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VERBLUNSKY PARAMETERS AND LINEAR SPECTRAL

TRANSFORMATIONS∗

L. GARZA† AND F. MARCELLÁN‡

Abstract. In this paper we analyze the behavior of Verblunsky parameters for Hermitian linear
functionals deduced from canonical linear spectral transformations of a quasi-definite Hermitian
linear functional. Some illustrative examples are studied.

Key words. Quasi-definite Hermitian linear functionals, orthogonal polynomials, Christoffel
transformation, Uvarov transformation, Geronimus transformation, Verblunsky parameters.

AMS subject classifications. 42C05

1. Introduction and preliminary results. Spectral transformations appear
in the literature related to bispectral problems, self-similar reductions, factorization
of matrices, and Darboux transforms on Jacobi matrices (see [1], [2], [14], [20], [23]).
They are connected with perturbations of linear functionals in the linear space of
polynomials with complex coefficients, from the point of view of Jacobi matrices as a
representation of the multiplication operator in terms of orthogonal polynomial bases,
LU factorizations of such matrices, and rational bilinear transformations of Stieltjes
functions.

The extension to other contexts has been started in [3] where polynomial per-
turbations of bilinear functionals have been considered. In such a situation, the rep-
resentation of the multiplication operator with respect to an orthogonal polynomial
basis is a Hessenberg matrix.

In the case of Hermitian linear functionals defined by probability measures sup-
ported on the unit circle, some linear spectral transforms have been introduced in
the literature. In particular, polynomial and rational perturbations have been con-
sidered in [8], [9], [11], and [13] where explicit expressions for polynomials orthogonal
with respect to the perturbed measure have been obtained in terms of the orthogonal
polynomials with respect to the initial probability measure.

Later on, following the matrix approach to the canonical transformations asso-
ciated with the spectral measures of Jacobi matrices (see [2] and [23] for the case of
Christoffel, Uvarov and Geronimus transformations), as well as the analysis of the
generators of the group of linear and rational spectral transformations done in [24],
some canonical perturbations of probability measures supported on the unit circle
have been analyzed in [4], [5], [15]. More precisely, these contributions focused the
attention on the connection between the Hessenberg matrices associated with a prob-
ability measure and the perturbed linear functional, respectively, in terms of their QR
factorization instead of the LU factorization. Here, and taking into account that the
Hessenberg matrix is the representation of the multiplication operator in terms of an
orthogonal basis, the main tool is based on the relation between the corresponding
orthogonal bases.
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In order to have a self contained presentation, we will introduce the basic back-
ground concerning orthogonal polynomials on the unit circle (OPUC).

Suppose L is a linear functional in the linear space Λ of the Laurent polynomials
with complex coefficients

(
Λ = span {zn}n∈Z

)
such that L is Hermitian, i. e. cn =

〈L, zn〉 = 〈L, z−n〉 = c̄−n, n ∈ Z. Then, in the linear space P of polynomials with
complex coefficients, a bilinear functional associated with L can be introduced as
follows (see [7], [12])

〈p(z), q(z)〉L =
〈
L, p(z)q̄(z−1)

〉
(1)

where p, q ∈ P.
In terms of the canonical basis {zn}n>0 of P, the Gram matrix associated with

this bilinear functional is

T =




c0 c1 · · · cn · · ·
c−1 c0 · · · cn−1 · · ·
...

...
. . .

...
c−n c−n+1 · · · c0 · · ·
...

...
...

. . .




, (2)

i.e., a Toeplitz matrix [10].
The linear functional L is said to be quasi-definite if the principal leading sub-

matrices of T are non-singular. If such submatrices have a positive determinant,
then the linear functional is said to be positive definite. Every positive definite linear
functional L has an integral representation

〈L, p(z)〉 =

∫

T

p(z)dσ(z), (3)

where σ is a nontrivial probability Borel measure supported on the unit circle (see
[7], [10], [12], [19]), assuming c0 = 1.

The analytic function defined by

F (z) = c0 + 2

∞∑

n=1

c−nzn (4)

is called the Carathéodory function associated with L. If L is positive definite, then
F (z) is analytic on the open unit disk D = {z : |z| < 1} and ReF (z) > 0 for every
z ∈ D. Furthermore, F (z) has the integral representation

F (z) =

∫

T

w + z

w − z
dσ(w).

If L is a quasi-definite linear functional then a unique sequence of monic polyno-
mials {Φn}n>0 such that

〈Φn, Φm〉L = knδn,m, (5)

can be introduced, where kn 6= 0 for every n > 0. It is said to be the monic orthogonal
polynomial sequence associated with L.
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Let σ be a non trivial probability measure supported on the unit circle T = {z ∈
C : |z| = 1}. Then there exists a sequence {ϕn}n>0 of orthonormal polynomials

ϕn(z) = κnzn + ..., κn > 0,

such that
∫ π

−π

ϕn(eiθ)ϕm(eiθ)dσ(θ) = δm,n, m, n > 0. (6)

The corresponding monic polynomials are then defined by

Φn(z) =
ϕn(z)

κn
.

