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VISCOUS LIMITS TO PIECEWISE SMOOTH SOLUTIONS FOR THE
NAVIER-STOKES EQUATIONS OF ONE-DIMENSIONAL
COMPRESSIBLE VISCOUS HEAT-CONDUCTING FLUIDS*

SHIXIANG MAT

Abstract. In this paper, we study the zero dissipation limit problem for the Navier-Stokes
equations of one-dimensional compressible viscous heat-conducting fluids. We prove that if the
solution of the inviscid Euler equations is piecewise smooth with finitely many noninteracting shocks
satisfying the entropy condition, then there exist solutions to Navier-Stokes equations which converge
to the inviscid solution away from shock discontinuities at a rate of e as the viscosity € tend to zero,
provided that the heat-conducting coefficient k = O(g).
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1. Introduction. The purpose of this paper is to study the asymptotic equiv-
alence between the solutions of the compressible Navier-stokes equations and the
compressible Euler equations. The one-dimensional Navier-stokes equations of com-
pressible viscous heat-conducting fluids in Lagrangian coordinate are expressed as

vy — Uy = 0,

ut+pz—s(7)z, , (1.1)
(e+ )+ (P = () + (=), € R, >0,

and the corresponding Euler system is of the form

v — Uy =0,

+ pr =0,
e 1;2 (1.2)
(e—i-?)t—l—(pu)x:O, r€R, t>0,

where v, u, 0, p and e denote the specific volume, the velocity, the temperature, the
pressure, and the internal energy, respectively, and €, x are the viscosity and heat-
conductivity coefficients, respectively. And z is the Lagrangian coordinate, so that
x = constant corresponds to a particle path. Here we study the ideal polytropic
gas, so that the pressure p and the internal energy e are related with v and 6 by the
following equations of state

p=p(v,0) = RO/v, e=e(0) =RO/(y— 1)+ constant, (1.3)

where R > 0 is the gas constant and « € (1, 2] is the adiabatic exponent.

In the theory of compressible fluids, the basic physics issue motivating the math-
ematical problem is the asymptotic equivalence between the viscous flows and the
associate inviscid flows in the limit of small viscosity. This problem is particularly
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important and of great significance in many physics phenomena and their numerical
computations in the presence of shock discontinuities. When the underlying inviscid
flow is smooth, this problem can be solved by classical methods. However, in the
presence of shock discontinuities, the solutions near shock discontinuities exhibit very
singular behavior as the viscosity is small. The rigorous mathematical justification of
this asymptotic equivalence poses challenging problems in many important cases. For
the viscous conservation laws with positive definite viscosity matrix, Goodman & Xin
[2], Yu [11], and Bianchini & Bressan [18] studied the convergence of the solutions
for the viscous conservation laws to those for the associated hyperbolic systems. In
[2], Goodman and Xin gave a very detailed description of the asymptotic behavior
of solutions to the viscous systems as this viscosity tends to zero for the case when
the solutions of the associated hyperbolic conservation laws contain a finite number
of non-interacting shocks, via a method of matching asymptotics. For the general
solutions with the initial data having small total variations, Bianchini and Bressan
proved the convergence of the solutions for the viscous systems to those for the asso-
ciated hyperbolic systems by establishing the uniform (independent of viscosity) total
variation estimates. The above results are for the viscous conservation laws with
positive definite viscosity matrix. However, the viscosity matrix of the compressible
Navier-Stokes equations (1.1) is only semi-positive definite, and thus less dissipative.
For this case, when the flow is isentropic, Hoff & Liu [7] and Wang [15] studied the
limit process from the solutions of the compressible Navier-Stokes equations to the
single shock-wave solution of the corresponding compressible Euler system(so called
p-system). In [7], Hoff and Liu investigated the case when the underlying inviscid
flow is a single weak shock wave. They show that the solutions to the isentropic
Navier-Stokes equations with shock data exist and converge to the inviscid shocks as
the viscosity vanishes, uniformly away from the shocks. And then by smooth initial
perturbation, Wang [15] obtains the convergence rates. In this paper, we consider
the full compressible Navier-Stokes equations. Motivated by [2] and [15], we use the
matched asymptotic expansion analysis and energy estimates to establish that the
piecewise smooth solutions of (1.2), with finitely many noninteracting shocks satisfy-
ing the entropy condition, are strong limits of solutions of (1.1) as the viscosity and
heat-conductivity coeflicients ¢, x tend to zero. We assume that for some constant
C >0,

k=0(e) as ¢ = 0 and k(eg)/e > C > 0. (1.4)

Without loss of generality, we set x = €. From the kinetic theory, the viscosity and

heat-conductivity should be in the same order, the assumption (1.4) is reasonable [10].
For simplicity of presentation, we only consider the case in which the piecewise

smooth solution (v, u, ) to (1.2) is a single-shock solution. And we assume that

0<wv<wv(r,t) <o, and 0< 0 <0(x,t) <0, (1.5)

for some constants v, v, 6 and 6.

DEFINITION 1.1. A function (v(z,t),u(x,t),0(x,t)) is called a single-shock solu-
tion of (1.2) up to time T if

i) (v(z,t),u(x,t),0(z,t)) is a distributional solution of the hyperbolic system (1.2)
in the region R' x [0, T).

ii) There is a smooth curve, the shock, x = s(t),0 <t < T, so that (v(z,1),
u(x,t),0(x,t)) is sufficiently smooth at any point x # s(t).
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iii) The limits
oL (v, u,0)(s(t) — 0,t) = lirgl) oL (v, u,0)(z, 1),
rz—s(t)—
oL (v, u,0)(s(t) +0,t) = lirgl) oL (v, u,0)(z,t),
x—s(t)+

exist and are finite for t <T andl > 0.
i) The Lax geometrical entropy condition [13] is satisfied at x = s(t), that is,

§ < A(u(s(t)—=0,t)) and M\ (u(s(t)+0,t)) < § < A2(u(s(t)+0,¢)) (I-shocks), (1.6)
A2 (u(s(t)—0,t)) < § < Asz(u(s(t)—0,t)) and As(u(s(t)+0,t)) < § (3-shocks), (1.7)

where § = %s(t) and A\; = —(YRO)2 /v, Ay = 0, A3 = (vRO)2 /v are characteristic
speeds of the hyperbolic system (1.2) with (1.3).

The Lax’s shock condition implies that s < 0 for 1-shocks and $ > 0 for 3-shocks.
Here we only consider the 3-shocks. Our main results are as follows:

THEOREM 1.2. Let n > 3 be an integer. Suppose that (v,u,0) is a single-shock
solution of system (1.2) up to time T > 0 with

T
|OF (v(, t), u(x, t), 0(x, 1)) Pdedt < oc. (1.8)
1<k<%n+3)/0 /

Then, there exist constants po and €9 > 0, such that if

(v—1) ,Sup [u(s(t) +0,t) — v(s(t) = 0,8)] < po, (1.9)

for any € € (0, €] there is a smooth solution (v,u®,0%) to (1.1) with the same initial
data as the approximate solution (v:,us,0%), constructed by (2.31), which is a small
perturbation to (v,u, ) in L>([0,T); L?(R)). Moreover, it holds that

(v, 0, 0°) (2, t) = (05, 4%, 0°) (,t) + O(" ™), (x, 1) € R x [0, T, (1.10)
in L°°([0,T]; L*(R) N L>°(R)) and for any given n € (0,1) that
sup /|(v€,u8,9€)(:v,t) — (v,u,0)(z,t)*dx < Cye, (1.11)
0<t<T

and

sup |(v5,u5,95)(x,t) - (U,U,@)(I,t” < 07767 (112)
0<t<T,|lz—s(t)|>en

where Cy, is a positive constant depending only on 1.

REMARK 1.3. i) For the I1-shock, by a similar way, we can obtain the same
results.
ii) The convergence rate in (1.12) is optimal.
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iti) The condition (1.9) implies that when v is close to 17, the shock strength can
be large.

w)To prove Theorem 1.2 and to overcome the difficulties induced by nonisentropy
of the flow, we shall adapt and modify the arguments in [2, 15, 16]. That is, we will
exploit the smoothing property induced by the parabolic parts in (1.1), make best use
of the properties of the shock profile and the smallness condition (1.9), and finally
carefully compute the terms with different signs to deduce delicate energy estimates
and so obtain the theorem.

