

the correction from phase (resp. correction from amplitude) and the correction from
interaction. φequ solving (5.6)–(5.7) is the correction from equation with or without

resonance: If φ̃(0) 6≡ 0 (resp. b̃(0) 6≡ 0 ) then there is a resonance with the correction
from phase (resp. correction from amplitude); if

∑
pj+pk

6≡ 0 then there is a resonance
with the correction from interaction. We note that the resonance among the correction
from phase, the correction from interaction, and the correction from equation (resp.
the correction from amplitude, the correction from interaction, and the correction
from equation) may happen, and that, however, the resonance between the correction
from phase and the correction from amplitude never happens because there is no pair
l, l′ such that γl = γl′ − 1 if γ > 1.

Proof. As presented in Section 4.1, the asymptotic behavior of the solution (1.3)–
(1.4) boils down to the asymptotic behavior of the solution to (1.11). By means of
Lemma 3.8, we work with (ah, vh) := (ah,∇φh) which solves (4.2)–(4.3).

The existence of (ah, vh) and the expansion of φ0 are already proven in Propo-
sitions 4.1 and 4.2, respectively. Let P be as in (5.1), N = ♯P − 1, and pi ∈ P
(i = 0, 1, . . . , N) be such that {pi}Ni=0 = P and pi < pi+1. It suffices to show that
(ah, vh) is expanded as

ah(τ + h
α

γ−α ) = b0(τ + h
α

γ−α ) +

N∑

i=1

hpibi(τ) + hbequ(τ) + o(h),

vh(τ + h
α

γ−α ) = w0(τ + h
α

γ−α ) +

N∑

i=1

hpiwi(τ) + hwequ(τ) + o(h).

Plugging this and

bequ(τ) = bequ(τ + h
α

γ−α ) + o(1), wequ(τ) = wequ(τ + h
α

γ−α ) + o(1),

to (1.10) and (1.7), we obtain (5.8).

Step 1. We first prove by induction that

(5.11)

ah(τ + h
α

γ−α ) = b0(τ + h
α

γ−α ) +
k∑

i=1

hpibi(τ) + o(hpk),

vh(τ + h
α

γ−α ) = w0(τ + h
α

γ−α ) +

k∑

i=1

hpiwi(τ) + o(hpk)

holds for k = N , where (bi, wi) is a solution of (5.4)–(5.5). One verifies from Proposi-
tion 4.1 that (5.11) holds if k = 0. We put K ∈ [1, N ]. We assume for induction that
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(5.11) holds for k = K − 1, and put

bhK(τ) = h−pK

(
ah(τ + h

α
γ−α )− b0(τ + h

α
γ−α )−

K−1∑

i=1

hpibi(τ)

)
,

wh
K(τ) = h−pK

(
vh(τ + h

α
γ−α )− w0(τ + h

α
γ−α )−

K−1∑

i=1

hpiwi(τ)

)
.

By the equation for (ah, vh), we see that (bhK , w
h
K) solves





∂τ b
h
K = hpKQ1(b

h
K , w

h
K) +Q1(B

h
1 , w

h
K) +Q1(b

h
K ,W

k
1 ) +Rh

1 +
i

2
h∆bhK ,

∂τw
h
K = hpKQ2(w

h
K , w

h
K) +Q2(W

h
2 , w

h
K) +Q2(w

h
K ,W

k
2 )

+ (τ + h
α

γ−α )γ−2
(
hpKQ3(b

h
K , b

h
K) +Q3(B

h
2 , b

h
K) +Q3(b

h
K , B

k
2 )
)

+Rh
2 ,

bhK(0) = h−pK

(
a0 − b0(h

α
γ−α )−

K−1∑

i=1

hpibi(0)

)
,

wh
K(0) = h−pK

(
−w0(h

α
γ−α )−

K−1∑

i=1

hpiwi(0)

)
,

where

Bh
1 = Bh

2 =
K−1∑

i=0

hpibi → b0(t),

Wh
1 = Wh

2 =

K−1∑

i=0

hpiwi → w0(t),

Rh
1 =

∑

pl<K,pk<K,pl+pk=pK

Q1(bpl
, wpk

)

