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VERBLUNSKY PARAMETERS AND LINEAR SPECTRAL
TRANSFORMATIONS*

L. GARZAT AND F. MARCELLAN?

Abstract. In this paper we analyze the behavior of Verblunsky parameters for Hermitian linear
functionals deduced from canonical linear spectral transformations of a quasi-definite Hermitian
linear functional. Some illustrative examples are studied.
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1. Introduction and preliminary results. Spectral transformations appear
in the literature related to bispectral problems, self-similar reductions, factorization
of matrices, and Darboux transforms on Jacobi matrices (see [1], [2], [14], [20], [23]).
They are connected with perturbations of linear functionals in the linear space of
polynomials with complex coefficients, from the point of view of Jacobi matrices as a
representation of the multiplication operator in terms of orthogonal polynomial bases,
LU factorizations of such matrices, and rational bilinear transformations of Stieltjes
functions.

The extension to other contexts has been started in [3] where polynomial per-
turbations of bilinear functionals have been considered. In such a situation, the rep-
resentation of the multiplication operator with respect to an orthogonal polynomial
basis is a Hessenberg matrix.

In the case of Hermitian linear functionals defined by probability measures sup-
ported on the unit circle, some linear spectral transforms have been introduced in
the literature. In particular, polynomial and rational perturbations have been con-
sidered in [8], [9], [11], and [13] where explicit expressions for polynomials orthogonal
with respect to the perturbed measure have been obtained in terms of the orthogonal
polynomials with respect to the initial probability measure.

Later on, following the matrix approach to the canonical transformations asso-
ciated with the spectral measures of Jacobi matrices (see [2] and [23] for the case of
Christoffel, Uvarov and Geronimus transformations), as well as the analysis of the
generators of the group of linear and rational spectral transformations done in [24],
some canonical perturbations of probability measures supported on the unit circle
have been analyzed in [4], [5], [15]. More precisely, these contributions focused the
attention on the connection between the Hessenberg matrices associated with a prob-
ability measure and the perturbed linear functional, respectively, in terms of their QR
factorization instead of the LU factorization. Here, and taking into account that the
Hessenberg matrix is the representation of the multiplication operator in terms of an
orthogonal basis, the main tool is based on the relation between the corresponding
orthogonal bases.
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In order to have a self contained presentation, we will introduce the basic back-
ground concerning orthogonal polynomials on the unit circle (OPUC).

Suppose L is a linear functional in the linear space A of the Laurent polynomials
with complex coefficients (A = span {z"}, .,) such that £ is Hermitian, i. e. ¢, =
(L,2") = (L,27™) = €_p, n € Z. Then, in the linear space P of polynomials with
complex coefficients, a bilinear functional associated with £ can be introduced as
follows (see [7], [12])

(p(2),q(2)), = (L, p(2)q(z™")) (1)

where p,q € P.
In terms of the canonical basis {2"}, 5, of P, the Gram matrix associated with
this bilinear functional is

Co C1 Cn
C-1 Co Cn—1
T = : , (2)
C—n Con41 Co

i.e., a Toeplitz matrix [10].

The linear functional £ is said to be quasi-definite if the principal leading sub-
matrices of T are non-singular. If such submatrices have a positive determinant,
then the linear functional is said to be positive definite. Every positive definite linear
functional £ has an integral representation

wmu»=AQQMda, (3)

where o is a nontrivial probability Borel measure supported on the unit circle (see
[7], [10], [12], [19]), assuming ¢g = 1.
The analytic function defined by

F(z)=co+2 Z c_nz" (4)

is called the Carathéodory function associated with £. If £ is positive definite, then
F(z) is analytic on the open unit disk D = {z : |z| < 1} and ReF(z) > 0 for every
z € D. Furthermore, F(z) has the integral representation

F(z) = /T Y o(w).

w—z

If £ is a quasi-definite linear functional then a unique sequence of monic polyno-
mials {®y},-, such that