NoTATION. In this paper, we use H'(I > 1) to denote the usual Sobolev space
with the norm || - ||; and || - || = || - |0 denotes the usual Lo—norm. We also use O(1)
to denote any positive bounded function which is independent of €. And we set

w= sup |v(s(t)+0,t) —v(s(t) —0,t)|. (1.13)
0<t<T

2. Construction of the approximate solutions. In this section, we construct
the approximate solutions (v, u¢, 6¢) through different scaling and asymptotic expan-
sions in the regions near and away from the shock respectively, such that (v¢,u®,60¢)

approximates the piecewise smooth inviscid solution (v, u, 8) away from the shock and
has a sharp change near the shock.

2.1. Outer and inner expansions and the matching conditions. Let
hi(z,t) = (vi,uq, 0:) (2, t),i =0,1,2,.... In the region away from the shock, z = s(t),
we approximate the solution of (1.1) by truncating the formal series

he (w,t) ~ ho(x,t) + ehy(z,t) + e2ho(w,t) + - - - (2.1)

Substituting this into (1.1) and comparing the coefficients of powers of €, we get, for
x # s(t), that

vt — oz = 0,
0(1) . Uot +p(2U0, 90)1 =0, (2'2)

U,
(eo + ?O)t + (p(vo,60)uo)s = 0,

v1g — U1e = 0,

Uz
we+ (o0, 00)ur + po(vo, 00)61)a = (<)
(e1 + uoui)s + (p(vo, Oo)ur + wo(py(vo, o)vr + pe(vo, 00)01))x

B0z UUO
= (oo, (ot

T

(2.3)

Vg — Uz = 0,

Uiy Uyl
u2¢ + (po(vo, Oo)v2 + po(vo, 00)02): = (i - (;}2 D)e — f1(vo, 00301, 61)es
0

0(e?) : (e2 + uou2) + (p(vo, Oo)uz + uo(py(vo, Oo)va + po(vo, 00)82))x

01z Bozv1 UlUoe ~ UOUlz  UOUOV1
B ( Vo 1)(2) )w + ( Vo + Vo ’U(2) )w
_5('“%)15 — f2(vo,uo, 005 v1,u1,01)z,
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and etc., where e; = e(6;),i = 0,1,2,---, and

1
f1(vo, bo;v1,61) = E{pw(vo, 00)vi + 2pua(vo, o)v161},
f2(vo, uo, o; v1,u1, 01) = ui(py(vo, 0o)v1 + pe(vo, 0)01)

1
+ §U0{Pm}(v0, 00)v7 + 2pyo(vo, 00)v161 },

and etc. The outer functions hg, h1, ..., are generally discontinuous at the shock,
x = s(t), but smooth up to the shock. The leading term, hg, is the single shock
solution of (1.2) which is given in Theorem 1.2.

Near the shock, h® should be represented by an inner expansion:

he(xz,t) ~ Ho(&,t) +eHy(€,t) + 2 Hy(E,1) + - - (2.5)
where
e="1 —:(t) +o(t,e) (2.6)

and §(t, €) is a perturbation of the shock position to be determined later. We assume
that 6(¢,€) has the form

5(t,e) = bo(t) + b1 (t) 4+ 20a(t) + - - - (2.7)
Substitute (2.5)-(2.7) into (1.1) to obtain

—SVog — Uog = 0,

1 — 5 — (25
O(—) . SUOE +p(V07@0)E ( Vo )Ea (28)
€ U2 @05

—$(Ep + 70)5 + (p(Vo,©0)Uo)e = ()¢ + (

—sVig —Uie = _50%5 — Vot,
_S[{}E + (Z;}(K(}a 60)V1 +p9(VO, @0)@1)5
- (7105 - 2/52 ~)e = 8Uog — Uor,
0
O1) : § =5(E1 + UglUr)e + {p(Vo, ©0) U1 + (po(Vo, ©0) Vi + po(Vo, ©0)O1)Us }e
_ (% _ ®0£V1) n (U1Uog n UoUre UOU0§V1)
Vo Vi , o W 2k

. U, U,
—00(Eo + 70)5 —(Eo + 70)157
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—5Vae —Uge = —5.1V0§ — 50‘/15 — Vig,
—s'Uég + (p[}(V‘o/, ©0)Va + po(Vo, ©0)O2)¢
= {25~ 282 By (Vo, Uns Vi, Un) e — f1(Vo, O Vi, ©1)e
Vo Vi
—01Uo¢ — 60U1¢ — Uny,
—s'(gz + U()@Ug)é +{p(Vo, ©0)Uz + (pv(Vo, ©0)Va + pa(Vo, ©0)O2)Uo }¢
Oe): = 72; - Ovi 2+ Bi(Vo, 005 V1, 01)}e
0
+{U2Uog N UoUze  UgUocVa
Vo Vo 173
L U?
—5(71) - f2(V07 U07 @03 V17 Ul) 61)5
2

. U .
_61(E0 + 70)5 - 50(E1 + UoUl)g — (El + UOUl)ta

+ BQ(‘/O; U07 ‘/17 Ul)}f

. (2.10)
and etc., where $ = ds/dt, 09 = ddy/dt, etc., and

Ui V5 Une V2
Bl(V()vUO;Vl,Ul):_ eVt 0¢Vq

ve TV
UoUieVi UgUoeV2 UiUre  UiViUge
Ba(Vo, Ug; V1, Ur) = — + - )
%2 %3 VO %2

etc. The inner approximation is supposed to be valid in a small zone of size O(e) near
the shock = = s(t).

In a matching zone, we expect that the outer and the inner expansion agree with
each other. Using the Taylor series to express the outer solutions in terms of £, we
obtain the following “matching conditions” as £ — Fo0 :

Ho(f,t) = ho(S(t) j:O,t)—i—o(l), (211)

Hi(6,) = ha(s(t) £ 0,) + (€ — 60)duho(s(t) £ 0,) + o(1), (2.12)

Ha6t) = 1afo(6) 0.0 + (€ B0 (5(0) 0.0 = BOIa(o() £0.0)
(6= 60)32hol5(8) £ 0,1) + of1), 21

and etc.

2.2. The structure of viscous shock profiles. Our construction of the
approximate solutions depends on the properties of the forward traveling waves
H = (V,U,©)!, which are the solutions of the following ordinary differential equa-
tions

oV —U' =0,
U/
v p(v.0y = (%,
U2 e uu,

with the boundary conditions

hl = (’U[,Ul,@[)t7 as 5 — —00,
H(g) - { hT = (’Urauraer)t, as 5 — +OO,
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and moving with speed o satisfying

—o(vp —vp) — (up — uy) =0,
_U(ul - ug) + (Pl _pg) =0,

u uz
_U(el + 7l - (er + ?)) + (plul _prur) = 07

(2.14)

and the Lax’s shock condition A3, < o < Ag;, where p; = p(v,0;),¢e; = e(6;), etc..

Integrate the differential equations to get

—UV—U:al,

U/

V:_UU+P+Q2,

e  uU’ U?

= = —o(E+—)+PU
7ty o(E+ =) +PU +as,

2

where P = p(V,0),E = ¢e(0),a1 = —ov;—uy, a2 = ou;—p; and ag = J(eH—%)—plul.

This system is transformed into

U= -0V —ay,
%4 b
g :_{‘P_i_O.Q(‘/'__lQ)}7
é// 02 z.l 2 b%
=B (V=3P + 55— bl
2 9 92
where by = —ca; — as and by = oaj + 2a1az + 2a3

20

(2.15)

From [17], we know that there exists a shock profile H = (V,U, ©)*, which con-
nects the states h; and h,.. By a direct calculation[16], we can deduce that H satisfies

oV'=-U">0,00" <0 and

0¢(V,U)| < elvr — i, [02(V, U, ©)| < elvy — i,
0¢0] < e(y = Dfor — | and 90| < (v - 1)|0¢V],

where the constant ¢ depends only on h;. Moreover, as £ — —o0,

= _I= —alg|
an, I=0()e ,

oOH

— —alg]
5 O(l)e .
As £ — 400,

OH _0h, _
oh;  Ohy

O(l)e‘a‘f‘,

OH  dh, _

il —al¢|
9 5 O(1)e .

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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2.3. Solutions of the outer and inner problems. Now we construct h; and
Hj order by order.