+
∑

pl<K,pk<K,pl+pk>pK

hpl+pk−pKQ1(bpl
, wpk

)

+
ih1−pK

2

K−1∑

i=0

hpi∆bi

→
∑

pl<K,pk<K,pl+pk=pK

Q1(bpl
, wpk

),

and

Rh
2 =

∑

pl<K,pk<K,pl+pk=pK

(
Q2(wpl

, wpk
) + (t+ h

α
γ−α )γ−2Q3(bpl

, bpk
)
)

+
∑

pl<K,pk<K,pl+pk>pK

hpl+pk−pKQ2(wpl
, wpk

)

+
∑

pl<K,pk<K,pl+pk>pK

hpl+pk−pK (t+ h
α

γ−α )γ−2Q3(bpl
, bpk

)

→
∑

pl<K,pk<K,pl+pk=pK

(
Q2(wpl

, wpk
) + tγ−2Q3(bpl

, bpk
)
)
.
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Moreover, applying the time expansion of (b0, w0), we deduce that (bhK(0), wh
K(0)) is

uniformly bounded and that, as h→ 0,

bhK(0) = − h−pK


b0(h

α
γ−α )−

∑

{j; αγj
γ−α <pK}

h
αγj
γ−α aj




→
{
−aj′ if ∃j′ such that pK = αγj′

γ−α ,

0 otherwise,

wh
K(0) = − h−pK


w0(h

α
γ−α )−

∑

{j;
α(γj−1)

γ−α <pK}

h
α(γj−1)

γ−α vj




→
{
−vj′′ if ∃j′′ such that pK = α(γj′′−1)

γ−α ,

0 otherwise.

Note that either bhK(0)→ 0 or wh
K(0)→ 0 holds for all K since γ > 1 implies there is

no pair (j, j′) such that γj = γj′ − 1. Therefore, we apply Proposition 3.5 to obtain
the solution (bhK , w

h
K). Put (bK , wK) := (bhK , w

h
K)|h=0. Then, it solves (5.4)–(5.5),

and so (5.11) holds for k = K. By induction (5.11) holds for k = N .

Step 2. Mimicking the argument in Step 1, we construct (bequ, wequ) such that

ah(τ + h
α

γ−α ) = b0(τ + h
α

γ−α ) +

N∑

i=1

hpibi(τ) + hbequ(τ) + o(h),

vh(τ + h
α

γ−α ) = w0(τ + h
α

γ−α ) +

N∑

i=1

hpiwi(τ) + hwequ(τ) + o(h)

hold. Notice that (bequ, wequ) solves

∂τbequ = Q1(b0, wequ) +Q1(bequ, w0) +
∑

pj+pk=1

Q1(bpj , wpk
) +

i

2
∆b0,

∂τwequ = Q2(w0, wequ) +Q2(wequ, w0) + τγ−2(Q3(b0, bequ) +Q3(bequ, b0))

+
∑

pj+pk=1

(
Q2(wpj , wpk

) + τγ−2Q3(bpj , bpk
)
)
,

b̃(0) =

{
−al if 1 = αγl

γ−α ∃l,
0 otherwise,

w̃(0) =

{
−vl′ if 1 = αγl′−α

γ−α ∃l′,
0 otherwise.

Remark 5.4. By a similar proof, we obtain higher order approximation. Let
0 < α < γ and γ > 1. We modify the set P defined by (5.1) as

P ′ :=

{
l +

αγm

γ − α +
α(γ − 1)n

γ − α ; l,m, n > 0

}
,
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and number the elements of P ′ as 0 = p0 < p1 < · · · < pk < . . . . Then, we have, for
all k,

(5.12)

ah(τ + h
α

γ−α ) = b0(τ + h
α

γ−α ) +
k∑

i=1

hpibi(τ) + o(hpk),

φh(τ + h
α

γ−α ) = φ0(τ + h
α

γ−α ) +
k∑

i=1

hpiφi(τ) + o(hpk).