These polynomials satisfy the following recurrence relations (see [7], [10], [19],
[21])

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗
n(z), n = 0, 1, 2, ... (7)

Φ∗
n+1(z) = Φ∗

n(z) + Φn+1(0)zΦn(z), n = 0, 1, 2, .... (8)

Here Φ∗
n(z) = znΦn(1/z) is the reversed polynomial associated with Φn(z) (see [19]),

and the complex numbers {Φn(0)}n>1 are called reflection (or Verblunsky) parame-
ters. Notice that |Φn(0)| < 1 for every n > 1. For quasi-definite linear functionals,
the Verblunsky parameters satisfy |Φn(0)| 6= 1, n > 1 (see [7]).

It is well known ([19]) that given a nontrivial probability measure σ supported on
the unit circle, there exists a unique sequence of Verblunsky parameters {Φn(0)}n>1

associated with σ. The converse is also true, i.e., given a sequence of complex numbers
{Φn(0)}n>1, with Φn(0) ∈ D, there exists a nontrivial probability measure on the unit
circle such that those numbers are the associated Verblunsky parameters.

The family of Verblunsky parameters provides a qualitative information about
the measure and the corresponding sequence of orthogonal polynomials.

The measure σ can be uniquely decomposed into

dσ(θ) = ω(θ)
dθ

2π
+ dσs(θ).

Definition 1 ([19], [21]). Suppose the Szegő condition,

∫

T

log(ω(θ))
dθ

2π
> −∞, (9)

holds. Then, the Szegő function, D(z), is defined by

D(z) = exp

(
1

4π

∫
eiθ + z

eiθ − z
log(ω(θ))dθ

)
. (10)

The Szegő condition (9) is equivalent to
∑∞

n=0 |Φn(0)|2 < ∞. This is known in
the literature as the Szegő theorem (see [19]).

On the other hand, the sequence of Verblunsky parameters {Φn(0)}n>1 is said to
be of bounded variation if
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∞∑

n=0

|Φn+1(0) − Φn(0)| < ∞

holds.
Let Kn(z, y) be the n-th reproducing kernel polynomial associated with {ϕn}n>0,

defined by

Kn(z, y) =

n∑

j=0

ϕj(y)ϕj(z) =

n∑

j=0

Φj(y)Φj(z)

kj
,

with kj = ‖Φj‖
2 = (κj(σ))−2. Notice that the last expression is also valid in the

quasi-definite case. There is a direct formula to compute Kn(z, y),

Theorem 2 (Christoffel-Darboux Formula). For any n > 0 and z, y ∈ C with
ȳz 6= 1,

Kn(z, y) =

n∑

j=0

Φj(y)Φj(z)

kj
=

Φ∗
n+1(y)Φ∗

n+1(z) − Φn+1(y)Φn+1(z)

kn+1(1 − ȳz)
,

=
Φ∗

n(y)Φ∗
n(z) − ȳzΦn(y)Φn(z)

kn(1 − ȳz)
.

For a class of perturbations of the measure σ, some properties of the perturbed
measure σ̃ have been studied in ([4], [8], [14], [16]). In particular, the relation between
the corresponding families of orthogonal polynomials as well as necessary and sufficient
conditions for the quasi-definite (positive definite) character of the new measure σ̃,
assuming the quasi-definite (positive definite) character of σ, among others. We point
out the following canonical cases.

(i) If dσ̃ = |z − α|2dσ, |z| = 1, α ∈ C, then the so-called canonical Christoffel
transformation appears.

(ii) If dσ̃ = dσ +mδ(z−α), |α| = 1, m ∈ R, then the so-called canonical Uvarov
transformation appears.

(iii) If dσ̃ = dσ + mδ(z −α)+ m̄δ(z − ᾱ−1), m ∈ C, |α| < 1, then a more general
case of the Uvarov transformation appears.

(iv) If dσ̃ = 1
|z−α|2 dσ + mδ(z − α) + m̄δ(z − ᾱ−1), |z| = 1, m ∈ C and |α| < 1,

then we get the Geronimus transformation.
Notice that the linear functional associated with σ̃ can be normalized (c̃0 = 1) if it
is quasi-definite. In terms of the Caratéodory functions, all the above perturbations
correspond to transformations of the form

F̃ (z) =
A(z)F (z) + B(z)

D(z)
,

where A(z), B(z), and D(z) are polynomials, and F̃ (z) is the Carathéodory function
associated with the perturbed measure σ̃. Hence, these perturbations yield linear
spectral transformations in the corresponding Carathéodory functions.
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In this work, we analyze these transformations from the point of view of the
behavior of the families of Verblunsky parameters. We get explicit expressions for the
Verblunsky parameters associated with σ̃ in terms of the parameters associated with
σ. We also study if the measure σ̃ is of bounded variation, provided that σ is.