<q)n; q)m>£ = knan,mv (5)

can be introduced, where k,, # 0 for every n > 0. It is said to be the monic orthogonal
polynomial sequence associated with L.
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Let o be a non trivial probability measure supported on the unit circle T = {z €
C : |z| = 1}. Then there exists a sequence {¢p }n>0 of orthonormal polynomials

@n(z> =Kn2" + .y K >0,
such that
/ on (€ (e?)do(0) = 6, m,n = 0. (6)
The corresponding monic polynomials are then defined by

o,
(2) =~

These polynomials satisfy the following recurrence relations (see [7], [10], [19],

[21])
D,41(2) = 28, (2) + Pp4+1(0)2),(2), n=0,1,2,... (7)

q):wrl(z) =P (2) + P41(0)2P,(2), n=0,1,2,... (8)

Here ®(2) = 2"®,,(1/2) is the reversed polynomial associated with ®,,(z) (see [19]),
and the complex numbers {®,,(0)},>1 are called reflection (or Verblunsky) parame-
ters. Notice that |®,(0)] < 1 for every n > 1. For quasi-definite linear functionals,
the Verblunsky parameters satisfy |®,,(0)| # 1, n > 1 (see [7]).

It is well known ([19]) that given a nontrivial probability measure o supported on
the unit circle, there exists a unique sequence of Verblunsky parameters {®,,(0)},>1
associated with o. The converse is also true, i.e., given a sequence of complex numbers
{®,,(0)}n>1, with ®,,(0) € D, there exists a nontrivial probability measure on the unit
circle such that those numbers are the associated Verblunsky parameters.

The family of Verblunsky parameters provides a qualitative information about
the measure and the corresponding sequence of orthogonal polynomials.

The measure o can be uniquely decomposed into

DEFINITION 1 ([19], [21]). Suppose the Szegd condition,

/log(w(ﬁ))g > —00, (9)
T

holds. Then, the Szegd function, D(z), is defined by

e — 2

D(2) = exp (ﬁ / Ptz 10g(w(9))d9> . (10)

The Szegd condition (9) is equivalent to > -, [®,(0)|? < co. This is known in
the literature as the Szegd theorem (see [19]).

On the other hand, the sequence of Verblunsky parameters {®,,(0)},,>1 is said to
be of bounded variation if
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> 18041(0) - @4(0)] < o0
n=0

holds.
Let Ky (z,y) be the n-th reproducing kernel polynomial associated with {¢n}, .
defined by

- — @;(y)®(2)
Kn(,9) =Y _0iW)e(s) = Y~
7=0 7=0 J
with k; = ||®;]|* = (k;(c)) 2. Notice that the last expression is also valid in the

quasi-definite case. There is a direct formula to compute K,(z,y),

THEOREM 2 (Christoffel-Darboux Formula). For any n > 0 and z,y € C with
yz #1,

i @;(y)®,(2) 0 ()P 41(2) = Prgr (W) P (2)

Kn(z,y) = — k - kny1(1—172) ,
_ ()P (2) — 52 Pa(y)Pu(2)
k,(1—gz) ‘

For a class of perturbations of the measure o, some properties of the perturbed
measure & have been studied in ([4], [8], [14], [16]). In particular, the relation between
the corresponding families of orthogonal polynomials as well as necessary and sufficient
conditions for the quasi-definite (positive definite) character of the new measure &,
assuming the quasi-definite (positive definite) character of o, among others. We point
out the following canonical cases.

(i) If do = |z — a|?do, |z| = 1, a € C, then the so-called canonical Christoffel

transformation appears.

(i7) If d6 = do+md(z — ), |a] = 1, m € R, then the so-called canonical Uvarov
transformation appears.

