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UNIFORM STABILIZATION OF THE WAVE EQUATION ON

COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING∗

M. M. CAVALCANTI† , V. N. DOMINGOS CAVALCANTI‡ , R. FUKUOKA§, AND

J. A. SORIANO¶

Abstract. This paper is concerned with the study of the wave equation on compact surfaces
and locally distributed damping, described by

utt − ∆Mu + a(x) g(ut) = 0 on M× ]0,∞[ ,

where M ⊂ R3 is a smooth (of class C3) oriented embedded compact surface without boundary,
such that M = M0 ∪M1, where

M1 := {x ∈ M;m(x) · ν(x) > 0} , AND M0 = M\M1.

Here, m(x) := x − x0, (x0 ∈ R
3 fixed) and ν is the exterior unit normal vector field of M.

For i = 1, . . . , k, assume that there exist open subsets M0i ⊂ M0 of M with smooth boundary
∂M0i such that M0i are umbilical, or more generally, that the principal curvatures k1 and k2 satisfy
|k1(x) − k2(x)| < εi (εi considered small enough) for all x ∈ M0i. Moreover suppose that the mean
curvature H of each M0i is non-positive (i.e. H ≤ 0 on M0i for every i = 1, . . . , k). If a(x) ≥ a0 > 0
on an open subset M∗ ⊂ M that contains M\∪k

i=1 M0i and if g is a monotonic increasing function
such that k|s| ≤ |g(s)| ≤ K|s| for all |s| ≥ 1, then uniform decay rates of the energy hold.
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1. Introduction. Let M be a smooth (of class C3) oriented embedded compact
surface without boundary in R

3 with M = M0 ∪M1, where

M1 := {x ∈ M;m(x) · ν(x) > 0} , AND M0 = M\M1. (1.1)

Here, m(x) := x − x0, (x0 ∈ R
3 fixed) and ν is the exterior unit normal vector field

of M.
We denote by ∇T the tangential-gradient on M, by ∆M the Laplace-Beltrami

operator on M. This paper is devoted to the study of the uniform stabilization of
solutions of the following damped problem

{

utt − ∆Mu+ a(x) g(ut) = 0 on M× ]0,∞[ ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ M,
(1.2)

where a(x) ≥ a0 > 0 on an open proper subset M∗ of M and in addition g is a
monotonic increasing function such that k|s| ≤ |g(s)| ≤ K|s| for all |s| ≥ 1.

Stability for the wave equation

utt − ∆u+ f(u) + a(x) g(ut) = 0 in Ω × R+, (1.3)

∗Received July 14, 2008; accepted for publication July 16, 2008.
†Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil (mm
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cavalcanti@uem.br). Partially supported by the CNPq Grant 304895/2003-2.
§Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil
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where Ω is a bounded domain in R
n, has been studied for long time by many authors.

When the feedback term depends on the velocity in a linear way Zuazua [ZUA] proved
that the energy related to the above equation decays exponentially if the damping
region contains a neighborhood of the boundary ∂Ω of Ω or, at least, contains a
neighborhood ω of the particular part given by {x ∈ ∂Ω : (x − x0) · ν(x) ≥ 0}.
In the same direction, but when f = 0, it is important to mention the work due to
Rauch and Taylor [Ra-Ta] and, subsequently, the results of Bardos, Lebeau and Rauch
[BAR], based on microlocal analysis, that ensures a necessary and sufficient condition
to obtain exponential decay, namely, the damping region satisfies the well known
geometric control condition. The classical example of an open subset ω verifying this
condition is when ω is a neighborhood of the boundary. Later, again considering
f = 0, Nakao [Na1, Na2] extended the results of Zuazua [ZUA] treating first the case
of a linear degenerate equation, and then the case of a nonlinear dissipation ρ(x, ut)
(here, again, f = 0 was considered) assuming, as usually, that the function ρ has
a polynomial growth near the origin. Martinez [Mar] improved the previous results
mentioned above in what concerns the linear wave equation subject to a nonlinear
dissipation ρ(x, ut), avoiding the polynomial growth of the function ρ(x, s) in zero. His
proof is based on the piecewise multiplier technique developed by Liu [Liu] combined
with nonlinear integral inequalities to show that the energy of the system decays to
zero with a precise decay rate estimate if the damping region satisfies some geometrical
conditions. More recently, and still considering f = 0, Alabau-Boussouira [ALA]
extended the results due to Martinez [Mar] by showing optimal decay rates of energy.
In addition, we would like to mention the most recent work in this direction due to D.
Toundykov [Tou] which presents optimal decay rates for solutions to a semilinear wave
equation with localized interior damping and a source term, subject to Neumann-type
boundary condition.

