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LYAPUNOV’S FUNCTIONS AND EXISTENCE OF INTEGRAL

MANIFOLDS FOR IMPULSIVE DIFFERENTAL SYSTEMS WITH

TIME-VARYING DELAY∗

GANI STAMOV†

Abstract. In this paper the existence of integral manifolds for impulsive differential systems
with time-varying delay and with impulsive effect at fixed moments are investigated. The main results
are obtained by using of piecewise continuous Lyapunov’s functions and Razumikhin’s technique.
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1. Introduction. The theory of integral manifolds comes back from the works
of A. M. Lyapunov (see [1]) for qualitative theory of differential equations, and N. N.
Bogolubov, U. A. Mitropolskii (see [14]) for asymptotic methods of nonlinear mechan-
ics.

In recent years the theory of integral manifolds for impulsive differential equations
have been intensively researched (see [2-4], [8]). Recently, some properties (existence,
reduction of the systems, asymptotic stability) are investigated by several authors
(see [6-7], [9], [12-13], [16]). A natural generalization of impulsive ordinary differential
equations is impulsive differential equations with time-varying delay. In spite of great
possibilities for applications, the theory of these equations is developing rather slowly
due to a series of difficulties of technical and theoretical character yet.

In this paper we apply the comparison principle to the problem of existence of
integral manifolds for impulsive differential equations with time-varying delay. The
impulses are in the fixed moments of time and since the solutions of such systems are
piecewise continuous functions. The investigations are carried out by using minimal
subset of a suitable space of piecewise continuous functions, by the elements of which
the derivative of Lyapunov’s functions are estimated [13], [18].

2. Preliminary notes. Let R
n be the n-dimensional Euclidean space with norm

||.||, R
+ = [0,∞), Bh = {x ∈ R

n : ||x|| ≤ h}, h > 0, Ω ⊂ R
n, Bh ⊂ Ω.

Consider the sets:
B = {{τk}; k ∈ Z, τk ∈ R, τk < τk+1, lim

k→+∞
τk = +∞} is the set of all sequences

unbounded and strictly increasing.
PC[R,Rn] = {ϕ : R → R

n, ϕ is a piecewise continuous function with points
of discontinuity at the first kind τk, {τk} ∈ B at which ϕ(τ−k ) and ϕ(τ+

k ) exist,
and ϕ(τ−k ) = ϕ(τk)}.

PC1[R,Rn] = {ϕ : R → R
n, ϕ is continuously differentiable everywhere

except the poins τk, {τk} ∈ B at which ϕ̇(τ−k ) and ϕ̇(t+k ) exist, and ϕ̇(τ−k ) = ϕ̇(τk)}.
Let ϕ0 ∈ PC[R,Ω] and |ϕ0| = supt∈R||ϕ0(t)||. Consider the following system of

impulsive differential equations with time-varying delay







ẋ(t) = f(t, x(t), x(t − η(t))), t ≥ t0, t 6= τk,
x(t) = ϕ0(t), t ∈ (−∞, t0],
∆x(τk) = x(τ+

k ) − x(τk) = Ik(x(τk)), τk ≥ t0, k = 1, 2, ...,
(1)
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where:
i) f : (t0,∞) × Ω × Ω → R

n, t ∈ R, η : R → R
+;

ii) Ik : Ω → R
n;

iii) {τk} ∈ B, 0 ≤ t0 ≡ τ0 ≤ τ1 < τ2 < ...;

iv) ϕ0(t) ∈ Ω, t0 ∈ (−∞, t0].

Denote by x(t) = x(t; t0, ϕ0) the solution of system (1) and by J+(t0, ϕ0) - the
maximal interval of type [t0, β) in which the solution x(t; t0, ϕ0) is defined, and by
θ+(t0, ϕ0(t)) denote the integral orbit of the solution x(t; t0, ϕ0) for t ∈ J+(t0, ϕ0).

We assume that the solution x(t) = x(t; t0, ϕ0) of (1) exists and from [13] is easy
to see that x(t) is piecewise continuous function with points of discontinuity at the
moments τk, k = 1, 2, .. at which it is continuous from the left.

Thus in interval J+(t0, ϕ0) the solution x(t; t0, ϕ0) of problem (1) is a piecewise
continuous function with points of discontinuity of the first kind τk, k = 1, 2, ... at
which it is continuous from the left.

Further on the paper we are going to write x > 0 if xi > 0, i = 1, 2, ..., n or x ≤ 0
if xi ≤ 0, i = 1, 2, ..., n.