(iii) If do = do +md(z —a) + md(z —a~ 1), m € C, |a| < 1, then a more general
case of the Uvarov transformation appears.

then we get the Geronimus transformation.
Notice that the linear functional associated with & can be normalized (o = 1) if it
is quasi-definite. In terms of the Caratéodory functions, all the above perturbations
correspond to transformations of the form

(v) If do = ﬁda—l—mé(z —a)+mé(z—alt),|zl=1,meC and |a] <1,

ﬁ’(z) _ A(z)Féz()Z;- B(z)7

where A(z), B(z), and D(z) are polynomials, and F(z) is the Carathéodory function
associated with the perturbed measure . Hence, these perturbations yield linear
spectral transformations in the corresponding Carathéodory functions.
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In this work, we analyze these transformations from the point of view of the
behavior of the families of Verblunsky parameters. We get explicit expressions for the
Verblunsky parameters associated with & in terms of the parameters associated with
0. We also study if the measure ¢ is of bounded variation, provided that o is.

The structure of the manuscript is as follows. In section 2 we analyze the behavior
of the Verblunsky parameters when a Christoffel canonical transform of a probability
measure supported on the unit circle is considered. Section 3 is focussed on the
Uvarov transformation in a more general framework than one analyzed in [22]. Two
particular examples of the Uvarov transformation are studied in Section 4 in order to
analyze how this perturbation in the probability measure is reflected on the behavior
of their Verblunsky parameters.

2. The Christoffel transformation. Let o be a complex number. Consider

the Hermitian bilinear functional

P9, = {z—a)p,(z-a)g),, pgeP. (11)

If £ is quasi-definite, then necessary and sufficient conditions for L& to be quasi-
definite have been studied in [16].

PROPOSITION 3. [14],[16]
(i) Lo is quasi-definite if and only if K, (o, ) # 0 for every n € N.

(14) If{‘in}n%) denotes the sequence of monic orthogonal polynomials with respect
to Lc, then

&)n(z) = ! (‘I)n+1(z) -

Z—

<I>n+1(oz)
K, (a,a)

Kn(z,a)) . (12)

L is said to be the canonical Christoffel transformation of the linear functional

L.

PROPOSITION 4. Let {®,(0)}n>1 be the Verblunsky parameters corresponding to
the quasi-definite linear functional L. Then, the Verblunsky parameters associated
with Lo are given by

B0 - e~ et (19

Proof. From (12), the evaluation in z = 0 yields

$,(0) = —a | @p41(0) - f;zafzg 3 <I>j<01>jj<a>

n
Jj=0

Applying the Christoffel-Darboux formula, we get

0= <@”+1(0) - }?Z?;(Zi Q)Z(Ollfrl(a)) (14)

_ Ppp1(a)i () Pnya(0)
N al::Kn(oe,oz) a -;1 (15)
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since @} (0) = 1. O Another way to express (15) is

& [a®n(a) + 0 41(0)07 ()] P} (@) Pnya(0)

n(0) = ok, K, (o, @) o
@5, () ? Dn11(0) | ()7 ()
- {ann(a,a) B 1] —2 + k, K,(a,)’

i.e., there is a linear relation between both families of Verblunsky parameters.
Notice that, if |a| # 1, from the Christoffel-Darboux formula we deduce

125 o2 (@)
ol = e

and the expression for the Verblunsky parameters {5;(0)},121 in terms of @, ()
and @ («) is therefore given by

200 = Slen @ — aPRn @~ a
 [0®a(0) + Puia (25T (1 [aP)  Bua(0)
o5 (@[ — |aP| B ()] o

(@®n ()27 (@) + Pps1 (0|5 () *)(1 — |ol?)
a)? — |af?| @, (a)[?

)

3 Ci1 ()5 ()1~ o) @ns1(0)
|

)

| + a* @p 1 (0)| P ()
2 = laf?|®n ()2

B ()@ [0f2) + 6B ()| B () — B2 ()]?
nl0) = 7 (@)~ Ja2 [ (@)

3

As a conclusion, ®,,(0) can be expressed as

B,,(0) = A(a; n)@p 11 (0) + Bla; ),

with

(1@ ()]? = |®5(c)?)