A natural question arises in the context of the wave equation on compact surfaces:
Would it be possible to stabilize the system by considering a localized feedback acting on
a part of the surface? In affirmative case, what would be the geometrical impositions
we have to assume on the surface? When the damping term acts on the whole surface,
the conjecture was studied by Cavalcanti and Domingos Cavalcanti in [CA-DO] and
also by Andrade et al. in [An1, An2] in the context of viscoelastic problems. However,
as far as we are concerned, there is no result in the literature regarding the nonlinear
wave equation on compact surfaces when the damping term acts in a portion M∗

strictly contained in M. For the linear case, we can mention the works due to Rauch
and Taylor [Ra-Ta], Hitrik [HIT] and, more recently, Christianson [CHR].

The main goal of this paper is exactly to prove the above conjecture when the
portion of M, where the damping is effective is strategically chosen. For i = 1, . . . , k,
assume that there exist open subsets M0i ⊂ M0 of M with smooth boundary ∂M0i

such that M0i are umbilical, or, more generally, that the principal curvatures k1 and
k2 satisfy |k1(x)−k2(x)| < εi (εi considered small enough) for all x ∈ M0i. Moreover,
suppose that the mean curvature H of each M0i is non-positive (i.e. H ≤ 0 on M0i

for every i = 1, . . . , k) and that the damping is effective on an open subset M∗ ⊂ M
that contains M\∪k

i=1 M0i.

The strategy used to prove the above conjecture is basically to make use of mul-
tipliers and fields as in Lions [LIONS1] with new ingredients that will be clarified in
section 4. Indeed, the main difficulty and the novelty in these kind of problems on
surfaces is how to deal with (or to interpret) the new terms which appear in the com-
putations that come from the geometrical structure of M. Moreover, this approach
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can be naturally extended for semilinear wave equation where the semilinear function
f(s) is assumed to be super-linear. We would like to emphasize that the proofs of
[Ra-Ta, BAR, HIT], based on microlocal analysis, do not extend to the nonlinear prob-
lem (1.2). In addition, making use of arguments due to Lasiecka and Tataru [LA-TA]
we obtain optimal decay rates of the energy. The obtained decay rates are optimal,
since when we are able to explicit them (as in Cavalcanti, Domingos Cavalcanti and
Lasiecka [CA-DO-LA]), they are the same as these optimal rates derived in the recent
works of Alabau-Boussouira [ALA] or Toudykov [Tou].

Our paper is organized as follows. Section 2 is concerned with the statement of
the problem and we introduce some notation. Our main result is stated in Section 3.
Section 4 is devoted to the proof of the main result.

2. Statement of Problem. Let M be a smooth oriented embedded compact
surface without boundary in R

3 with M = M0 ∪M1, where

M1 := {x ∈ M;m(x) · ν(x) > 0} , AND M0 = M\M1. (2.1)

Here, m is the vector field defined by m(x) := x − x0, (x0 ∈ R
3 fixed) and ν is the

exterior unit normal vector field of M.
In this paper, we investigate the stability properties of functions [u(x, t), ut(x, t)]

which solve the following damped problem:

{

utt − ∆Mu+ a(x) g(ut) = 0 on M× ]0,∞[ ,

u(0) = u0, ut(0) = u1,
(2.2)

where the feedback function g satisfies the following assumptions:

Assumption 2.1.