Introduce the following assumptions:

H1. The function f ∈ C[[t0,∞) × Ω × Ω, Rn] and f is Lipschitz continous with
respect to its second and third arguments in [t0,∞) × Ω × Ω.

H2. η ∈ C[R,R+], t− η(t) ≥ 0.

H3. There exists N = const > 0 such that

|f(t, x, x)| ≤ N <∞, (t, x, x) ∈ [t0,∞) × Ω × Ω.

H4. The function Ik ∈ C[Ω, Rn] and Ik are Lipschitz continous in Ω for
k = 1, 2, ....

H5. The functions (I + Ik) : Ω → Ω, k = 1, 2, ..., where I is the identity in Ω.

H6. ϕ0 ∈ PC[R,Ω].

Lemma 1. Let the conditions H1-H6 hold.

Then J+(t0, ϕ0) = [t0,∞).

Proof. Since the conditions H1-H3 hold then from the existence theorem for
the functional differential equation without impulses [10] it follows that the solution
x(t) = x(t; t0, ϕ0) of the problem (1) is defined on each of the intervals (τk−1, τk],
k = 1, 2, ..., t0 = τ0. From H4-H6 and the property of the sequence {τk}, k = 1, 2, ...
we conclude that it is continually for t ≥ t0.

Definition 1. We call an arbitrary manifold M in the extended phase space
R × Ω of (1) an integral manifold if from (t, ϕ0(t)) ∈ M for t ≤ t0 it follows that,
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θ+(t0, ϕ0(t)) ⊂M .

Consider the following sets and classes of functions:

Gk = {(t, x, y) ∈ R × R
n × R

n : τk−1 < t < τk, k = 1, 2, ...},

G =
⋃

Gk, k = 1, 2, ...,

VM = {V ∈ C[G,R+], V (t, x) = 0 for (t, x) ∈M, t ≥ t0,

and V (t, x) > 0 for (t, x) ∈ [t0,∞) × Ω \M, V is locally Lipschitz

continuous with respect to its second argument x in each of the

sets Gk, V (τ−k , x) = V (τk, x), and V (τ+

k , x) = lim
t→τk
t>τk

V (t, x)

exists, k = 1, 2, ...}.

Ω1 = {x ∈ PC[R,Ω] : V (s, x(s)) ≤ V (t, x(t)), s ∈ (−∞, t], t ≥ t0, V ∈ VM}.

We note that manifold M is a kernel of the class VM and let V ∈ VM . Introduce

D+V (t, x(t)) = lim
σ→0+

infσ−1[V (t+ σ, x(t) + σf(t, x(t), x(t − η(t)))) − V (t, x(t))].

Lemma 2. Let the following conditions hold:

1. Conditions H1, H2, H4 and H5, H6 are met.

2. The function g : (t0,∞) × R
+ → R

+ is continuous in each of the sets
(τk−1, τk] × R

+, k = 1, 2, ... and g(t, 0) = 0 for t ∈ (t0,∞).

3. Bk ∈ C[R+,R+], Bk(0) = 0 and ψk(u) = u+Bk(u), k = 1, 2, ... are
nondecreasing with respect to u.

4. The maximal solution r(t; t0, u0) of the problem







u̇ = g(t, u), t > t0, t 6= τk,
u(t+0 ) = u0 ≥ 0,
∆u(τk) = Bk(u(τk)), τk ≥ t0, k = 1, 2, ...

(2)

is defined in the interval [t0,∞).

5. The solution x = x(t; t0, ϕ0) of the problem (1) is such that x ∈
PC[R,Ω]

⋂

PC1[[t0,∞),Ω].
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6. There exists a function V ∈ VM is such that V (t+0 , ϕ0(0)) ≤ u0 and the
following relations are satisfied

D+V (t, x(t)) ≤ g(t, V (t, x(t))), t 6= τk, k = 1, 2, ..., t > t0,

V (s, x(s)) ≤ V (t, x(t)) for any s ≤ t,

and

V (τ+

k , x(τk) + Ik(x(τk))) ≤ ψk(V (τk, x(τk))), k = 1, 2, ....