2P — [aP[@,(@)?’
oy 2a(@@i(@)(1 — |af)

PO = g ()~ oPTe. @)

Ql

A(a;n) =

E

On the other hand, if |a| = 1, we have
Ko (o) — B @20() — B (@20 (2)
kpt1(1 — az)

_ a®y, i 1(a) Py i1(2) — @ Py g (a)q):wrl (2)
kny1(z — )




VERBLUNSKY PARAMETERS AND SPECTRAL TRANSFORMATIONS 75

and applying the L’Hospital’s rule, we obtain

Kn(a,0) = lim Kp(2,0) = ——[a®u11(a)®,, 4, (2) = a"py1(a) P, (2)],

z—o n+1
1 — “n *!
- m [aq)n-i-l (O‘)(I)n-i-l (a) —a (I)"+1 (a)(l)"'i‘l (a)]
Therefore
a(o) _ Kpt1Pni1 (a)(I);“l(a) _ Pt (O)
aky [a®p 41 (@) B, 4 (@) — @y p (@) D) ()] @
b (@F@ - 20 OF)  ®a4(0)
ala®,11(a) P, (@) — a"Ppi1 ()P ()] @

with @4 (a) = a™H(n+ 1)@ 44 (a) — (2,,41)* ().
For the remaining of this section, we assume that £ is a positive definite linear
functional. Then,

THEOREM 5 ([17], [18], [22]). Suppose Y ooy |®n(0)[? < 00 and Y07 [®n4+1(0)—
®,,(0)] < co. Then, for any § > 0,

sup |©7,(2)] < o0
n;é<arg(z)<2m—4§

and away from z = 1, we have that lim,,_, o, ®}(2) exists, is continuous, and equal to
D(0)D(z)~t. Furthermore, dus = 0 or else a pure mass point at z = 1.

PROPOSITION 6. Suppose Yo |®,(0)|* < 0o and Y - [®n+1(0)— P, (0)] < o0,
Then, for |a| <1, a #1,

(i) 32005 18,(0)[? < cc.

(i) 320 [Pni1(0) — 8, (0)] < oo.

Proof.
(i) We denote
P (@) 5 (a)

tny1 = .
T 0k, Ko (o, @)

Let us first assume || = 1, a # 1. Notice that ®,i(a) = ant1dy ()
and, from Theorem 5, lim,, . ®}(a) = D(0)D(a)™!, where D is the Szegd
function defined in (10). This also implies that 1/K,(a,«) = O(1/n). On
the other hand, if |a| < 1, notice that ®,(«) and @} (a) are O(a™) and
limy, 00 (1/ Ky (v, ) > 0.

Then t,41 is O(1/n). Since Y~ |®,(0)]* < oo and t,41 is O(1/n), then
Y oneo [2n(0)* < o0.

(¢3) Since Yo7 5 [®n41(0) — @,(0)] < oo, we only need to prove that

o0
> tnt1 — ta| < o0
n=0
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Notice that, from the recurrence relation
P 11(a) = @ () = i1 (0)a®p ().
Then |®} (o) — ®7 ()] = O(|®y41(0)|) and therefore

'<<1>;;+1<ain—Kif€C<ﬁ>)®Z+l<a> _o (W) (16)

On the other hand,

KKnHl(OZ,Oz) - Kn(}y,a)> QH(Q)W -

Thus, from (16) and (17) we get

lthi1 —ta] = O (M) +0 (%)
n n

and, therefore,

o0
> ftnir — tn] < oo
n=0

REMARK 7. This approach was used by M. L. Wong in [22] to prove a similar
result for the Uvarov transformation. See more details in the following section.

3. The Uvarov transformation. In this section we are dealing with the two
canonical Uvarov transformations defined in the introduction.

3.1. The bilinear functional (p,q), = (p,q),+mp(a)q(a), o] =1, m € R.
Now consider the bilinear functional

(P, q)z, = (p.q), + mp(a)g(e), p.qeP, (18)

with m € R and |o| = 1. Notice that £y is an Hermitian linear functional. If «
is fixed, then we get necessary and sufficient conditions about the choices of m € R
such that the linear functional Ly is quasi-definite. Indeed,

PROPOSITION 8 ([14]).
(i) Ly is quasi-definite if and only if 1 + mK,_1(a,a) # 0 for every n > 1.