The leading order outer function, hg, is the single-shock solution in Theorem 1.2.
For any fixed t, the leading order inner solution Hy(&,t) is exactly the viscous shock
profile with h;(t) = (v (t), wi (t), 0;(¢))" = h(s(t) — 0,t), h(t) = (v-(t), ur(t),0,(t))" =
h(s(t) +0,t) and o = 5(t). So

Ho(&,t) = H(E hu(t), $(1))- (2.21)
Here we take the shift to be zero since it can be absorbed into dq(¢).
Next we determine hy, H; and o (¢) together. By the matching condition (2.12),
we expect that
Hy(&,t) =& 0zho(s(t) £0,t) + O(1) as & — *oo.
So we set

Hl(gat) :X(f,t)—FD(f,t), (222)

where x(&,t) = (x1, X2, x3)" and D(&,t) = (D1, D2, D3)t is a smooth function satis-
fying

_l &
Then inserting (2.22) into (2.9) and using (2.16)-(2.20), we obtain

§X1¢ + Xae = 0o Ve + g1(&, 1),

. U :
$x2¢ — (Po(V,©)x1 + po(V, ©)xs)e + (% - ‘5/—2(1)5 = doUe + 92(, 1),

S5 + Uxa)e = {p(V.©)xa + (2o(V. ©)x1 + o (V, ©)xs)U ¢
X3¢ ®£X1 Ung UXQg UUle : U2
= - - — 60(E + — t

where |g;(€,t)| < cexp {—alé|} for large |£],4 = 1,2, 3. Define G;(&,t) = fog gi(n, t)dn.
Then we have

§x1 + x2 = 0V + G1(&,t) + ci(t),
. X2¢ Uesx1 g
$x2 — (po(V,0)x1 +po(V,0)x3) + =5 — = 00U + G2(§,t) + c2(2),

A
8'(7 X3+ Uxz2) = {p(V,O)x2 + (pu (V. ©)x1 +po(V, ©)x3)U}
xze  Oexiy | Uexa | Uxze UUexa, _ ¢ u?

(2.23)
where ¢;(t) € R',i = 1,2, 3, are integration constants to be determined later. Letting
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¢ — £o00 and using the matching condition (2.12), we obtain

(v =Dpi — SQUz)(SoUz + 01(2) +Gro) + (o — (v = Dw)(Bour + c2(t) + Ga)
+(v - )(50(7 01+ 5 =) +es(t) + Gso) = $(vpr — 8 or) (v — GoBzur),
p1(dovr + c1(t) + G1—) ((v g Dug — $vp)(dour + c2(t) + Ga)

. R .
(= D=0+ )+ es(0) + Gao) = (upn — ) (h = Sodow),

)
2
(v — D){p} (dovr + c1(t) + G17)2— (supr + (p1 — §%o0)ur) (Sows + a(t) + Ga—)
+(p — 52“!)(6.0(7];2 70+ %l) +e3(t) + G3-)} = Ré(yp — 8%0) (6] — 000.0)),
(2.24)

and
((y = Dpr — §%0,.) (Bovy + c%( )+ Gip) + (50, — (v — Duy) (Sour 4 c2(t) + Gay)
Hr = D0+ ) + ealt) + Gay) = S = 20 o] = Gy,
pr(0ovr +¢1(t) + G1y) + ((27 — Duy — $vp)(0gur + c2(t) + Gay)

~( = D70+ F) +eat) + Ga) = Oy = 0,) (0 = Godi),

2
(v = ){p}(dovr + 01( )+ G1+) (30rpr + (pr — 800 )ur) (Dot + c2(t) + Gay)
+(pr — 5 vr)(éo( 6‘ +2 5 ) +c3(t) + G31)} = Rs(ypr — §%0,) (07 — 5000,.).
(2.25)

Write Bi, = {v],ul, 07,05} and By = {v},ul}. We first consider (2.25). Since the
determinant of the Jacobian matrix

—1)s
detJ = —u(wvrpr — §%02) #0,
we can solve dov, +¢1(t), dou, +co(t) and 60( Bf,+ )—|—03( ) from (2.25) in terms of
the terms on the right-hand side of (2.25). Then substltutlng the resulting expression
into the last equation of (2.24), we arrive at the ordinary differential equation for d :

50 + E4 (t)60 = F9 (t)@mv{ + Egg(t)(?mu{ + Egg(t)(?ﬁ{ + E24(t)(916‘l1 + F(t), (226)

provided that (y — 1)u is suitably small. Here Ex(t), Eq;(t) and F(t) are some known
smooth functions, and F1(t) and Es;(t) remain bounded even as u — 0,1 < j < 4.
Solving for &y from (2.26) up to a constant, we obtain ¢(¢) uniquely in terms of
Bin. Then substituting the expression of §p and c¢(t) into the first two equations of
(2.24), we can express v%,u} in terms of B;,. Then the theory of linear hyperbolic
equations [3, 4] shows that the problem (2.3), (2.26) has a solution smooth up to the
shock provided that the initial value, hi(x,0), is chosen to satisfy the appropriate
compatibility conditions at = s(0). Thus hq(z,t) is completely determined, which
in turn gives dp and c(t) by (2.24)-(2.26), and therefore H;(&,t). Now we summarize
the above discussion to achieve

PROPOSITION 2.1. If (y — 1) is suitably small, then hi(x,t), H1(£,t) and §y can
be established such that
(i) hi(z,t) and its derivatives are uniformly continuous up to x = s(t), and

> / /|a’fh1 z,t)2dzdt < oo. (2.27)

0<k<2n+1
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(i) Hy(&,t) and dg are smooth functions, and there is an o > 0 such that as
§ — Foo,

Hy(&,t) = ha(s(t) £0,t) + (§ — J0)Oxho(s(t) £0,t) + O(1) exp {—a|¢[}. (2.28)

The above constructions can be carried out to any order. In particular, we can
determine ho, Ho,01;- - ;hy, Hy and d,_1 for n > 3 and the similar results as in
Proposition 2.1 hold for them.

2.4. Approximate solutions. Now we can construct an approximate solution
to (1.1) by patching the truncated outer and inner solutions in the previous discussion.
For n > 3, define

x —s(t) z —s(t)

I(xz,t)= H( . +§:sj5j(t),t)+zn:siHi( . +ni:aj5j(t),t),
= - = (2.29)

and

n

O(xz,t) =Y e'hi(x,1). (2.30)

i=0

Let m € C§°(R) satisfy 0 < m(y) <1, and
_J Lo y<,
o ={ o i3e
Set v € (1,1) to be a constant. Then we define the approximate solution to (1.1) as

2 )+ (- w206 v d ), @)

ey €

S (z,t) = m(

where d(x,t) is a higher-order correction term to be determined. We use the following
notations:

S = (ve,us,0°)", I =(I1,I5,15)" O=(01,02,03)", d=(di,ds,d3)".

Using the structures of the various orders of inner and outer solutions, we compute
that

Ui — g = dyy — dog + i (2, ),
- 4
~ Sy ui d2:1)
’Uf;: +p(U€7 98) - E(UTE)w = d2t - E(E)LE + ;%(xat) - %m(%f) + qﬁm(xu t)7
_ e2 o 0< UEUE
(€(6) + "+ (i 7)), — (), — (),
R d 10
3z
=5z 1d3t - E(E)m + ; qj(z,t) — qu12(2, 1) + qr22(2, 7).
(2.32)
Here
ql(x,t) = mt(Il — 01) — mm(IQ — 02) + m(ht — IQI), (233)

q2(x,t) =my(Iz — Oz) + {p(B1, B3) — mp(I1,I3) — (1 —m)p(O1,03)} 4
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(o0, ) (01, 00) — ema( 22— 222, (2.34)
IQx I2z
s(ast) =m{ (o1 ) = Do F))s — (22— T(22)),
n—1n—1
" U+ 0D € 6Untioj)a)s (2.35)
i=0 j=i
021 O2;E
1(2,1) = (1= m){(p(01,05) = T(p(O1, 00 — (2 = 1PN}, (236)
(ost) = (=B —m 2 = (1 —m) P (£ - ), (23]
46(z1) = p(e%,6) — p(B1, By), (2.38)

q'7(17, t) :%mt(lg — 03) + mmt(IQ — 02)2 — m(l — m)(IQ — 02)(12 — Og)t

+ mO2(Iz — O2) + mg(p(I1, I3)I2 — p(O1,03)02)
+{p(B1, B3)By — m(p(I1,I3)Is — (1 = m)(p(O1,03)O02 }»
Isa  Ose | Iolae 0202

ema( == o T " o, ) (2.39)
as(ast) =m{p(1, T = Do, T Io) s — el 2 = D(22) 4+ 222 — (222,
+&" (Ene + % > UiUnsing)e
+e (; jz:; €'0;FEpyi—j + 3 ; JZ:; k;l S U Un—isj i

n—1i—1n—i+j

.n—1 n
+ % Z Z 5i€jUkUn—i+j—k - % Z Z EinE"H'H_j)I}’
i=1

j=0 k=0 i=0 j=it1
(2.40)
Oss O3z, 0209,
go(z,t) =(1 — m){[p(O1,05)02 — T'(p(01,03)02)]. — £| 3c T( 3 )+ 205
01 Ol 01
0502, 1, &,
_F( 2012 )]x+§a +1(Z Z Eujun+1+i7j)t}; (241)

i=0 j=i+1

. . doy
q1o0(z,t) = daus + doru® — E(B%lu‘f)m, (2.42)