The structure of the manuscript is as follows. In section 2 we analyze the behavior
of the Verblunsky parameters when a Christoffel canonical transform of a probability
measure supported on the unit circle is considered. Section 3 is focussed on the
Uvarov transformation in a more general framework than one analyzed in [22]. Two
particular examples of the Uvarov transformation are studied in Section 4 in order to
analyze how this perturbation in the probability measure is reflected on the behavior
of their Verblunsky parameters.

2. The Christoffel transformation. Let α be a complex number. Consider
the Hermitian bilinear functional

〈p, q〉LC
:= 〈(z − α)p, (z − α)q〉L , p, q ∈ P. (11)

If L is quasi-definite, then necessary and sufficient conditions for LC to be quasi-
definite have been studied in [16].

Proposition 3. [14],[16]
(i) LC is quasi-definite if and only if Kn(α, α) 6= 0 for every n ∈ N.

(ii) If {Φ̃n}n>0 denotes the sequence of monic orthogonal polynomials with respect
to LC , then

Φ̃n(z) =
1

z − α

(
Φn+1(z) −

Φn+1(α)

Kn(α, α)
Kn(z, α)

)
. (12)

LC is said to be the canonical Christoffel transformation of the linear functional
L.

Proposition 4. Let {Φn(0)}n>1 be the Verblunsky parameters corresponding to
the quasi-definite linear functional L. Then, the Verblunsky parameters associated
with LC are given by

Φ̃n(0) =
Φn+1(α)Φ∗

n(α)

αknKn(α, α)
−

Φn+1(0)

α
, n > 1. (13)

Proof. From (12), the evaluation in z = 0 yields

Φ̃n(0) = −α−1


Φn+1(0) −

Φn+1(α)

Kn(α, α)

n∑

j=0

Φj(0)Φj(α)

kj


 .

Applying the Christoffel-Darboux formula, we get

Φ̃n(0) = −α−1

(
Φn+1(0) −

Φn+1(α)

Kn(α, α)

Φ∗
n(0)Φ∗

n(α)

kn

)
(14)

=
Φn+1(α)Φ∗

n(α)

αknKn(α, α)
−

Φn+1(0)

α
(15)
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since Φ∗
n(0) = 1. Another way to express (15) is

Φ̃n(0) =
[αΦn(α) + Φn+1(0)Φ∗

n(α)]Φ∗
n(α)

αknKn(α, α)
−

Φn+1(0)

α
,

=

[
|Φ∗

n(α)|2

knKn(α, α)
− 1

]
Φn+1(0)

α
+

Φn(α)Φ∗
n(α)

knKn(α, α)
,

i.e., there is a linear relation between both families of Verblunsky parameters.
Notice that, if |α| 6= 1, from the Christoffel-Darboux formula we deduce

Kn(α, α) =
|Φ∗

n(α)|2 − |α|2|Φn(α)|2

kn(1 − |α|2)
,

and the expression for the Verblunsky parameters {Φ̃n(0)}n>1 in terms of Φn(α)
and Φ∗

n(α) is therefore given by

Φ̃n(0) =
Φn+1(α)Φ∗

n(α)(1 − |α|2)

α[|Φ∗
n(α)|2 − |α|2|Φn(α)|2]

−
Φn+1(0)

α
,

=
[αΦn(α) + Φn+1(0)Φ∗

n(α)]Φ∗
n(α)(1 − |α|2)

α[|Φ∗
n(α)|2 − |α|2|Φn(α)|2]

−
Φn+1(0)

α
,

=
1

α

(αΦn(α)Φ∗
n(α) + Φn+1(0)|Φ∗

n(α)|2)(1 − |α|2)

|Φ∗
n(α)|2 − |α|2|Φn(α)|2

−
1

α

Φn+1(0)|Φ∗
n(α)|2 + |α|2Φn+1(0)|Φn(α)|2

|Φ∗
n(α)|2 − |α|2|Φn(α)|2

.

Thus,

Φ̃n(0) =
Φn(α)Φ∗

n(α)(1 − |α|2) + ᾱΦn+1(0)[|Φn(α)|2 − |Φ∗
n(α)|2]

|Φ∗
n(α)|2 − |α|2|Φn(α)|2

,

As a conclusion, Φ̃n(0) can be expressed as

Φ̃n(0) = A(α; n)Φn+1(0) + B(α; n),

with

A(α; n) =
ᾱ[|Φn(α)|2 − |Φ∗

n(α)|2]

|Φ∗
n(α)|2 − |α|2|Φn(α)|2

,

B(α; n) =
Φn(α)Φ∗

n(α)(1 − |α|2)

|Φ∗
n(α)|2 − |α|2|Φn(α)|2

.

On the other hand, if |α| = 1, we have

Kn(z, α) =
Φ∗

n+1(α)Φ∗
n+1(z) − Φn+1(α)Φn+1(z)

kn+1(1 − ᾱz)

=
αΦn+1(α)Φn+1(z) − ᾱnΦn+1(α)Φ∗

n+1(z)

kn+1(z − α)
,
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and applying the L’Hospital’s rule, we obtain

Kn(α, α) = lim
z→α

Kn(z, α) =
1

kn+1
[αΦn+1(α)Φ

′

n+1(z) − ᾱnΦn+1(α)Φ∗′

n+1(z)],

=
1

kn+1
[αΦn+1(α)Φ

′

n+1(α) − ᾱnΦn+1(α)Φ∗′

n+1(α)].