(1) If {Upn}n>0 denotes the sequence of monic orthogonal polynomials with respect
to Ly, then

md®, (o)
1+ mK,_1(a,a)

Un(2) = P,(2) K,_1(z, ). (19)

In other words, for a fixed a, |a| = 1, the linear functional Ly is quasi-definite up to
a numerable set of values of m.

Thus, as a consequence, we get
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PROPOSITION 9. Let {®,(0)}n>1 be the Verblunsky parameters with respect to L.
Then, the Verblunsky parameters associated with Ly are given by

m®,(a)®;_;(a)

U,(0) = 2,(0) — ko (0t mEK, 1(a.0)) (20)
Proof. From (19), evaluating at 2 = 0, we obtain
Ua0) = 84(0) = 1K1 (0,00, (21)
=0,(0) — 1 mKn (12 )%_71(2?2_1(0), (22)
_ 5,0 - m®, (2)®;_ () (23)

kn,1(1 + manl(O[, a)) '

REMARK 10. If L is a positive definite linear functional and using a formula for
the Verblunsky parameters associated with & first given by Geronimus ([6]) and also
by Simon (see [19] and the references therein), then this result was also proved in [22],
as follows,

THEOREM 11 ([22]). Suppose o is a nontrivial probability measure on the unit
circle and 0 < v < 1. Let & be the nontrivial probability measure resulting of the
addition of a mass point ( = e € T to o as follows

do = (1 —~)do + ~de.
Then the Verblunsky parameters associated with ¢ are

(1 — [®,41(0)]%)1/2 -
A=)+ Ka (GO

(©)#n(C)- (24)

Notice that in the above perturbation & is again a nontrivial probability measure.
Furthermore, k,, /k,—1 = 1 — |®,(0)|?, so (20) is equivalent to the expression (24),
which also appeared on [6]. There is also an analog of Proposition 6 for the Uvarov
transformation on [22], which has been proved (see [7]) in a more general case when
masses are added in m points of the unit circle.

Notice that (23) also reads

m[a®, (@) + €, (0)25,_, ()]®7, ()
kn,1(1 + manl(O[, a)) ’

or, in other words,

Un(0) = Av(a;n) @5 (0) + Bu(esn),

with
m|<I) 1( )|2
Ap(esn) =1- m
vla;n) ky1(1+mK,_1(a,a))’
By_1()DF_ (a)
By(a;n) = — madn1 (@) ()

kn,1(1 + manl(O[, a)) '
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3.2. The bilinear functional (p,q). = (p,q), + mp(a)gla™t) +

mp(a—1)q(a), |a| <1, m € C. Now let us consider the bilinear functional
0,9z, = (0,q) . + mp(a)g(@t) + mp(a")gla), pqeP, (25)

with m € C and |a| < 1. Notice that Ly is also hermitian.

PROPOSITION 12 ([4]). Assume L is a quasi-definite functional and o, with
la| < 1, a fized complex number. The linear functional Ly is quasi-definite if and
only if m satisfies
14+ mK,(a,a™t) mK,(a, a)

A=l k(@b al) 1+ mKa(a—),a)

#0,

for all n > 0. In other words, the linear functional Ly is quasi-definite for every
m € C up to a numerable set.