Plugging this to (1.10) and (1.7), we obtain higher order approximation of the original
solution. It is important to note that the (5.12) has the same form in the both α > 1
and α < 1 case. When we concerned with higher order WKB-type approximation, we
need four kinds of correction terms even if α > 1. From this respect, the supercritical
WKB case α < 1 can be characterized as the the special case p1 < 1.

5.2. Well-prepared data and general data. We conclude this section with
some remarks about the well-prepared data. By the semiclassical conformal transform
(1.7) and Grenier’s transform (1.10), the leading order WKB-type approximation of
the original solution uε to (1.3)–(1.4) is reduced to the approximation of the solution
(ah, φh) to

(5.13)





∂τa
h +∇φh · ∇ah +

1

2
ah∆φh = i

h

2
∆ah,

∂τφ
h +

1

2
|∇φh|2 + λτγ−2(|y|−γ ∗ |ah|2) = 0

with

ah

|τ=h
α

γ−α
= a0, φh

|τ=h
α

γ−α
= 0,(5.14)

up to order O(h1). Note that (5.13)–(5.14) and (1.11) are the same. As shown in
Proposition 4.1, there exists a limit (b0, φ0) := (ah, φh)|h=0 which solves (1.13). Now,
we consider the distances

dh
a(t) :=ah(t)− b0(t), dh

φ(t) :=φh(t)− φ0(t).

If these distances are order o(h1) then we immediately obtain the WKB-type approx-
imation b0 exp(iε

α
γ −1φ0) of uε (recall that h = ε1−

α
γ ). However, unfortunately, the

following two respects prevent us: The first one is the h-dependence of the equation
(5.13), and the second one is the h-dependence of the initial time (5.14). The first
problem is handled by employing the correction term (bequ, φequ) solving (1.18) and,
therefore we discuss about the initial data in the followings.

The given initial data (5.14) is written as

dh
a(h

α
γ−α ) :=a0 − b0(h

α
γ−α ), dh

φ(h
α

γ−α ) :=− φ0(h
α

γ−α ).

The main difficulty in the case α 6 1 is the fact that these terms become larger than
O(h1) as h→ 0. The simplest way to overcome this difficulty is to modify the initial
data (5.14) into

ah

|τ=h
α

γ−α
= b0(h

α
γ−α ), φh

|τ=h
α

γ−α
= φ0(h

α
γ−α ),(5.15)
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which ensures dh
a(h

α
γ−α ) ≡ dh

φ(h
α

γ−α ) ≡ 0. Note that (5.13) with (5.15) is the same as
(1.14). Back to the transform (1.7), this initial data corresponds to the well-prepared
data

(1.6) uε
|t=0(x) = b0(ε

α
γ , x)e−i |x|2

2ε exp(iε
α
γ −1φ0(ε

α
γ , x)).

This initial condition is rather natural in the supercritical case α < 1, and the original
initial condition in (1.4) is a kind of constraint (see, Section 2.2). If we use this well-
prepared data, we do not have to consider any correction term other than (bequ, φequ)
and, for all 0 < α < γ, it holds that

ah(τ) =b0(τ) + hbequ(τ) + o(h),

φh(τ) =φ0(τ) + hφequ(τ) + o(h)

with (b0, φ0) and (bequ, φequ) solving (1.13) and (1.18)–(1.19), respectively, and so that
the asymptotic behavior of the solution uε(t, x) to (1.3)–(1.6) is given by

b0

(
ε

α
γ

1− t ,
x

1− t

)
exp

(
iφequ

(
ε

α
γ

1− t ,
x

1− t

)
+ iε

α
γ −1φ0

(
ε

α
γ

1− t ,
x

1− t

))
.

This approximate solution is the same one as in the case α > 1. We still need O(h1)-
correction term (bequ, φequ) because it comes from the h1-dependence of the equation
which (ah, φh) solves.