Therefore

Φ̃n(0) =
kn+1Φn+1(α)Φ∗

n(α)

αkn[αΦn+1(α)Φ
′

n+1(α) − ᾱnΦn+1(α)Φ∗′

n+1(α)]
−

Φn+1(0)

α
,

=
Φn+1(α)Φ∗

n(α)(1 − |Φn+1(0)|2)

α[αΦn+1(α)Φ
′

n+1(α) − ᾱnΦn+1(α)Φ∗′

n+1(α)]
−

Φn+1(0)

α
,

with Φ∗′

n+1(α) = α−1[(n + 1)Φ∗
n+1(α) − (Φ

′

n+1)
∗(α)].

For the remaining of this section, we assume that L is a positive definite linear
functional. Then,

Theorem 5 ([17], [18], [22]). Suppose
∑∞

n=0 |Φn(0)|2 < ∞ and
∑∞

n=0 |Φn+1(0)−
Φn(0)| < ∞. Then, for any δ > 0,

sup
n;δ<arg(z)<2π−δ

|Φ∗
n(z)| < ∞

and away from z = 1, we have that limn→∞ Φ∗
n(z) exists, is continuous, and equal to

D(0)D(z)−1. Furthermore, dµs = 0 or else a pure mass point at z = 1.

Proposition 6. Suppose
∑∞

n=0 |Φn(0)|2 < ∞ and
∑∞

n=0 |Φn+1(0)−Φn(0)| < ∞.
Then, for |α| 6 1, α 6= 1,

(i)
∑∞

n=0 |Φ̃n(0)|2 < ∞.

(ii)
∑∞

n=0 |Φ̃n+1(0) − Φ̃n(0)| < ∞.

Proof.
(i) We denote

tn+1 =
Φn+1(α)Φ∗

n(α)

αknKn(α, α)
.

Let us first assume |α| = 1, α 6= 1. Notice that Φn+1(α) = αn+1Φ∗
n+1(α)

and, from Theorem 5, limn→∞ Φ∗
n(α) = D(0)D(α)−1, where D is the Szegő

function defined in (10). This also implies that 1/Kn(α, α) = O(1/n). On
the other hand, if |α| < 1, notice that Φn(α) and Φ∗

n(α) are O(αn) and
limn→∞(1/Kn(α, α)) > 0.
Then tn+1 is O(1/n). Since

∑∞
n=0 |Φn(0)|2 < ∞ and tn+1 is O(1/n), then∑∞

n=0 |Φ̃n(0)|2 < ∞.

(ii) Since
∑∞

n=0 |Φn+1(0) − Φn(0)| < ∞, we only need to prove that

∞∑

n=0

|tn+1 − tn| < ∞.
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Notice that, from the recurrence relation

Φ∗
n+1(α) − Φ∗

n(α) = Φn+1(0)αΦn(α).

Then |Φ∗
n+1(α) − Φ∗

n(α)| = O(|Φn+1(0)|) and therefore

∣∣∣∣
(Φ∗

n+1(α) − Φ∗
n(α))Φ∗

n+1(α)

knKn(α, α)

∣∣∣∣ = O

(
|Φn+1(0)|

n

)
. (16)

On the other hand,

∣∣∣∣∣

(
1

Kn+1(α, α)
−

1

Kn(α, α)

)
Φn(α)Φ∗

n−1(α)

kn

∣∣∣∣∣ = O

(
1

n2

)
. (17)

Thus, from (16) and (17) we get

|tn+1 − tn| = O

(
|Φn+1(0)|

n

)
+ O

(
1

n2

)

and, therefore,

∞∑

n=0

|tn+1 − tn| < ∞.

Remark 7. This approach was used by M. L. Wong in [22] to prove a similar
result for the Uvarov transformation. See more details in the following section.

3. The Uvarov transformation. In this section we are dealing with the two
canonical Uvarov transformations defined in the introduction.

3.1. The bilinear functional 〈p, q〉LU
:= 〈p, q〉L+mp(α)q(α), |α| = 1, m ∈ R.

Now consider the bilinear functional

〈p, q〉LU
:= 〈p, q〉L + mp(α)q(α), p, q ∈ P, (18)

with m ∈ R and |α| = 1. Notice that LU is an Hermitian linear functional. If α
is fixed, then we get necessary and sufficient conditions about the choices of m ∈ R

such that the linear functional LU is quasi-definite. Indeed,

Proposition 8 ([14]).
(i) LU is quasi-definite if and only if 1 + mKn−1(α, α) 6= 0 for every n > 1.

(ii) If {Un}n>0 denotes the sequence of monic orthogonal polynomials with respect
to LU , then

Un(z) = Φn(z) −
mΦn(α)

1 + mKn−1(α, α)
Kn−1(z, α). (19)

In other words, for a fixed α, |α| = 1, the linear functional LU is quasi-definite up to
a numerable set of values of m.