Then

V (t, x(t; t0, ϕ0)) ≤ r(t; t0, u0), t ∈ [t0,∞). (3)

Proof. From Lemma 1 it follows that J+(t0, ϕ0) = [t0,∞).
The maximal solution r(t; t0, u0) of the problem (2) is defined by the equality

r(t; t0, u0) =























r(t; τ0, u
+

0 ), τ0 < t ≤ τ1,
r1(t; τ1, u

+

1 ), τ1 < t ≤ τ2,
.....................................
rk(t; τk, u

+

k ), τk < t ≤ τk+1,
.....................................,

where rk(t; τk, u
+

k ) is the maximal solution of the equation without impulses
u̇ = g(t, u) in the interval (τk, τk+1], k = 0, 1, 2, ..., for which u+

k =
ψk(rk−1(τk; τk−1, u

+

k−1
)), k = 1, 2, ... and u+

0 = u0.
Let t ∈ (t0, τ1]. Then from the continuous case ([10], Theorem 1.4.1,) it follows

that

V (t, x(t; t0, ϕ0)) ≤ r(t; t0, u0),

i.e., the inequality (3) is valid for t ∈ (τ0, τ1].
Suppose that (3) is satisfied for t ∈ (τk−1, τk], k > 1. Then, using condition 6 of

Lemma 2 and the fact that the function ψk is nondecreasing, we obtain

V (τ+

k , x(τ
+

k ; t0, ϕ0)) ≤ ψk(V (τk, x(τk; t0, ϕ0))) ≤ ψk(r(τk; t0, ϕ0))

= ψk(rk−1(τk; τk−1, u
+

k−1
)) = u+

k .

We apply again Theorem 1.4.1 from [10] for the continuous case in the interval
(τk, τk+1] and obtain

V (t, x(t; t0, ϕ0)) ≤ rk(t; τk, u
+

k ) = r(t; t0, u0),

i. e., the inequality (3) is valid for t ∈ (τk, τk+1].
The proof is completed by induction.
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In the case when g(t, u) = 0 for (t, u) ∈ (t0,∞) × R
+ and ψk(u) = u for

u ∈ R
+, k = 1, 2, ... we deduce the following corollary from Lemma 2.

Corollary 1. Let the following conditions hold:

1. Conditions H1, H2, H4 and H5, H6 are met.

2. The condition 5 of Lemma 2 is satisfied.

3. The function V ∈ VM is such that the inequalities

D−V (t, x(t)) ≤ 0, t 6= τk, k = 1, 2, ...,

V (t+, x(t) + Ik(x(t))) ≤ V (t, x(t)), k = 1, 2, ...

are valid for t ∈ [t0,∞) and x ∈ Ω1.
Then

V (t, x(t; t0, ϕ0)) ≤ V (t+0 , ϕ0(t0)), t ∈ [t0,∞).

3. Main results.

Theorem 1. Assume that:

1. Conditions H1-H6 are met.

2. For the problem (1) there exists a function V ∈ VM with kernel the
manifold M , so that the following relations are satisfied

D−V (t, x(t)) ≤ 0, t 6= τk, k = 1, 2, ..., t ≥ t0, x ∈ Ω1, (4)

V (τ+

k , x(τk) + Ik(x(τk))) ≤ V (τk, x(τk)), k = 1, 2, .... (5)

Then M is an integral manifold for (1).

Proof. Suppose that M is not an integral manifold. Therefore there exists t′, t′ >
t0 such that, if (t, ϕ0(t)) ∈M for t ∈ [−∞, t0] (t, x(t; t0, ϕ0)) ∈M for t0 < t ≤ t′ and
(t, x(t; t0, ϕ0)) /∈M for t > t′.

Then V (t′, x′) = 0, where x′ = x(t′; t0, ϕ0). Moreover x(t) ∈ PC[J+(t0, ϕ0),R
n].

We denote that for t′ the following two cases are possible:
a) If t′ = τk, k = j, j + 1, ..., j ≥ 1, then (t′+, x(t′+; t0, ϕ0)) = (t′+, x(t′; t0, ϕ0) +

Ik(x′)), (t′+, x(t′+; t0, ϕ0)) /∈ M and consequently V (t′+, x(t′+; t0, ϕ0)) > 0. Then
0 = V (t′, x′) < V (t′+, x(t′+; t0, ϕ0)) which is contradiction by (5).

b) If t′ 6= τk, k = j, j+1, ..., j ≥ 1 there exists t′′ > t′ such that (t′′, x(t′′; t0, ϕ0)) /∈
M . From (4) and (5) it follows that the function V (t, x(t)) is not increasing in [t0,∞)
and

V (t′′, x(t′′; t0, ϕ0)) > 0. (6)
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Since the conditions of Corollary 1 are met, then

V (t, x(t; t0, ϕ0)) ≤ V (t′, x(t′; t0, ϕ0)),

for t ∈ [t′,∞) and we obtain

V (t′′, x(t′′; t0, ϕ0)) ≤ V (t′, x(t′; t0, ϕ0)) = 0,

which is contradicts (6).
The proof of Theorem 1 is complete.