(i) g (s) is continuous and monotone increasing,
(ii) g (s) s > 0 for s 6= 0,
(iii) k |s| ≤ g (s) ≤ K |s| for |s| > 1,

where k and K are two positive constants.

In addition, to obtain the stabilization of problem (2.2),we shall need the following
geometrical assumption:

Assumption 2.2. Remember that for i = 1, . . . , k, M0i ⊂ M0 are open sets
with smooth boundary ∂M0i such that H ≤ 0 and M0i are umbilical submanifolds,
or more generally, that the principal curvatures k1 and k2 satisfy |k1(x)− k2(x)| < εi

(εi considered small enough) for all x ∈ M0i. We assume that a ∈ L∞(M) is a
nonnegative function such that

a(x) ≥ a0 > 0, a. e. on M∗, (2.3)

where M∗ is an open set of M which contains M\∪k
i=1 M0i.

In order to fix ideas, Figure 1 shows a compact surface M such that there exists
only one subset M01, which we take as the interior of M0.

In the sequel we define by Σ = M× ]0, T [ , Σi = Mi × ]0, T [ , i = 0, 1.

Let us considerer the Sobolev spaces Hs(M), s ∈ R as in Lions and Magenes
[LiMa] section 7.3.
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Fig. 1. The observer is at x0. The subset M0 is the “visible” part of M and M1 is its
complement. The subset M∗ ⊃ M\∪k

i=1M0i = M\M01 is an open set that contains M\∪k

i=1M0i

and the damping is effective there.

On the other hand, by using the Laplace-Beltrami operator ∆M on M, we can
give a more intrinsic definition of the spaces Hs(M), by considering

H2m (M) =
{

u ∈ L2(M) /∆m
M u ∈ L2(M)

}

,

which, equipped with the canonical norm

‖u‖
2
H2m(M) = ‖u‖

2
L2(M) + ‖∆m

Mu‖
2
L2(M) , (2.4)

is a Hilbert space.

We set

V := {v ∈ H1(M);

∫

M

v(x) dM = 0},

which is a Hilbert space endowed with the topology given by H1(M).
The condition

∫

M v(x) dM = 0 is required in order to guarantee the validity of
the Poincaré inequality,

||f ||2L2(M) ≤ (λ1)
−1||∇T f ||

2
L2(M), for all f ∈ H1(M), (2.5)

where λ1 is the first eigenvalue of the Laplace-Beltrami operator.
We observe that the problem (2.2) can be written in the following form

dU

dt
+ AU = G(U),

where

U =

(

u
ut

)

and A =

(

0 − I
−∆M 0

)

is a maximal monotone operator and G(·) represents a locally Lipschitz perturbation.
So, making use of standard semigroup arguments we have the following result:
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Theorem 2.1.

• (i) Under the conditions above, problem (2.2) is well posed in the space V ×
L2(M), i.e. for any initial data

{

u0, u1
}

∈ V × L2(M), there exists a
uniqueweak solution of (2.2) in the class

u ∈ C(R+;V ) ∩C1(R+;L2(M)). (2.6)

• (ii) In addition, the velocity term of the solution have the following regularity:

ut ∈ L2
loc

(

R+;L2 (M)
)

, (2.7)

(consequently, g (ut) ∈ L2
loc

(

R+;L2 (M)
)

by Assumption 2.1.

Furthermore, if
{

u0, u1
}

∈
{

V ∩H2 (M) × V
}

then the solution has the following
regularity

u ∈ L∞
(

R+;V ∩H2 (M)
)

∩W 1,∞ (R+;V ) ∩W 2,∞
(

R+;L2 (M)
)

.

Remark 2.1. It is convenient to observe that the space V may be not invariant
under the flow because of the nonlinear character of the equation. In this case it is
sufficient to add an extra term αu, (α > 0) in the equation in order to control L2

norms. However, for simplicity in the computations, we shall omit this term since it
does not bring any additional difficulty.