Thus, as a consequence, we get
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Proposition 9. Let {Φn(0)}n>1 be the Verblunsky parameters with respect to L.
Then, the Verblunsky parameters associated with LU are given by

Un(0) = Φn(0) −
mΦn(α)Φ∗

n−1(α)

kn−1(1 + mKn−1(α, α))
(20)

Proof. From (19), evaluating at z = 0, we obtain

Un(0) = Φn(0) −
mΦn(α)

1 + mKn−1(α, α)
Kn−1(0, α), (21)

= Φn(0) −
mΦn(α)

1 + mKn−1(α, α)

Φ∗
n−1(α)Φ∗

n−1(0)

kn−1
, (22)

= Φn(0) −
mΦn(α)Φ∗

n−1(α)

kn−1(1 + mKn−1(α, α))
. (23)

Remark 10. If L is a positive definite linear functional and using a formula for
the Verblunsky parameters associated with σ̃ first given by Geronimus ([6]) and also
by Simon (see [19] and the references therein), then this result was also proved in [22],
as follows,

Theorem 11 ([22]). Suppose σ is a nontrivial probability measure on the unit
circle and 0 < γ < 1. Let σ̃ be the nontrivial probability measure resulting of the
addition of a mass point ζ = eiθ ∈ T to σ as follows

dσ̃ = (1 − γ)dσ + γδθ.

Then the Verblunsky parameters associated with σ̃ are

Un(0) = Φn(0) +
(1 − |Φn+1(0)|2)1/2

(1 − γ)γ−1 + Kn(ζ, ζ)
ϕn+1(ζ)ϕ∗

n(ζ). (24)

Notice that in the above perturbation σ̃ is again a nontrivial probability measure.
Furthermore, kn/kn−1 = 1 − |Φn(0)|2, so (20) is equivalent to the expression (24),
which also appeared on [6]. There is also an analog of Proposition 6 for the Uvarov
transformation on [22], which has been proved (see [7]) in a more general case when
masses are added in m points of the unit circle.

Notice that (23) also reads

Un(0) = Φn(0) −
m[αΦn−1(α) + Φn(0)Φ∗

n−1(α)]Φ∗
n−1(α)

kn−1(1 + mKn−1(α, α))
,

or, in other words,

Un(0) = AU (α; n)Φn(0) + BU (α; n),

with

AU (α; n) = 1 −
m|Φ∗

n−1(α)|2

kn−1(1 + mKn−1(α, α))
,

BU (α; n) = −
mαΦn−1(α)Φ∗

n−1(α)

kn−1(1 + mKn−1(α, α))
.
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3.2. The bilinear functional 〈p, q〉LV
:= 〈p, q〉L + mp(α)q(ᾱ−1) +

m̄p(ᾱ−1)q(α), |α| < 1, m ∈ C. Now let us consider the bilinear functional

〈p, q〉LV
:= 〈p, q〉L + mp(α)q(ᾱ−1) + m̄p(ᾱ−1)q(α), p, q ∈ P, (25)

with m ∈ C and |α| < 1. Notice that LV is also hermitian.

Proposition 12 ([4]). Assume L is a quasi-definite functional and α, with
|α| < 1, a fixed complex number. The linear functional LV is quasi-definite if and
only if m satisfies

Λn :=

∣∣∣∣
1 + mKn(α, ᾱ−1) m̄Kn(α, α)
mKn(ᾱ−1, ᾱ−1) 1 + m̄Kn(ᾱ−1, α)

∣∣∣∣ 6= 0,

for all n > 0. In other words, the linear functional LV is quasi-definite for every
m ∈ C up to a numerable set.

Assuming the conditions of the above proposition we get

Proposition 13 ([4]). The orthogonal polynomial sequence corresponding to LV ,
{Vn(z)}n>0, is given by

Vn(z) = Φn(z) − m[AnΦn(α) + BnΦn(ᾱ−1)]Kn−1(z, ᾱ−1)

− m̄[CnΦn(α) + DnΦn(ᾱ−1)]Kn−1(z, α), (26)

where

An =
−[1 + m̄Kn−1(ᾱ

−1, α)]

Λn−1
(27)

Bn =
m̄Kn−1(α, α)

Λn−1
(28)

Cn =
−mKn−1(ᾱ

−1, ᾱ−1)

Λn−1
(29)

Dn =
1 + mKn−1(α, ᾱ−1)

Λn−1
(30)

with Λn−1 = |m|2Kn−1(ᾱ
−1, ᾱ−1)Kn−1(α, α) − |1 + mKn−1(α, ᾱ−1)|2.