1 I3, OBm 1 1 us I 15,
t) = — B3, — —(1-— — — —)d3, — By,
qu(z,t) =e{(=Bs m ( )01>+(U5 Bl)ds + (=B ]
0202;3 ’U,‘E ’l;
- (- 22 4 (- D, (2.43)
Q12(I;t) :p(isae_s)ds _p(B15B3)B25 ( )
where Bj = ij + (1 - m>0jaj = 15273; F(p(Ila13))7F(I]2_12)7F(p(11513)12) (%)

and 1"(12[11”) denote the truncated Taylor’s expansion of p(Iy, I3), If—f,p(h, I3) I, L=

and %, respectively, at (V,U, ©), including all the terms of the orders O(1)e*,0 <
k < n; I‘(p(Ol,O;;)),l"(%?lm) I'(p(01,03)03), (O3lm) and I‘(OQO“) denote the trun-
cated Taylor’s expansion of p(O1, Os), 0021 ,2(01,03)02, 5 O“ and 02022 , respectively,

at (vo,ug, 0p), including all the terms of the orders O(1 )5 O <k § n.
In view of our construction, we have

i) supp (Q1,Q3,QS)§{($H§)?|x—3()| e”,0<t<T}, and
0% (a1,93,48)(x,t) = O(1)" D, 1=0,1,2,3. (2.45)
ii) supp(q2,q7) C {(z,t) : ¥ < |z —s(t)] <2e¥,0 <t < T}, and
5i(Q2,Q7)($= t)=0(1)
iii) supp (q4,90) € {(2,1) : [z — s(t)] =2 ", 0 <t < T}, and

(n=bv  1=0,1,2,3. (2.46)

T
0y (a1, @0)(z,1) = O(1)e™ 17", (/0 (g4, a9) (-, )]I*de) 2 < O(1)e" T,

T
([ 1ebas a1} < o=1-th, =123 (2.47)
0

We now choose d(z,t) = (di(x,t),d2(z,t),ds(x,t)) to be the solution of

dlt - d2m = _ql(Ia t)v
dy -
d2t - E(B_f)z = - th(%t)a
" p = (2.48)
dy —e(=22), = — (z,t
o = e = - e
dl(:v O) = dg(,@ O) = d3(£[: 0) = O

so that S¢ satisfies

E __ € —
vi —ut =0,

_ _ UE
U%—f—p(’l}a 98) :E(UT:)LE _q51($7t)+q6m(x7t)u
2 ~ R
_ ue o o< uug
(e() + ) + (0, 61 )e = (), 4 (8, — g1 (1) + 1),

(2.49)
Since Bj(z,t) > 0 is bounded below and above, and uniformly continuous, by the
result of [14], (2.48)2,3 admit fundamental solutions Ga(z, t) and Gs(z, t), respectively,
which are bounded as follows:

|G, 1), G3(x,8)| < ky(et)"2e™ 5, Wt € [0, T, (2.50)
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where the constants k1 and k2 depend only on the lower and upper bounds of B
and T. By the same method of [2] and a direct calculation, and the fact dy(z,t) =

fg doy (x, T)dT — fg q1(z, 7)dr, we have the following results. Here we omit the proof.

LEMMA 2.2. Let d(x,t) be the solution of (2.48). The following estimates hold
for allt €10, T):

i) [0Lda (-, t) || < O(L)e™H1=Dr=3  for 1 =0,1,2,3,4, (2.51)
lda(, 1) < O 55 ae (0,), (2.52)
|0Ldy (-, t)|| < O(1)eHi=ttav=s =123 4 (2.53)
) [0Ldy (-, )|l < O™ D=3 for 1=0,1,2,3, (2.54)
|0Ldy(-,t)|| < O(1)e—tH2v=3  1=0,1,2,3. (2.55)
i) 1010 (- )| L < O™ D=2 for 1=0,1,2,3, (2.56)
0L qro (-, 8)|| < O(L)e—H2v=3 =012 3. (2.57)
i) [0Lds (-, t)||p~ < O™ D=2 for 1=0,1,2,3, (2.58)
|0Lds (-, t)|| < O(1)e™—H2v=3  1=0,1,2,3. (2.59)
v) 105 (a5 g6, 11, qr2) ()] < O™ 272 1=0,1,2,3. (2.60)
It follows from our construction that S° has the following property.
LEMMA 2.3. Let S¢ be defined in (2.31), then
seo={ med o0e, WETEm e
Under the following coordinate transformation
_eos) ot
e e
we have
0.5° = md, Ho+ O(1)e, 9;5°=0(1)e, 1<1<3. (2.62)

3. Stability analysis. We now show that there exists an exact solution to (1.1)
in a neighborhood of the approximate solution S¢(z,t), and that the asymptotic
behavior of the viscous solution is given by S¢ for small viscosity e.

Suppose that h® = (v%,uc, %) is the exact solution to (1.1) with the initial data
he(x,0) = S¢(x,0). We decompose the solution as
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for (x,t) € R x [0, T]. Then using the relation (2.49) for S¢, we obtain that

¢t - 1/)x = Oa R
Yo+ (o + FoC)a + Qu(v7, 0% 6,0, = a(jj—w )+ s o)
wy + (upud + P + upe()o + Q2(v, uf, 056, ()s (3.2)
0L 0 utul  utug
= H(U—a - UTE)I +&( P e + (011 — @12)2s
¢(z,0) = ¥(z,0) = w(z,0) = 0,
where
ﬁ (76 9_6) v = Do (6550_5)71)_9 :p9(v%79_€)7

= p(v°,0) — p(v°,0%) — (oo + PoC) satisfies |Q1] < O(1)(|g]* + [¢[*),
= p(v®, 0°)u" — put — (upyd + P + upy()
satisfies |Qa < O(1)(|¢]* + [¥]* +[¢[*).
To exploit the fact that a shock satisfying the entropy condition is compres-

sive, we need to integrate the system (3.2) once. Thus we set (¢,v,w)(z,t) =
(4, Uy, W,)(z,t) and W = 225 (W — u=0). Then

¥2) and w = —1WE + (us ). (3.3)
N -

|
N | =

Substitute these quantities into (3.2) and integrate the resulting equation with respect
to = to obtain

(i)t - \I/m = 0
us  ug
Uy + pud + po¢ + Qa _E(v_ - v_€>+Q5_q67
R
(FW + UE‘IJ)t + (uEpyd + pp + ufpel) + Q2 (3.4)
05 95 uful  ufug
fH(F_F)_FE( R %)+ qu1 — qi2,
®(x,0) = ¥(x,0) = W(z,0) = 0.
This system can be written as
o, — 0, =0,
_ - - -1, _- 1 us  ug
Ty + puBy + po(We + iq’—g‘l’i))zf(v—f—v—a) Q1+ g5 — ge,
R o _
ST+ G+
T 95 0 _
= ’f(—6 - ﬂ—) +e U—I‘I’ +ufQ1 — Q2 — u*(g5 — g6) + q11 — 2,
(3.5)
By making the following rescalings,
- x — s(t) t
(@, ¥, W)(x,t) =e(®, ¥, W)(y,7), y= , T=-, (3.6)
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we transform (3.5) into