Assuming the conditions of the above proposition we get

PROPOSITION 13 ([4]). The orthogonal polynomial sequence corresponding to Ly,
{Va(2) }nso, is given by

Vo (2) = @,(2) — m[A, @, (@) + By®p(a )] Kp_1(2,a7 ")
—m[Cp®p(a) + Dp®p(a )] Kp_1(2,a), (26)

where
—l+mK,_(a!
An: [ +mA _i(a ,O[)] (27)
nK, 1(a,
Bn:mAifm (28)
_ ~—1 ~—1
C, = mK"—Al(a 67 (29)
n—1
1 K, _ Al
D, = +mA o am) (30)
n—1

with Ap_1 = |m|2Kn,1(6F1, &*1)Kn,1(a, a) — |1 + manl(O[, 0_171)|2.
Notice that D,, = —A,,. Then, the Verblunsky parameters {V,,(0)},>1 are

V(0) = 8(0) — mlAu () + Butba(a ) (008 (@ ) /ka s
—m[Cr®n(a) + Dy @ (6 )]®;, 1 (0)2;_y(a) /kn—1. (31)
If £ is a positive linear functional and assuming that Y~ |®,(0)|* < oo, then we
will study the behavior of V,,(0) when n — oo. Since |a| < 1, lim,,—c0 Kp(a, @) < 00
and lim,, o, K, (a™!,a™1) = oo (see [19]). On the other hand, taking into account

K,(a ! a) | |2nKn(a,d—1)
_Anl® L% e\ d )
Kp(a—t,a™?) Kp(o,a)
we get
) Ky(a ! a) ) on K (o, @7 1)
lim —————~%— =1 n T )
Lo Py L L iy oy popee
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Since Kp(a,a™1) is O(@™) and |a| < 1, it follows that

~—1 _—
We obtain the same result for %, since K,,(a~ !, a) = K,(a,a™1).

Therefore, if we divide by K,_1(a~!,a ') in the numerator and denominator
of A,, and take the limit when n — oo, then the numerator becomes 0, and only
|m|?K,,_1(a,a) survives on the denominator. Hence, A,, = 0 when n — oo.

The same fact occurs with B, and D,,. In a similar way, we obtain that C, ~

1
T MK (o)
As a conclusion, when n — oo

as n — oQ.

ms@:_1<0>m (32)

(I)n(a) " —
m%_l(omfl(a) (33)

- (I)n(O) + knflanl(o‘a 05) '

Notice than (34) has the same form as (13). Therefore,

PROPOSITION 14. Suppose >~ |®,(0)]* < 0o and .2 |®ny1(0) — ,(0)] <
oo. Then,

(i) 2onlo [Va(0)]* < oco.
(i) Y omeg [Vas1(0) = Vi (0)] < o0.

4. Examples. In the next examples we will illustrate the behavior of the
Verblunsky parameters when linear spectral transforms of nontrivial probability mea-
sures are considered.

4.1. First, we consider the Uvarov transformation (see Section 3.2) for the nor-
malized Lebesgue measure, i.e. we study the measure ¢ defined by

de
do = Py +mé(z—a)+mdi(z—a '), |a|<1,meC~ {0}.
T
For a fixed o with |&| < 1, necessary and sufficient conditions on m for the
existence of a sequence of monic polynomials orthogonal with respect to & follow
from Proposition 12.
Indeed, for n € IN we get

1+ m7(1n + 1)% ngzo || 2F
rafm 2ak—o lo 1+m(n+1)

|a|2n

r 2
2 n
m
— 1 (o m)(n 4 1)+ fmP(n+ )2 - P S apr]
Lk=0
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with |a| < 1. Notice that this expression is # 0 if and only if

n 2
m/” [ZIaI%] #14+ (m+m)(n+1)+ |m*(n+1)2
k=0

ie.

|m|2 |a|2n+2 -1
laf* =1

1 |a)?nt2 — 1 ?
2 2
m —(n+1
[m| l|a|2" < a2 —1 (n )

If m € R, then the above condition becomes

2
> #1+ (m+m)(n+1)+|m[*(n+1)3%

#1+(m+m)(n+1).

min+ -1 2 2 (B

2
1
a2 oz =1 ) , for every n € IN.