In Theorems 1.3 and 5.1, we took another way. By the expansion of (b0, φ0)
around τ = 0, there exist nonnegative integers k1, k2 depending on α and γ such that

dh
a(h

α
γ−α ) =a0 − b0(h

α
γ−α ) = −

k1∑

j=1

h
αγj
γ−αaj + o(h1),

dh
φ(h

α
γ−α ) =− φ0(h

α
γ−α ) = −

k2∑

j=1

h
α(γj−1)

γ−α ϕj + o(h1).

We subtract the main part −
∑k1

j=1 h
αγj
γ−α aj and −

∑k2

j=1 h
α(γj−1)

γ−α ϕj by constructing
appropriate correction terms (correction from amplitude and correction from phase,
respectively). Indeed, if we let the correction terms (bj , φj) (0 6 j 6 N) and

(bequ, φequ) be defined as in Theorem 5.1 then, at the initial time τ = h
α

γ−α , it holds
that


ah(τ) − b0(τ)−

N∑

j=1

hpjbj(τ − h
α

γ−α )− hbequ(τ)




|τ=h
α

γ−α

= −


b0(h

α
γ−α )−

∑

l∈{l>0; αγl
γ−α 61}

h
αγl
γ−αal


+ h

(
bequ(0)− bequ(h

α
γ−α )

)

= o(h1),



454 S. MASAKI



φh(τ)− φ0(τ) −
N∑

j=1

hpjφj(τ − h
α

γ−α )− hφequ(t)





|τ=h
α

γ−α

= −


φ0(h

α
γ−α )−

∑

l∈{l>1; α(γl−1)
γ−α 61}

h
α(γl−1)

γ−α ϕl


+ h

(
φequ(0)− φequ(h

α
γ−α )

)

= o(h1).

It is important to note that the time variable of (bj , φj) (1 6 j 6 N) is not τ but

τ − h α
γ−α . This choice is the key for the above cancellation. By the transform (1.7),

the time variable of φj (1 6 j 6 N) in the definition (5.9) of Φε(t) should be given by

ε
α
γ

1− t − ε
α
γ =

tε
α
γ

1− t .

These correction terms allow us to work with general data.

6. Proofs of Theorems 1.5 and 1.6. Recall that the system we consider is

(1.26)






∂τ (ρrn−1) + ∂r(ρvr
n−1) = 0,

∂τv + v∂rv − λτn−4∂rVp = 0,

∂r(r
n−1∂rVp) = ρrn−1,

ρ|τ=0 = |a0|2, v|τ=0 = 0,

where r = |x|. We introduce the “mass” m and the “mean mass” M

m(τ, r) := M(τ, r)rn := rn−1∂rΦ(τ, r) =

∫ r

0

ρ(τ, s)sn−1ds.

We also set m0(r) := m(0, r) and M0(r) := M(0, r). Combining the first and the
third equations of (1.26), we obtain

(6.1) ∂τm+ v∂rm = 0,

where we have used (ρvrn−1)|r=0 = 0. To solve this equation we also introduce the
characteristic curve X(τ, R):

dX

dτ
= v(τ,X(τ, R)), X(0, R) = R.

Denoting differentiation along this characteristic curve by ′ := d/dτ , the mass equation
(6.1) and the second equation of (1.26) yield

m′ = 0,(6.2)

v′ = λτn−4 m

Xn−1
,(6.3)

X ′ = v.(6.4)

We solve this system with the initial data

(X,m, v)|τ=0 = (R,m0(R), 0),
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where R ≥ 0 parameterizes the initial location.
By (6.2), the mass m remains constant along the characteristics, that is,

m(τ,X(τ, R)) = m0(R). Therefore, (6.3) and (6.4) yield

X ′′ =
λm0(R)τn−4

Xn−1
, X(0, R) = R, X ′(0, R) = 0.(6.5)

This equation is studied also in [29].