Notice that Dn = −Ān. Then, the Verblunsky parameters {Vn(0)}n>1 are

Vn(0) = Φn(0) − m[AnΦn(α) + BnΦn(ᾱ−1)]Φ∗
n−1(0)Φ∗

n−1(ᾱ
−1)/kn−1

− m̄[CnΦn(α) + DnΦn(ᾱ−1)]Φ∗
n−1(0)Φ∗

n−1(α)/kn−1. (31)

If L is a positive linear functional and assuming that
∑∞

n=0 |Φn(0)|2 < ∞, then we
will study the behavior of Vn(0) when n → ∞. Since |α| < 1, limn→∞ Kn(α, α) < ∞
and limn→∞ Kn(ᾱ−1, ᾱ−1) = ∞ (see [19]). On the other hand, taking into account

Kn(ᾱ−1, α)

Kn(ᾱ−1, ᾱ−1)
= |α|2n Kn(α, ᾱ−1)

Kn(α, α)
,

we get

lim
n→∞

Kn(ᾱ−1, α)

Kn(ᾱ−1, ᾱ−1)
= lim

n→∞
|α|2n Kn(α, ᾱ−1)

Kn(α, α)
.
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Since Kn(α, ᾱ−1) is O(ᾱ−n) and |α| < 1, it follows that

lim
n→∞

Kn(ᾱ−1, α)

Kn(ᾱ−1, ᾱ−1)
= 0.

We obtain the same result for Kn−1(α,ᾱ−1)
Kn−1(ᾱ−1,ᾱ−1) , since Kn(ᾱ−1, α) = Kn(α, ᾱ−1).

Therefore, if we divide by Kn−1(ᾱ
−1, ᾱ−1) in the numerator and denominator

of An, and take the limit when n → ∞, then the numerator becomes 0, and only
|m|2Kn−1(α, α) survives on the denominator. Hence, An = 0 when n → ∞.

The same fact occurs with Bn and Dn. In a similar way, we obtain that Cn ∼
− 1

m̄K∞(α,α) as n → ∞.

As a conclusion, when n → ∞

Vn(0) ∼ Φn(0) +
Φn(α)

Kn−1(α, α)
ϕ∗

n−1(0)ϕ∗
n−1(α) (32)

= Φn(0) +
Φn(α)

kn−1Kn−1(α, α)
Φ∗

n−1(0)Φ∗
n−1(α) (33)

= Φn(0) +
Φn(α)Φ∗

n−1(α)

kn−1Kn−1(α, α)
. (34)

Notice than (34) has the same form as (13). Therefore,

Proposition 14. Suppose
∑∞

n=0 |Φn(0)|2 < ∞ and
∑∞

n=0 |Φn+1(0) − Φn(0)| <
∞. Then,

(i)
∑∞

n=0 |Vn(0)|2 < ∞.

(ii)
∑∞

n=0 |Vn+1(0) − Vn(0)| < ∞.

4. Examples. In the next examples we will illustrate the behavior of the
Verblunsky parameters when linear spectral transforms of nontrivial probability mea-
sures are considered.

4.1. First, we consider the Uvarov transformation (see Section 3.2) for the nor-
malized Lebesgue measure, i.e. we study the measure σ̃ defined by

dσ̃ =
dθ

2π
+ mδ(z − α) + m̄δ(z − ᾱ−1), |α| < 1, m ∈ C � {0}.

For a fixed α with |α| < 1, necessary and sufficient conditions on m for the
existence of a sequence of monic polynomials orthogonal with respect to σ̃ follow
from Proposition 12.

Indeed, for n ∈ N we get

∣∣∣∣
1 + m(n + 1) m̄

∑n
k=0 |α|

2k

m

|α|2n

∑n
k=0 |α|

2k 1 + m̄(n + 1)

∣∣∣∣

= 1 + (m + m̄)(n + 1) + |m|2(n + 1)2 −
|m|2

|α|2n

[
n∑

k=0

|α|2k

]2

,
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with |α| < 1. Notice that this expression is 6= 0 if and only if

|m|2

|α|2n

[
n∑

k=0

|α|2k

]2

6= 1 + (m + m̄)(n + 1) + |m|2(n + 1)2,

i.e.

|m|2

|α|2n

(
|α|2n+2 − 1

|α|2 − 1

)2

6= 1 + (m + m̄)(n + 1) + |m|2(n + 1)2,

|m|2

[
1

|α|2n

(
|α|2n+2 − 1

|α|2 − 1

)2

− (n + 1)2

]
6= 1 + (m + m̄)(n + 1).

If m ∈ R, then the above condition becomes

[m(n + 1) + 1]2 6=
m

2

|α|2n

(
|α|2n+2 − 1

|α|2 − 1

)2

, for every n ∈ N.

Then, for a fixed α with |α| < 1, the linear functional associated with σ̃ will be
quasi-definite for every m ∈ C such that

m(n + 1) + 1 6=
m

|α|n

(
|α|2n+2 − 1

|α|2 − 1

)
holds for every n ∈ N.

For instance, if |α|2 = 1
2 , then the above condition becomes

m

[
n + 1 − 2n/2

(
2 −

1

2n

)]
+ 1 6= 0,

and therefore Lσ̃ is a quasi-definite linear functional except for a numerable set of
values of m,

m 6=
(
2n/2(2 − 2−n) − n − 1

)−1

, ∀n ∈ N.