Then, for a fixed o with |a] < 1, the linear functional associated with & will be
quasi-definite for every m € C such that

m |a|2n+2_1

ol > holds for every n € IN.
o n

For instance, if |a|? = 1, then the above condition becomes

m[n+1—2"/2(2—2in>}+17é0,

and therefore L5 is a quasi-definite linear functional except for a numerable set of
values of m,

-1
m# (2"/2(2—2*”)—71—1) ., VneN.
Under the above assumptions for m, we get

PROPOSITION 15. Let d6 = 2 + mé(z — a) + mdé(z — &™), with |o| < 1 and
m € C\ {0}. Then, the sequence of monic orthogonal polynomials with respect to &

is given by
V(2) = 2" — m[Ana™ + Boa—"] [ 22 _m[Cran + Dya] (202
n\&) =2 n@ nd 1—a 1z n@ n@ 1—az
(35)
where
Ap,=—(1+nm)/d,(a),

_ n—1
m
Bn _ 2k
@ 21
k=0
Cn _ —|a|72(n71)Bn,
Dn _An;
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2
—2(n— n—1
and dy (@) = [m[*|a| == [0 o] = 1+ nml?.

Proof. Tt is well known (see [19]) that the sequence of monic orthogonal polyno-
mials with respect to the normalized Lebesgue measure is ®,,(z) = 2™. Notice that
on(2) = 2", as well as ©,(0) =0, n > 1. Then, from (26), we get

Vi(2) = 2" — m[A,0" + Bpa " K 1(z,a ') — m[Cra™ + Dpa K, 1(z, a)

1 n 1 —ahzn
=t + 5] (Y2 ) - mica D) ().

— afn

The values of A,, By, Cp, Dy, and d,(«) follow from (28) - (30) since K, _;1(a,a) =
Zz;é |a|2k7 anl(@ilvail) = Zz;é |o‘|72k7 and anl(ailao‘) = anl(avail) =
n. O

COROLLARY 16. Assuming the conditions for quasi-definiteness of the linear
functional Ls are satisfied, the Verblunsky parameters associated with & are

Vio(0) = —(m[Ana™ + Bpoa"] + m[Cpa™ + Dpa™)). (36)

Proof. Tt follows immediately from the evaluation of (35) at z =0. O
Now we give an estimate for V,,(0) when n — oo. We have

Vn(0) = —(mA, + mC,)a" — (mB, + mD,)a "

But

n—1

«
—— |m 4+ nlm? + [m|*|a| 2D N a2
oy 2

_ -1
_ alaPr i mt niml?) + Im|? 3T [of**
- -1 _
Im|? 320 af?? — [a>" =21+ nm|?

n

—(mA, + mCp)a" =

On the other hand,

2n
—m[2 =t — (m + nm?)
—a "(mB, +mD,)=a"" lo®—1 ,
2__ 1 1-jaf?r 2
Iml* G e — 1+ nm
2n_q B
_ o ImPe=t — (m o+ nimp?)
1— 2n :
m|?a2 2 — 14 nm2[af2
As a conclusion, when n — oo,
|of? -1
Vo (0) ~ BE na™.

4.2. The second example corresponds to a Geronimus canonical transformation
(see [5]) of the Lebesgue measure. Observe that the Christoffel transform of this
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Hermitian linear functional is the Lebesgue measure. Thus, we consider a measure &
such that
1 df

—+mé(z—a)+mi(z—a?t), |a|<1l,meC~ {0}

do = ——
7 |z — |2 27

Notice that this transformation can also be considered as an Uvarov transformation
of the measure ‘Zfa'Q % with two mass points (Section 3.2). Thus, according to
Proposition 12, the linear functional L5 is quasi-definite for every m € C up to a
numerable set. On the other hand, according to Proposition 13, and for every m such
that L5 is quasi-definite, we get

PROPOSITION 17. Let d6 = —— 2 + mé(z — a) + mé(z —a~1), with |a| < 1.

[z—al? 27
Then, the sequence of monic orthogonal polynomials with respect to & is given by
a "(1—|af)?[[m[*(1 — o) (e" 2)" "t + m + [m[*(1 — |af?)]

[m[2la]=20 2 (1 — [af?)? — 1 + m(1 — |af?)[? ’
(37)

Vi(2) = 2" —az" "1~

forn > 1.