O, — §(e)®y, — U, =0,
-1
U, —§(en)¥, — 0Py + po{W, + r=-

_ 1
7 (0 - 5\1}5)}

Yy 1 Uy o
= T O, Wy, + 20t P, — Q1+ g5 — gs,
R - . - _
j(WT 5(em)Wy) + (us — 3(eT)u) ¥ + pv,,
Wyy 1 Y- - 1 9 Z u_‘;
= 0F 0fof O, Wyy + Rut (UZ‘I’ - g‘ljy)y T Rt ¢y + -V, Wy, + _S‘I/y

®(y,0) = ¥(y,0) = W(y,0) =0,

o (3.7)
where g = —(p, + u /v7), and
e Ne J- 1 € 1 2 e Pe
Q1 = p(ve + @y, 0° + W, + T(uyqj - g‘l’y)) — p(ve, 69)
_ _ y—1 - 1o
= oy + o (Wy + —5— (G ¥ — S1)))
satisfies [Q1] < O(1)(®2 + W + (v — 1)u* V2 + U}),
_ _ -1, _ 1 _ _
Q2 = p(v° + @y, 0° + W, + 7R (50 = SO (" + Uy) — put
- _ _ — -1, _ 1
— (@B + Py + @ ps(Wy + T (00— 597))
satisfies |Qa] < O(1)(®2 + W2 + W2 + (y — 1)uz®¥? + 1) (3.8)

Then we only need to show that for suitably small e, (3.7) has a unique “small”
smooth solution up to 7'/e. By the standard existence and uniqueness theory, and
the continuous induction argument for hyperbolic-parabolic equations [5], it suffices
to close the following a priori estimate

w
vy—1

where § is a positive small constant depending on the initial data and the strength of
the shock. In fact, we have the following result.

N(r) = (2,7,

)67)lls <6, (3.9)

PROPOSITION 3.1.  Suppose that the Cauchy problem (3.7) has a solution
(®,T, W)
€ CY([0,70] : H3(RY)) for some 19 € (0,T/c]. Then there exist positive constants
ui,e1 and C, which are independent of € and Ty, such that if 0 < & < €1 and
d+ (y—1Dp < g, then

sup  N(7)? +/ 1@y (73 + [[(Ty, W) (-, T 3)dr < CeBrHDP=4 - (3.10)
0

0<7<79

where v is defined in Section 2.4.

The proof of Proposition 3.1 occupies the rest of this section. We separate it
into two parts. In what follows, we use ¢ to denote any positive constant which is
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independent of ¢,y and 7; and ¢ to denote any positive constant which is independent
of e and (y — 1)p. And we set e < 1.

LEMMA 3.2. Suppose that the conditions in Proposition 3.1 are satisfied. Then

L - )II2 ! A2 2\dr
' 7m)(, )Ilj/0 12y (- DI + [1(¥y, Wy)[I7)d 1)

+/ /mVy(\IJ2 + 1)dyd7' < cenrtv—4,
0 _

(@, ¥

for all T € 0, 79], where the constant c¢ is independent of 1o and €.

v oW
Proof. Step 1 Multiplying (3.7)1, (3.7)2 and (3.7)s by &, — and Do

, respec-

tively, then integrating over R!, and adding the resulting equations, we obtain after
integration by parts that

1d 1 T
—— (<I>2+—7\I/2+ﬂﬁ
2dr 0 (y—1)op
.1 (v=Dpous. 5 1 1,
+ J1GG+ T)\p EER R Aty
]50 2
)y W2+ =—W2}d
/{ —1 vEOp sty

/{ ), W2 — €\IJW+2(7131)( =), W2tdy

pe Spous, -1, pe
UYWdy — [ —— cUWd
+ 1, + P yuw / T (E i vy

W?)(y,7)dy

pob; Doty — 1P, P
W, + —— W, —) ,WW, }d
/{U S0 gp ¢, W vC op R Ve op y+(v£§]5)y y} Y

W, + (-22), W) w2 }dy

veop

P2y 4+ L~ (2
/{05205 T QR(Q +UEQP

/{UEUE DUy, — P, W E__<1> WW,,}dy
/{ -1V — UEQI Qz)W}dy

+ / (S5 = 0¥ = 2205 — g0) — (a1 — 022)) W)y (3.12)

We denote the last two terms on the left by I; and I respectively, and the terms on
the right hand side above in order by J;,1 < ¢ < 8. Now we estimate them separately

as follows.
u mU
First, Using Lemma 2.3, we have v*g = p — Ty p ()e > 0 for

sufficiently small €. Then it follows from Young’s mequahty that

1 $ 1 (v — Dppus 1 - 1
Bz -m) [ vy [5G+ T - (), Wy

4m veQ

for some 7; € (0,1). Denote the second term by [ z(S5)¥?dy. Then Due to (2.15),
Lemma 2.3 and the fact

9,(V,U,0)| =0(1)e, on |yl >e771, 3.13
Y
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we get
o800 Oy =Dpeuy 1 1
A8) = 52+ e = a5 )
i, (y=Duwy 1, 1 )
__5(@/1;—5—15)”_1;;/65—15 4_,'71(uy/v _p)((m)y)
5 14 (v = 1)mU, 1 1

3 - Yy U,V — P
2m(Uy/V—P)y U,V —P + O/

+O0()e"mV, + O(1)e

FR 7 (vy-1)sV, 1 . 1 ,
hd _ (b — -
A e e 4771( 1SV gy )Y
+0()e"mV, + O(1)e

W r—p)”

m{

_ S _ _ 2
= mVU4(b1 — SQV)2 {2b1 4(’7 1)(1)1 S V)
+0()e"mV, + O(1)e
S $’RO .
= e R — _ g2 _ _ _ 2
mVy4(b1 — SQV)Q{[bl + T + (by — 2V) —4(y — 1) (b — $°V)]
1 ] $2RO B
m b1 — $2V

_ L EY
m b1 — 52V

+[( SV} +0(1)e"mV, + O(1)e

: m%m{zl(H) + 2 (H)} + O(1)e"mV,, + O(1)e.

As in [16], using the fact

@20 ey - (o, —w) > 2

U’I‘ T

—c(y = Dp, (3.14)

which follows from the Rankine-Hugniot condition, we can obtain

R0,

. S
21(H) > (pr + 8°0) + o —A(y—Dp = ” —c(y = 1Dp.
On the other hand,
1 52RO 1 %
2o(H) > (— —1 L) = —(— - D)L (v, — ) > —(y = D,
2( )_(m ) . ) (771 pl( 1) = —(y—Dpu

§to,

if we choose ——————
$top + (v = )py

<1 < 1. So there is a constant ¢ > 0, such that

L ZQ/mVy‘I/QderQ/‘I’f,dy— (e(y — 1)#+C€”)/mVy\PQdy—CEH‘P(-J)IIQ-

Next we estimate I5. Denote the first term of Is as Iél). Then we have

1 SR v
1 =gy |
2
o@e [ mv 2y + 0wl < ()P
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R biOV, + (32V — b)VO,
20y 1/m @2(2V—b1) Whdy
mV dy+0 2
we [ (el 2=
SR b1®V + 32V —v)VO,  ,
20y — /m PV Wrdy
W 2
e /mV = el == (7
SRb1 2
>
> [ s s >2mV”W W
—(e(y = Dp+ce”) /mV we dy—l—c€|| ¢ m)IIP
\/_

>c

for some constant ¢ > 0, provided that (v —1)u and ¢ are sufficiently small, where we
have used (2.15)-(2.16) and Lemma 2.3. So

/ Wdy,
for some constant ¢ > 0.