Under the above assumptions for m, we get

Proposition 15. Let dσ̃ = dθ
2π + mδ(z − α) + m̄δ(z − ᾱ−1), with |α| < 1 and

m ∈ C � {0}. Then, the sequence of monic orthogonal polynomials with respect to σ̃
is given by

Vn(z) = zn − m[Anαn + Bnᾱ−n]

(
1 − α−nzn

1 − α−1z

)
− m̄[Cnαn + Dnᾱ−n]

(
1 − ᾱnzn

1 − ᾱz

)

(35)
where

An = −(1 + nm̄)/dn(α),

Bn =
m̄

dn(α)

n−1∑

k=0

|α|2k,

Cn = −|α|−2(n−1)B̄n,

Dn = −Ān,
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and dn(α) = |m|2|α|−2(n−1)
[∑n−1

k=0 |α|
2k
]2

− |1 + nm|2.

Proof. It is well known (see [19]) that the sequence of monic orthogonal polyno-
mials with respect to the normalized Lebesgue measure is Φn(z) = zn. Notice that
ϕn(z) = zn, as well as Φn(0) = 0, n > 1. Then, from (26), we get

Vn(z) = zn − m[Anαn + Bnᾱ−n]Kn−1(z, ᾱ−1) − m̄[Cnαn + Dnᾱ−n]Kn−1(z, α)

= zn − m[Anαn + Bnᾱ−n]

(
1 − α−nzn

1 − α−1z

)
− m̄[Cnαn + Dnᾱ−n]

(
1 − ᾱnzn

1 − ᾱz

)
.

The values of An, Bn, Cn, Dn, and dn(α) follow from (28) - (30) since Kn−1(α, α) =∑n−1
k=0 |α|

2k, Kn−1(ᾱ
−1, ᾱ−1) =

∑n−1
k=0 |α|

−2k, and Kn−1(ᾱ
−1, α) = Kn−1(α, ᾱ−1) =

n.

Corollary 16. Assuming the conditions for quasi-definiteness of the linear
functional Lσ̃ are satisfied, the Verblunsky parameters associated with σ̃ are

Vn(0) = −(m[Anαn + Bnᾱ−n] + m̄[Cnαn + Dnᾱ−n]). (36)

Proof. It follows immediately from the evaluation of (35) at z = 0.
Now we give an estimate for Vn(0) when n → ∞. We have

Vn(0) = −(mAn + m̄Cn)αn − (mBn + m̄Dn)α−n.

But

−(mAn + m̄Cn)αn =
αn

dn(α)

[
m + n|m|2 + |m|2|α|−2(n−1)

n−1∑

k=0

|α|2k

]
,

= αn |α|
2n−2(m + n|m|2) + |m|2

∑n−1
k=0 |α|

2k

|m|2
∑n−1

k=0 |α|
2k − |α|2n−2|1 + nm|2

.

On the other hand,

−ᾱ−n(mBn + m̄Dn) = ᾱ−n
−|m|2 |α|2n−1

|α|2−1 − (m̄ + n|m|2)

|m|2 1
|α|2n−2

1−|α|2n

1−|α|2 − |1 + nm|2
,

= αn
−|m|2 |α|2n−1

|α|2−1 − (m̄ + n|m|2)

|m|2|α|2 1−|α|2n

1−|α|2 − |1 + nm|2|α|2n
.

As a conclusion, when n → ∞,

Vn(0) ∼
|α|2 − 1

|α|2
nαn.

4.2. The second example corresponds to a Geronimus canonical transformation
(see [5]) of the Lebesgue measure. Observe that the Christoffel transform of this
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Hermitian linear functional is the Lebesgue measure. Thus, we consider a measure σ̃
such that

dσ̃ =
1

|z − α|2
dθ

2π
+ mδ(z − α) + m̄δ(z − ᾱ−1), |α| < 1, m ∈ C � {0}.

Notice that this transformation can also be considered as an Uvarov transformation
of the measure 1

|z−α|2
dθ
2π with two mass points (Section 3.2). Thus, according to

Proposition 12, the linear functional Lσ̃ is quasi-definite for every m ∈ C up to a
numerable set. On the other hand, according to Proposition 13, and for every m such
that Lσ̃ is quasi-definite, we get

Proposition 17. Let dσ̃ = 1
|z−α|2

dθ
2π + mδ(z − α) + m̄δ(z − ᾱ−1), with |α| < 1.

Then, the sequence of monic orthogonal polynomials with respect to σ̃ is given by

Vn(z) = zn−αzn−1−
ᾱ−n(1 − |α|2)2[|m|2(1 − |α|2)(α−1z)n−1 + m̄ + |m|2(1 − |α|2)]

|m|2|α|−2n+2(1 − |α|2)2 − |1 + m(1 − |α|2)|2
,

(37)
for n > 1.