Proof. Tt is well known ([19]) that the sequence of monic orthogonal polynomials

with respect to —— 4 is

[z—al? 27

P, (2) = 2" —az" !, la] < 1,m > 1.
Notice that ®*(z) = 1 — &z. From (26) we have

Vi(2) = 2" —az" ' —mB,a "(1—|a]) K, 1(z,a ) —mD,a " (1—|a*) K, _1(2, ),

(38)
since ®,(a) = 0, n > 1, and ®,(a"') = a (1 — |a|?). Notice that in this case
ko = ||®o||* = ﬁ, aswellask, =1,n > 1.

We also have K,,_1(z,a) = k%) and, as a consequence,
Ko i(a,a) =K, 1(,a ) =K, 1(ata)=—=1-|af.

On the other hand, from the Christoffel-Darboux formula we get

05 (a1)P(2) — Pn(@ 1) Pn(2)

1y

Kn_l(Z, (6% ) - (1 — 04712) 9
_ —(a"—aa " (2" — a2 )
B (1—a1z) ’

= (a2)" 7 (L = |af?).
As a consequence,

o (a0 (a ) — @, (a 1), (a "
Kypi(a Ha )= w(@ ) (a77)) — n(@7)Pn(a”))

(T—aa ") |
B e e 0
T e

o 72 (1 — |af?).
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Therefore
o m(1 - Jaf?)
" mfPa| T2 (1 - [a?)? — 1+ m(1 - [of?)2
and
. Lt m(l — [ap)

 [mPla[ 221 = o) = [T+ m({1 - [a)

Then, (38) becomes

1 mPA—aP)?am (e )" 4 ml 4+ m(l — |of?)]a" (1 — |af?)
Im a2 +2(1 = [af?)? — [T+ m(1 — |af?)?

Vi(z) = 2" —az""

which is equivalent to (37). O
For a fixed « € C with |a| < 1, we can choose m € C such that

1+m(l—|a?) m(1—|af?)
mla|~" (1= o?) 1+m(1—]af?)

L+ (m+m)(1 = o) + [m*(1 = |af*)? — [m[*|a| " *(1 = |af*)* £0, n>0.

This condition guarantees the existence of {V,(2)}n>0. In other words, for every
m € C such that

+(m+m)1 —|af?) + [m*(1 — |of*)?
Im[2(1 = |of?)? ’
(m+m)(1 — |of*) + [m[* (1 — |af*)?
m (1= |a?)? ’
Lt (metm) (1= o) +[m (1= |a[*)

1ln [l (1= [al*)”
1—- =
n# 2 In |

1
o 722 2

1
(—2n+2)In|a| # In +

, for every n € IN,

the linear functional Lz is quasi-definite.
In particular, for a fixed o such that |o|> = %, and taking m € R, the above
condition becomes

In (14 2)°
n#lt In2 ’
i.e.

In(1+2)°

In2 ¢ N

In other words, for m € C such that
2

for every n € IN,

the linear functional is quasi-definite.
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COROLLARY 18. Assuming the conditions for quasi-definiteness are satisfied, the

Verblunsky parameters associated with & are

_atd—af)?[m + 2m [’ (1 — |af?)]
Im (1 —[af?)? = |1+ m(1 - [of?)]?
a1 —jaPPm+ mPd — |af)]
Im|?la] =272 (1 = [af?)? = [T+ m(1 — |af?)]?’

Vl (O) = —Q

Va(0) =

n > 2.

Proof. Tt follows immediately from the evaluation of (37) at z =0. O
Finally, we obtain an estimate for V,,(0) when n — oco. From Corollary 18

B m(l+m(1—[o]*)(1 — |a|*)?a” 1
Im?|af=2"F2(1 —[af?)? = [T+ m(1 = [af?)[? [a>"

Va(0) =

In other words,

1 1
Va(0) ~ 1= — — —— | a™.

[a2 ~ mlaf?
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