Now we estimate the terms J;,1 < ¢ < 8. First Lemma 2.3 gives

_[2>C

Ji gce(llllf(-m)ll2+||\/—( TI).
and
Jo S/m|R(Uy/;_P)y (st//g P)Iqullwldy

+ CEV/mVy(‘I’2 +W2)dy + (|0, )P+ (W (7))

= [ o P i)+ 82— ) W

+/ mV, (0% + W2)dy + ce(|| 0 (-, 7)1 + [|W (-, 7))
W2
< (677‘1(7—1)#+0€”)/m%‘l’2dy+(n+05”)/m%r

14
+ (U7 + W),

where 77 > 0 is a constant to be determined later, which is different from the one
in Theorem 1.2 and be temporarily used in this subsection. Using (2.15)-(2.16) and
Lemma 2.3 again, one finds

0L5°17 < eumV, + O(1)e ,1<1<2. (3.15)

y—1 Po
Jy=——— =
’ T A

)y UWdy — = / Dy (ug, YW + us (U, W + YW, ))dy

vsvsgp
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<cy—1) /(6;2 Fus? st 027 (W2 4 W2)dy
ey = D(1®]lzoe + WL |y [12 + Wl Lo [ @y [* + ][ O] oo Wy |12
<e(y - 1)u/mVy(‘1’2 + %)dy +e0([[@y G, DI + 19, G DI+ Wy IP)
+ee([ OGP+ W)

Noticing that g > 0 and p, < 0 for sufficiently small ¢, Jy can be estimated as

_ 1
Jy < —n/pu<1>f,dy+ Zg/(\lff, + W, )dy
— 2.9 —15-2 —2 — 2 = 2 e 2 2
—|—c(’y—1)/u§ \I/dy—|—c/(77 05" +us” + o +ul,” + 057 )W)dy

) 1
< —n/pu<1>§dy+ Zg/(\lffnLW;)dy

+e(y — l)u{/mVy\IIQdy—F (n~' + 1)/m y
+ (DI + (7t + DIWE )P,

Continuing, we compute that

% -1
_ 2 ro 2 Y
Js _/UEQUE VP2 dy T 5 \1/\1/ dy /vs__W\If W, dy

< )Wz |91 + (¥l 2 + ||W||L°°)||‘I’y||2 + || W[ pos [ Wy |12
< 06(”(1)11”2 + ”\I]y”2 + ||\I]yy||2)

Similarly,

Jo < (@] + W) 1@y |17 + 1y 1) + el W oo (1217 + Wy 1)
< (g1 + 1yl + 1Ty 1 + Wy |1%).

In view of (3.8), we get
Jr < c/@f, (7 — 2R 4 W 4 W) dy

2 2 =2.1,2 4 2
+ (P + W+ (v — Dug W2 + W, + W) |Wdy
< c([llzoe + Wz ) NIy l1* + (14 [yl 1y |12 + W |12}

+gﬂv 1)z [2Wdy
swm¢w?+wmﬁ+nww%+av—ng/mww%y+wwwmm%

provided that ||¥(-,7)||2 is bounded. Finally, Young’s inequality and Lemma 2.2 lead
to

Jo < cs([UIP+ WD)+t [ (B4 aE + iy + by

< ce([[ )7 + [W7) + B2,
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Collecting all the estimates we have obtained, we get
1d Rp
2dr (y—1ap

_ 1
< [ mdy+ B0+ g [V 4 Wiy + ca(, 1P + W, )

1
(@2 + ~w? 4 W) (y,7)dy + ¢ [ (V] + W,)dy
0

w2 w?
+(—9+E(77_1+1)(7—1)u—|—c<€”)/mVy(\I!2+7_1) /mVymdy
w
+ 6 (|Wyy |12 + Wiy l1?) + (™ + De(| (-, 7)) + L)
IWyyll” + Wyy %) + c(n eI+ ] ?_1( )

+ CS(2n+1)U73'

By choosing § sufficiently small, we conclude that

Rpy
- /¢2+ o2 4 7 Dop ———W?)(y, )dy+9/(‘1’§+W5)dy

w2
+n/ﬁv<1>§dy+2g/m1@(qf2+ —)dy
w2 W2
< (é(n* +1)(~y—1)u+cs”)/mVy(\I/2+ 7_1) /mvymdy
w
+ S| Tyyll® + [[WyylI?) +e(n™ + De(|T(, 7)|1* + ek
(33 + W30 1) + ™"+ De(C DI + |2 I
e, (3.16)

Step 2 We first rewrite (3.7) as

B, — (eT)®, — W, =0,
U, — 5(eT)U, + p(v®, 0°) — p(v=, 69)

v 1 us
- % _ _—(I)y\I/yy — U_a—aq)y +q5 — Qe

RUE vEve
S Wr = $(enWy) + (s = S(em)up )W + p(v", 0°) %y

W,y 1 v-1 1 o 1 us
:7_1}%5 yWoy + RE(E\P_§\I}”> Uavaq)y+ \I/\I/yy_F e U

—u®(q5 — g6) + Q11 — Q12,
(y,0) = ¥(y,0) = W(y,0) = 0.

(3.17)
Then differentiating (3.17)2,3 with respect to y, multiplying both sides of the resulting
equations by W, W,, respectively, then summing them up, and integrating over R*,
we obtain after integration by parts and using Young’s inequality that

1 d 1
T+ =511+ [ (w3, + Wiy
q)y 2

:/U_E,Ua (\I/yy+Wyy)dy

- us
4 [ 07,07 — () + L0, — 5+ ashy

v—1
Rs(uallf—i—ukll -9,7,,)

/Wyy{ $(eT)ug)V + p(v®, 0°) 0, —
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0z 1 ue _
= e 8y = Uy Wyy — oWy + w5 — g6) — (a1 — qu2)}dy
1 1 1
A1yl + 10 le) [ 2003, + W)y + 5 [ 03, + W)y
12+ (U 3T P+ W, ) + e, 7))

+ C/(ii,2 +ug,t)Uldy + /(Q§ + a5 + aiy + qia)dy

1 1
< (e5+7) / — (02, W2, )dy + (B, | + / mV, WPy + |0, 2 + |, %)
+ el (-, 7|2 4 eV,

provided that ||(®,, ¥y, Wy)| L~ is bounded, where we have used (3.1), (3.3), (3.6),
(3.15) and (2.60). By taking ¢ sufficiently small, we arrive at

d R 1
T+ =511+ [ (8, + Wy
2 2 2 2
=l P+ [ vy P 0 )
< ce||U(-, 7)) + ety =3, (3.18)

We denote the constant ¢ on the left by c;.
d

Step 3 Noting that d_”q)y”2 is not included in (3.18), we need to estimate it sepa-
T

rately. Multiply both sides of (3.7)2 by ®, and integrate over R' to obtain

. _ _ -1 1
/{q;y\pT — 50,0, +pv<1>§ + po®y, (W, + L( BV — —\112))}dy

R
<I>\Ifyy 1 9

The first term on the left can be written as

ug
Jszs (I)ydy + /(I)U(_Ql +q5 — qs)dy.
(3.19)

d
/‘by\I/Tdy = /fl)y\Ide - &, Vdy

d
= —E/Q\I/ydy—l-/\lffldy—l-é/@ylllydy,

and the first term on the right reads

o, 1 .
/de /UTE%(@W — $B,,)dy

1d 1 [re
=5 —dy+§/?‘é(v$—sv§)dy
1d [® 1 )
:Ed— —dy+§ _2(I)ydy7

where we have used (3.7); and (2.49);. Substituting them into (3.19), we get

d [1®2 B B =1, _ 1
7 | G +evy)dy = /pv@gdy + /pg‘l)y(Wy + (g - 5 Vi))dy
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—l—/\llzdy—l—/%@;@yydy—p/(ﬁjva _ 2;2)@@3@
+/<I>yQ1dy—/‘1>y(lJ5—(J6)dy-
We denote the second term on the right by w. By Young’s inequality, one finds
w< _% /pvcpgdw c(IWy 2+ (v — 1)/6;2\112dy+ 12y 1 12y ]1%)
< g [ By 0, P+ W) + el = D [V, Wiy + celu(, ol
provided that || ¥, ||z is bounded. Similarly,
1 ., 1[5 2 2
/ @y < / Pu®2dy + ¢y |2 |9y |
<5 [ midy+ o,

Noting that uf = mU, + O(1)e and U, < 0, we get

1 1 u oy
[t iy = [ Snatay— [ Sy < oesole,

= —9
vEvE 2% v

Due to (3.8),
2 ~2.7,2 4 2
/Qledy < c/ |y (P + (v — Dug V= + U, + W, )dy
< [yl + 12y |12 + Wy 1) + 2y — 1)u/mVy‘1’2dy +oee| @ ()2
Lemma 2.2 and Young’s inequality yield

1 i
- [ s =ty <o+ o [ (@ adyiy < el

Collecting all the estimates we have obtained and taking § to be sufficiently small, we
have

d [ o _
=[G zway - [y el 2+ WP
< cel, 4+ By + el = D [V Widy + e WG 7 4 cer S,

(3.20)

We denote the constant c on the left by ca.
Step 4 Choosing suitable constants 31, 32 > 0 and adding up the three inequalities
(3.16), £1(3.18), (2(3.20), we obtain the following inequality

d 1 P2 R pe
— [ {®% + = 2 123,30 P24 (Zw? W2)}d
= [ v e m T 20w, 5w B vy

~ [ =+ B+ (= B - cata) (W3 + W)y
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W2