Proof. It is well known ([19]) that the sequence of monic orthogonal polynomials
with respect to 1

|z−α|2
dθ
2π is

Φn(z) = zn − αzn−1, |α| < 1, n > 1.

Notice that Φ∗
n(z) = 1 − ᾱz. From (26) we have

Vn(z) = zn−αzn−1−mBnᾱ−n(1−|α|2)Kn−1(z, ᾱ−1)−m̄Dnᾱ−n(1−|α|2)Kn−1(z, α),
(38)

since Φn(α) = 0, n > 1, and Φn(ᾱ−1) = ᾱ−n(1 − |α|2). Notice that in this case
k0 = ||Φ0||

2 = 1
1−|α|2 , as well as kn = 1, n > 1.

We also have Kn−1(z, α) = 1
k0

and, as a consequence,

Kn−1(α, α) = Kn−1(α, ᾱ−1) = Kn−1(ᾱ
−1, α) =

1

k0
= 1 − |α|2.

On the other hand, from the Christoffel-Darboux formula we get

Kn−1(z, ᾱ−1) =
Φ∗

n(ᾱ−1)Φ∗
n(z) − Φn(ᾱ−1)Φn(z)

(1 − α−1z)
,

=
−(α−n − ᾱα−n+1)(zn − αzn−1)

(1 − α−1z)
,

= (α−1z)n−1(1 − |α|2).

As a consequence,

Kn−1(ᾱ
−1, ᾱ−1) =

Φ∗
n(ᾱ−1)Φ∗

n(ᾱ−1)) − Φn(ᾱ−1)Φn(ᾱ−1))

(1 − α−1ᾱ−1))
,

= −
|α|−2n(1 − |α|2)2

1 − |α|−2
,

= |α|−2n+2(1 − |α|2).
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Therefore

Bn =
m̄(1 − |α|2)

|m|2|α|−2n+2(1 − |α|2)2 − |1 + m(1 − |α|2)|2
,

and

Dn =
1 + m(1 − |α|2)

|m|2|α|−2n+2(1 − |α|2)2 − |1 + m(1 − |α|2)|2
.

Then, (38) becomes

Vn(z) = zn − αzn−1 −
|m|2(1 − |α|2)3ᾱ−n(α−1z)n−1 + m̄[1 + m(1 − |α|2)]ᾱ−n(1 − |α|2)2

|m|2|α|−2n+2(1 − |α|2)2 − |1 + m(1 − |α|2)|2

which is equivalent to (37).
For a fixed α ∈ C with |α| < 1, we can choose m ∈ C such that

∣∣∣∣
1 + m(1 − |α|2) m̄(1 − |α|2)

m|α|−2n+2(1 − |α|2) 1 + m̄(1 − |α|2)

∣∣∣∣ =

1 + (m + m̄)(1 − |α|2) + |m|2(1 − |α|2)2 − |m|2|α|−2n+2(1 − |α|2)2 6= 0, n > 0.

This condition guarantees the existence of {Vn(z)}n>0. In other words, for every
m ∈ C such that

|α|−2n+2 6=
1 + (m + m̄)(1 − |α|2) + |m|2(1 − |α|2)2

|m|2(1 − |α|2)2
,

(−2n + 2) ln |α| 6= ln
1 + (m + m̄)(1 − |α|2) + |m|2(1 − |α|2)2

|m|2(1 − |α|2)2
,

n 6= 1 −
1

2

ln 1+(m+m̄)(1−|α|2)+|m|2(1−|α|2)2

|m|2(1−|α|2)2

ln |α|
, for every n ∈ N,

the linear functional Lσ̃ is quasi-definite.
In particular, for a fixed α such that |α|2 = 1

2 , and taking m ∈ R, the above
condition becomes

n 6= 1 +
ln
(
1 + 2

m

)2

ln 2
,

i.e.

ln
(
1 + 2

m

)2

ln 2
/∈ N.

In other words, for m ∈ C such that

m 6=
2

2n/2 − 1
, for every n ∈ N,

the linear functional is quasi-definite.
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Corollary 18. Assuming the conditions for quasi-definiteness are satisfied, the
Verblunsky parameters associated with σ̃ are

V1(0) = −α −
ᾱ−1(1 − |α|2)2[m̄ + 2|m|2(1 − |α|2)]

|m|2(1 − |α|2)2 − |1 + m(1 − |α|2)|2

Vn(0) = −
ᾱ−n(1 − |α|2)2[m̄ + |m|2(1 − |α|2)]

|m|2|α|−2n+2(1 − |α|2)2 − |1 + m(1 − |α|2)|2
, n > 2.

Proof. It follows immediately from the evaluation of (37) at z = 0.
Finally, we obtain an estimate for Vn(0) when n → ∞. From Corollary 18

Vn(0) = −
m̄(1 + m(1 − |α|2))(1 − |α|2)2αn

|m|2|α|−2n+2(1 − |α|2)2 − |1 + m(1 − |α|2)|2
1

|α|2n
.

In other words,

Vn(0) ∼

[
1 −

1

|α|2
−

1

m|α|2

]
αn.
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