Proof of Theorem 1.5. It suffices to show that X(τ, R) 6 0 holds for some R > 0
and τ 6 T ∗. This argument is similar to that for the blow-up for the nonlinear
Schrödinger equation by Glassey [17]. Since λ < 0, we see from (6.5) that X ′′ 6 0,
and so that X ′ 6 X ′(0) = 0 and X 6 X(0) = R for all τ > 0. Therefore, again by
(6.5), we verify that

X ′′(τ, R) 6 −|λ|m0τ
n−4

Rn−1
= −|λ|RM0(R)τn−4.

Note that M0(R) > 0 for some R provided a0 is not identically zero. Now, fix such
R. Integrating twice with respect to time, we obtain

X(τ, R) 6 R− |λ|RM0(R)

(n− 2)(n− 3)
τn−2,

which yields X(τ, R) 6 0 for large time. The critical time is not greater than

T ∗ =

(
(n− 2)(n− 3)

|λ| supR>0M0(R)

) 1
n−2

since R is arbitrary.

Proof of Theorem 1.6. In order to clarify the necessary and sufficient condition,
we repeat the proof in [12]. We first note that ∂X/∂R(0, R) = 1, and that the solution
is global if and only if ∂X/∂R(t, R) > 0 for all τ > 0 and R > 0.

By (6.5), we have

X ′′ =
λm0

X3
.

We multiply this by X ′ and integrate in time to obtain

(X ′)2 = 02 +
λm0

R2
− λm0

X2
=
λm0

R2
−XX ′′,

where we have used (6.5) again. This yields

(X2)′′ = 2(X ′)2 + 2XX ′′ =
2λm0

R2
.

Then, integration twice gives

X2 = R2 +
λm0

R2
t2.

Since X > R > 0 from (6.5) and X ′(0) = 0, we see

(6.6) X(τ, R) =

√
R2 +

λm0

R2
τ2.
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An explicit calculation shows that

∂X

∂R
(τ, R) =

1 + λ(1
2 |a0|2 −M0)τ

2

√
1 + λM0τ2

,

where m0 = M0R
4 =

∫ R

0
|a0|2s3ds by definition. Note that limR→0M0 = |a0(0)|2/4

since a0 is continuous. Hence, ∂X/∂R(t, R) > 0 holds for all τ > 0 and R > 0 if and
only if 1

2 |a0|2 −M0 > 0 for all R > 0, that is,

(6.7) |a0(R)|2 >
2

R4

∫ R

0

|a0(s)|2s3ds

for all R > 0. Moreover, the critical time is given by

τc =

(
2

λmaxr>0 (2M0(r) − |a0(r)|2)

) 1
2

.

The condition (6.7) can be written as

∂R

(
m0(R)

R2

)
> 0.

We take R0 so that m0(R0) > 0. Then, it holds only if

m0(R) >
m0(R0)

R2
0

R2

for all R > R0, which fails if limR→∞m0(R) <∞, that is, if a0 ∈ L2(R4).

Remark 6.1. If n = 4 then (1.26) becomes an autonomous system. Now we
consider the classical solution of autonomous model






∂τ (ρrn−1) + ∂r(ρvr
n−1) = 0,

∂τv + v∂rv − λ∂rVp = 0,

∂r(r
n−1∂rVp) = ρrn−1,

ρ|τ=0 = ρ0, v|τ=0 = v0,

where (τ, r) ∈ R+ × R+. It is shown in [25] that, under the assumption that n > 3,
ρ0 ∈ L1((0,∞), rn−1dr), v0(0) = 0, and v0(r) → 0 as r → ∞, the corresponding
solution is global if and only if λ < 0 and

v0(r) =

√
2|λ|

(n− 2)rn−2

∫ r

0

ρ0(s)sn−1ds.

Remark 6.2. The function Γ = ∂X/∂R is called the indicator function. As
in the above proof, the solution blows up if and only if Γ takes non-positive value.
Moreover, the solution is given by

ρ(t,X(t, R)) =
ρ0(R)Rn−1

Xn−1(t, R)Γ(t, R)
,

v(t,X(t, R)) =
dX

dt
(t, R).

Example 1.7 is easily checked by this form since the characteristic curve X is given
explicitly by (6.6) in the case of λ < 0 and N = 4.
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