1
e [ L, Wi+ o— ) [mvi e+ oy

< Cﬁl“fH(I)yH2 + (B2 + 1)”\1}1/1/”2 + C(SHVVyy”2

-1 ” , W2 w2
+ (e + B+ 1)(y = 1)pu+ce”) mVy(\IJ +7_1) mVyjdy

( )H )—I—CE 2n+1)r— 3

+e(n 4 B+ Bo + De(| U, 7)) + | \/—

To get desired signs, we first choose (1 = 265, n= %, such that

D* + 26,00, + V2 > Cp, (P> 4 17),

and then choose 3 satisfying
1 . Dy
c1f +c2f2 < sc and fo < min{—-—,c}.
2 461

Finally, we choose §, (¥ — 1)u and ¢ so small that

co(fa+1) < % and e(n '+ B+ 1)(y— Dp+ce” < ¢

—_

With these constants at hand, it follows from Gronwall type inequality that

L I ! A2 2\dr
||(<1>,\If,m)(, )||1+/O 12y (- DI + [1(¥y, Wy)[I7)d

+/ /mVy(\If2+
0

This completes the proof of Lemma 3.2.
To finish the proof of Proposition 3.1, we need to establish the estimates on the
higher derivatives of (®, ¥, ). This is given by the following Lemma.

2
w 1)dydT < ce@ntv—1,

LEMMA 3.3. Suppose the conditions in Proposition 3.1 are satisfied. Then

02w T
103,539, ) () + [ (15300, + 1059, W )[R)dr < eelrrivt,
(3.21)
with some constant ¢ independent of o and €.
Proof. Step 1 First we rewrite (3.7)2 as
. _ y—1 uE Lo \I/yy
U, —$(em)Uy + x1Py + po{ W, + T( U — §\IJU)} e Q1+ g5 — g6, (3.22)

s

U
where x1 = py + = ys. Applying Bf/ to (3.22), multiplying both sides of the resulting
vEW :

equation by 9/ ®, and integrating over R' x [0, 7], we obtain

/ / (0L @0l W, — 04T ®OLT W) dydr
0

1

T - v -
+/0 /5§+1¢5L{X1‘1>y+pe(Wy+—

_ 1
= (ue W — 5\1/3))}@(17
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— [ [ored,Cayir— [ [ o i00h(@i - a5+ ao)dvar. (323)
0 0

Similar to the methods we have used, with the help of (3.7); and (2.49);, we have

/ / O OO dydT = / 0L @O Wy + / / (047w dydr
0 0
+ /0 / 05T PO Wdydr,

and

[ f ot
/ / — 9oL 2 Wdydr + / / 9, @9, \IfwdydT
/ / — a0, Saé+2¢)dyd7+/o /aé“@[aé,g]\l/yydydT
/ 8z+1q> (CARCI / /v — SV L (911 0) dydr
/ / o4 (0}, 10y dydr
_ 5/ 8l+1<1) / / v (01 ®) dydT—I—%/OT/%(a;ﬂ@)zdydr
/ /alﬂ@ \I’yydydT
where [+, -]- denotes the commutator. Insert them into (3.23) to get
%/@dy_/al“wlwyﬂL/T /(8l+1\11)2dyd7'
/ /8l+1<1>8l X1®,)dydr — / /
__// W (1) dydT—/ /al“fb — Wy dydr

+/ /a;+1q>a;{;fe(wy+ = ( E\If—lqlz))}dydT
0

+/0 /%H‘I)%(Ql — g5 + g6)dydr. (3.24)

In the case [ = 1, (3.24) reads

o2 T

Uyay dy:/q)yylllydy—l—/o /\I/ZydydT
' T -

+ (x1— —Q)q)yydydT + X1y Pyy Pydydr
/ / \Ifyyq)wdydT—i—/ / 5 oy Wyydydr
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/ [ outom, + L a5 - S0} dvar
+ /(I)yy (Qly — g5y + ‘IGy)dydT- (3.25)

Next we use the result we have obtained in Lemma 3.2 to estimate each term on the
right hand side of (3.25). First, by Young’s inequality,

1 [ @2
/‘PW\I! dy < / Ydy + ¢ W, |? < /%dy—i—cs(?"‘*l)”—‘l,
By the definition of x1, we have

y = O(l)(l + (I)yy)v Xlyy = o(1)(1 + D,y + q)f;y + (I)yyy) (3'26)

It follows from this and the facts u;, = mU, + O(1)e and U, < 0 that
/ /(X1

ug®, us )
/ /pvfbyydydT +/ / = (0)? )2)<I>yydyd7'

< / / o2 dydr + (6 + <) / H@yyn%
0 0
and

T T 1 T B T
/0 /leq)yfl)yydydT < 05/0 ||<I>yy|\2d7'— g/o /pvéflydydT—Fc/o H<I>y||2d7'
T 1 T B n Y
< 05/0 | ®yy||2dT — g/o /pUq)flydydT—l-ca(Q =4,

By Sobolev’s inequality and Young’s inequality, the remaining terms on the right are

estimated as follows.
/ / —5 Yy fI)2 dyd7'§05/ | @y, |%dr,
0

T ,U_z 1 T o T 9
0 (v°) 0 0
1 T
0

Continuing, using Lemma 2.3 and Lemma 3.2, we obtain

)fl)zy dydr

and

[ [ @t + Tt - 59, duds
0

1 T
< - / / po®;, dydr

+ c/ / (W2 + W2+ (u5® + e, *) 0% + W2 + W) + U202 )dydr
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1 T _ T
<—5 [ [ mduar e [0+ 100 B+ (W )
0 0

+c/ mV,Widydr + cer sup [ W(-,7)|?
0

0<7<79
1 T -~ n v—
provided that || ¥,z is bounded. By the definition of @1, we have
/0 /nydydf < C/O /{@3 + Wi+ us U U (B2 + W2+ u
= 2
+U)(RF, + W2, +us, 0%+ U2+ W22 Yy dydr

<ci [ [ @ duree [0+ 19,08 + 17, e

+c/ mV,Widydr + cer sup [ W(-,7)|?
0

0<7<70

<cd / / @7 dydr + ce" TV (3.27)
0

provided that |(®,, ¥, ¥,, W,)| L~ is bounded. Then combining Lemma 2.2, one
finds

/q)yy(Qly — @5y + Goy)dydT
1 T B T
- g/ /pvfbf,ydydT + C/ /(ny + @, + @, )dydr
0 0

1 T T
- g / /p_vq)iydydT —+ 65/ /(I)?Jydydq— + CE(2n+1)U74,
0 0

Collecting all the estimates we have obtained and taking ¢ and ¢ to be sufficiently

small, we get
2
P4y
/%

||q)yy('v7')||2 +/0 ||q)yy('v7')||2d7' < certbr=1, (3.28)

IN

IN

—/ /p’v@iydydT < eenAv—4,
0

This implies

Step 2 We rewrite (3.17) as

&, — s(eT)®, — U, =0,

_ - |\ U
\I/T - 5(57')‘1/74 +p(v6796) _p(vsvos) =% — Y q)y + q5 — (g6,

R _ _

- - T = 5 g —3 € \I/ \I/

o 1(W s(em)Wy) + (us s(aT_)uy) + x2¥y (3.29)
Wyy =1, _ 1 5 95 1

= S e (Y = S, — ey Wy,

—uf(gs — ¢6) + q11 — Q12,
®(y,0) = ¥(y,0) = W(y,0) =0,
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UE
where 2 = p(v°,6%) — U—g Applying 8’; to (3.29)2, multiplying both sides of the

resulting equation by 85\11 and integrating on R! x [0, T], we obtain
1 T (ak+1\1,)2 T - uE
§||8I;\I/(~,7')||2+/ /7‘74 — dydT:/ /85"'1\1!8]; l(v,szs o, )dydr
0 0
-|-/ /35+1\113];71{p(v5,95)—p(ﬁs,gs)}dydT
/ / ot w(ok ]\I/yydydT— / / OMNTIWOE (g5 — q)dydr.  (3.30)