Now we shall use Theorem 1 to prove the existence of integral manifold for the
system















ẋ(t) =

{

A(t)x(t) +B(t)x(t − η(t)), x(t) > 0, t 6= τk,
0, x(t) ≤ 0, t 6= τk,

∆x(t) =

{

Ckx(t), x(t) > 0, t = τk,
0, x(t) ≤ 0, t = τk,

(7)

where:
i) t > t0; x ∈ PC[(t0,∞),Rn]; A(t) and B(t) are (n×n) matrix- valued functions;

ii) Ck, k = 1, 2, ... are (n× n) matrices; η ∈ C[(t0,∞),R+];

iii) {τk} ∈ B, 0 ≤ t0 ≡ τ0 ≤ τ1 < τ2 < ....

Let τ = inf
t≥t0

(t − η(t)) and ϕ1 ∈ C[[τ, t0],R
n]. Denote by x(t) = x(t; t0, ϕ1) the

solution of the system (7) satisfying the initial condition :

x(t; t0, ϕ1) = ϕ1(t), τ ≤ t ≤ t0, (8)

and by J+(t0, ϕ1) - the maximal interval of the type (t0, β), at which the solution
x(t; t0, ϕ1) is defined.

Theorem 2. Assume that:

1. The matrix functions A(t) and B(t) are continuous for t ∈ (t0,∞).

2. The condition H2 is met.

3. For each k = 1, 2, ... the elements of the matrix Ck are nonnegative.

4. There exists a continuous real (n× n) matrix D(t), t ∈ (t0,∞), which
is symmetric, positively definite, differentiable for t 6= τk, k = 1, 2, ... and
such that for each k = 1, 2, ...

xT [AT (t)D(t) +D(t)A(t) + Ḋ(t)]x ≤ −c(t)|x|2, x ∈ R
n, t 6= τk, (9)

xT [CT
k D(t) +D(t)Ck + CT

k D(t)Ck]x ≤ 0, t = τk, (10)
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where c(t) > 0 is a continuous function.

5. There exists an integral positive function λ(t) such that

d(t) = c(t) −max{α(t)λ(t), β(t)λ(t)} ≥ 0, (11)

2β1/2(t)

α1/2(t− η(t))
|D(t)B(t)| ≤ d(t), (12)

where α(t) and β(t) are respectively the smallest and the greatest
eingenvalues of matrix D(t).

Then, the set M = {[τ − t0,∞) × {x ∈ R
n : x ≤ 0}} is integral manifold

of the system (7).

Proof. Consider the function

V (t, x) =

{

xTD(t)x, for x > 0,
0, for x ≤ 0.

From condition 5 of Theorem 2 the following inequalities hold

α(t)|x|2 ≤ xTD(t)x ≤ β(t)|x|2.

For the function V (t, x) the set Ω1 is

Ω1 = {x ∈ PC[(t0,∞),Rn] : xT (s)D(s)x(s) ≤ xT (t)D(t)x(t), t− η(t) ≤ s ≤ t,

t ∈ (t0,∞)}.

If t > t0 and x ∈ Ω1 we have

α(t− η(t))|x(t − η(t))|2 ≤ xT (t− η(t))D(t − η(t))x(t − η(t))

≤ xT (t)D(t)x(t) ≤ β(t)|x(t)|2,

and we obtain the estimate

|x(t− η(t))| ≤
β1/2(t)

α1/2(t− η(t))
|x(t)|. (13)

Let t 6= τk and x ∈ Ω1. From (9), (11), (12) and (13) we have

D−V (t, x(t)) =

{

−c(t)|x(t)|2 + 2|D(t)B(t)||x(t)||x(t − h)|, x(t) > 0,
0, x(t) ≤ 0

≤

{

−[c(t) − d(t)]|x(t)|2, x(t) > 0,
0, x(t) ≤ 0

≤ −λ(t)V (t, x(t)).

Let t = τk. Then from (10) we get

V (t+, x(t) + Ckx(t))

=

{

(xT (t) + xT (t)CT
k )D(t)(x(t) + Ckx(t)), x(t) > 0,

0, x(t) ≤ 0

=

{

xT (t)D(t)x(t) + xT (t)[CT
k D(t) +D(t)Ck + CT

k D(t)Ck], x(t) > 0,
0, x(t) ≤ 0

≤ V (t, x(t)).
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Thus we have checked that all the conditions of Theorem 1 are satisfied.
Hence the set M = {[τ − t0,∞) × {x ∈ R

n : x ≤ 0}} is an integral manifold for
the system (7).
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