In the case k = 2, by the Young s inequality and Sobolev’s inequality, we have

i+ [ JRas

//33 Uy yy+(“ ), ® )dydr+/ /33\11{;”; 6°) — p(*, 65)}, dydr

—/ /(—)yagwajwym—/o /83\11(q5y—q6y)dyd7

1 T
<3 [ [ O i e [+ 1wl + sl

c/ mV\I/ dydt + ceT sup ||\I/(77-)||2 —|—/ /(qu—kqu)dydT
0 0

0<7<19

T (93\11 2
< 1/ /( Y ) dydT+CE(2n+l)U_4,
2 0 Ve

provided that ||®||2, || ¥]|3 and ||W]|2 are bounded, where we have used (3.11) and
(3.28). This implies

105 (-, 7)1 + / 1059 (-, 7)||Pdr < ceBrtDrme, (3.31)

Applying 85 to (3.29)3, multiplying both sides of the resulting equation by 8§W and
integrating on R! x [0, T], we get

R k 2 / / ]C-‘rl

:/ /a’;ﬂwa;—l{(d; — $(eT)iE) + xo W, }dydr
0

T 1
—/ /a’;“W[aj*l,—]WyydydT

-1 1 1
/ /ak+1wak 1{?}%5 7 (U0 — ixyy) — Uy Wy bdydr
+/0 /3§+1W8§71{1I5(q5 —q6) — (q11 — q12) }dydr. (3.32)

In the case k = 2, one has

R

G-IV //

ddT
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_ / / 83W{(1[$—S(ET)JE)\I/—l—XQ\IJy}ydydT— / / (U—lg)y(?SW(?deydT
0

-1 1
/ /63W{ v — ( 8\11——@ 2y — Ewy\yyy}ydych

E E

+/ /aSW{(U_S(% —q6)y — (q11y — qu2y) }dydT
0
T (@) -
< 5/0 / y,Ua dyd7-+c/0 (@ylIF + 1%y [I5 + Wy 1) dr

to / mV, W2dydr + 7 sup | W(-,7)||?
0

0<7<79

¢
+ / /(Q§ + @y G+ aoy + airy + dizy)dydT
0

1 " (8.7:3W)2 2n+1)vr—4
S §A /TdydT+CE( ) )

provided that ||®||2, || ¥]|s and ||W]|3 are bounded, where we have used (3.11), (3.28),
(3.31) and Lemma 2.2-2.3. This gives

)|2dr < ce@nHtv—4, (3.33)

H 2 / 63
\/— ol I
Step 3 Similar to Step 1, for [ =2, due to (3.8), (3.11), (3.28), (3.31) and (3.33), we
have

83‘1) 2 T
. / Cay- | / PO )dydr
3,92 3 “E(I) uj 312
0,20, Wdy + (0, ¥ dydT—|— ) 5)(0, @) dydr
vE vs
+/ /(2X1yq)yy —I—ley‘by)ag‘bdydT—F _/ / Yy (83(1))2dyd7’
0 2 VE 2 )

T 2(®y, + v : 2(®y,, +
+ /‘93¢{7( RPN TR s v) 02U} dydr
, R CO N OO
/ /a%a?{pg(w +T( sm--w?))}dych
+ [ [ 000801~ 0205+ Zanyiyir
1 fl)
1/( pe r dy + c||o2w (., )||2+c5—|—5/ |03®|*dr
~5 | [m@ra e [ Qo0+ 10+ 1 Bar

+c/ mV, Widydr + cer sup || U(-,7)|?
0<7<79

<

/ /{ (07Q1)* + (9745)% + (92q6)* Yydr

(05®)? 36 3812 2nt1)v—a.
/ —dy ——/ /pva dyd7+c§+5/ 19, @]l dr + ce@rtiv=-

<
S e

B~ =
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provided that ||(®, ¥, W)||s is bounded. By taking ¢ and e to be sufficiently small,

we arrive at
63(1) 2 T
/( z}a) dy _/ /p—v(ag(p)QdydT < CE(2n+1)V_4,
0

10y @(,7)I* + / 105 @(:, 7)|[Pdr < cerrDr—a. (3.34)

which implies

Step 4 Similarly, when k = 3, we have
1
Iy e
us T -
:/ /8;1\1135 = y)dydT—l—/ /8;1\1185{1)(05,95)—p(vs,ﬁs)}dydT
/ /34\11{32 32\114—2( )y 83\IJ}dydT—/ /84\1182 a5 — q¢)dydr

ddT

64
3 [ O i e [+ 10l + 193

—i—c/ mV,W2dydr + cer sup ||¥(-,7)|* + / / (02 q5 + (02 qg) )dydt
0

0<T<T()

T 64\11 2
< 1/ /( Y ) dydT+CE(2n+l)U_4,
2 0 Ve

provided that ||(®, ¥, W)||5 is bounded. This implies
O3 (-, 7)||* + / 105 (-, 7)[|Pdr < e, (3.35)
And for W, we have
R
83 2 / /
e CA]
/ /84W82 — 3(em)ug )V + x2 W, }dydr

//84W{82( )82W+2( )83W}dyd7-

o y—1, 1 1
/ /84W82 Py - R ——(ug W — 5\1/;)y = U, Uy, dydr

+ [ [ oot (aas — ao)) — (ans — ar2) )y
0
1 T (84W)2 T
<5 [ [ e [ 5+ 195+ 1, ) duar

+c/ mV,Wdydr + cer sup ||¥(-, 7)|?
0

0<7<79

+ /0 / (G2 + @G + @By + Goy + Goyy + Qoyy + Tiryy + Groyy)dydT
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T 84W 2
< 1/ /( Y ) dydT+C€(2n+1)U74,
2 0 Ve

provided that ||(®, ¥, W)||5 is bounded. This implies
RBW
vy—1

So far we finish the proof of Lemma 3.3.

Combining Lemma 3.2 and Lemma 3.3 together, we complete the proof of Propo-
sition 3.1.

|| (o) + / |08W (-, 1) 2 < cePrtv—1, (3.36)

4. Proof of Theorem 1.2. Using the Proposition 3.1 and the standard contin-
uous induction argument, we conclude that

PRrROPOSITION 4.1. There exist positive constants €g, o and C, which are in-
dependent of € such that if 0 < & < g and 0 < (v — 1)u < po, then the Cauchy
problem (8.7) has a unique solution (®,¥, W) € C*([0,T/¢] : H3(R')). Furthermore,
the following inequality holds

w ) T/e ) ,
sup OV, —)(-, 7 +/ S, D5+ (T, W) (-, )|5)dT
OSTST/EII( T_1)( e | 1Dy (- T2 + 1Ly, Wy) (-, 7)I3)
< Celrtlv=1, (4.1)

dn+1
4dn + 2

Proof of Theorem 1.2. Now we choose v € (n,1) N ( ,1). In view of (4.1)

and Sobolev inequality, we have

sup |[(v° — 0%, u® —uF, 65— 6°) (-, 1)|?
0<t<T
_ _ -1 _
= sup [|(®s, Uy, Wy + 1
0<t<T R
y—1, _ 1
(5 — 2 02)) ()P

DI+ @+ 12y I 1y )2

=& Sup ||(q)yv\11yawy+ R
0<7<T/e
('7

<ce sup ([|@y(, 7 + @
0<7<T/e

H 1Dy (I + 17, ¢ 7))

<ce sup ([ @,C, )7+ V()5 + (W (I
0<7<T/e

< Ce@ntl)v=3 < C€2nfg'
On the other hand, it follows from Lemma 2.3 that

sup ||(v¢ — vg, us — ug, 05 — 90)(~,t)||2 < Ce¥ < Cen.
0<t<T

Consequently,

sup ||(v® — vg, u® — up, 0% — 90)(~,t)||2
0<t<T

< sup ||(v® —vF,uf —us 6% — 19_5)(-,t)||2 + sup ||(vF — vo,uf — ug, 05 — 190)(-,15)”2
0<t<T 0<t<T



VISCOUS LIMITS TO PIECEWISE SMOOTH SOLUTIONS 31

<ce,
which gives (1.11). Finally,

v—1
R

1

3 Es
< e (@, U, Wy, W) ()12 (D U, Wy, Wy Wi ) (1)1
< ce@nr=a/2 < en=F

_ 1
(us W — —\11?

(0" = 0%, u” —uf, 07 = 0=)( )| Loe = [[(Dy, Ty, W, + 2 v

NGBz

This gives (1.10). By using Lemma 2.3 again, we obtain (1.12).
We completes the proof of the Theorem 1.2.
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