Supposing that u is the unique global weak solution of problem (2.2), we define
the corresponding energy functional by

E(t) =
1

2

∫

M

[

|ut(x, t)|
2

+ |∇Tu(x, t)|
2
]

dM. (2.8)

For every solution of (2.2) in the class (2.6) the following identity holds

E(t2) − E(t1) = −

∫ t2

t1

∫

M

a(x) g(ut)ut dMdt, for all t2 > t1 ≥ 0, (2.9)

and therefore the energy is a non increasing function of the time variable t.

3. Main Result. Before stating our stability result, we will define some needed
functions. For this purpose, we are following the ideas firstly introduced in Lasiecka
and Tataru [LA-TA]. For the reader’s comprehension we will repeat them briefly. Let
h be a concave, strictly increasing function, with h (0) = 0, and such that

h (s g(s))) ≥ s2 + g2(s), for |s| ≤ 1. (3.1)

Note that such function can be straightforwardly constructed, given the hypothe-
ses on g in Assumption 2.1. With this function, we define

r(.) = h(
.

meas (Σ1)
). (3.2)

As r is monotone increasing, then cI + r is invertible for all c ≥ 0. For L a positive
constant, we set

p(x) = (cI + r)−1 (Lx) , (3.3)
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where the function p is easily seen to be positive, continuous and strictly increasing
with p(0) = 0. Finally, let

q(x) = x− (I + p)−1 (x) . (3.4)

We are now able to state our stability result.

Theorem 3.1. Assume that Assumption 2.1 and Assumption 2.2 are in place.
Let u be the weak solution of the problem (2.2). With the energy E(t) defined as in
(2.8), there exists a T0 > 0 such that

E(t) ≤ S

(

t

T0
− 1

)

, ∀t > T0, (3.5)

with lim
t→∞

S(t) = 0, where the contraction semigroup S(t) is the solution of the differ-

ential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0), (3.6)

(where q is given in (3.4)). Here, the constant L (from definition (3.3)) will de-
pend on meas(Σ), and the constant c(from definition (3.3)) is taken here to be

c ≡ k−1+K
meas(Σ)(1+||a||∞) .

Remark 3.1. If the feedback is linear, e. g., g(s) = s, then, under the same
assumptions as in Theorem 3.1, we have that the energy of problem (2.2) decays
exponentially with respect to the initial energy. There exist two positive constants
C > 0 and k > 0 such that

E(t) ≤ Ce−ktE(0), t > 0. (3.7)

As another example, we can consider g(s) = sp, p > 1 at the origin. Since the

function s
p+1

2 is convex for p ≥ 1, then solving

St + S
p+1

2 = 0, (3.8)

we obtain the following polynomial decay rate:

E(t) ≤ C(E(0))[E(0)
−p+1

2 + t(p− 1)]
2

−p+1 .

We can find more interesting explicit decay rates in Cavalcanti, Domingos Cav-
alcanti and Lasiecka [CA-DO-LA].

4. Proof of Main result.

4.1. Preliminaries. We collect, below, some few formulas to be invoked in the
sequel.

Let ν be the exterior normal vector field on M. For all x ∈ M, we denote by
π(x) the orthogonal projection on the tangent plane TxM. Any regular vector field
q : R

3 → R
3 will be split up as follows:

q(x) = qT + (q(x) · ν(x))ν(x), (4.1)
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where qT = π(x)q(x) is the tangential component of q.
If ϕ : R

3 → R is a regular function, we have

∇ϕ = ∂νϕν + ∇Tϕ on M, (4.2)

|∇ϕ|2 = |∂νϕ|
2 + |∇Tϕ|

2 on M, (4.3)

where ∂ν represents the normal derivative towards the exterior of M and ∇Tϕ is the
tangential gradient of ϕ.

The Laplace- Beltrami operator ∆M of a function ϕ : M → R of class C2 is
defined by

∆Mϕ := divT∇Tϕ, (4.4)

where divT∇Tϕ, is the divergent of the vector field ∇Tϕ.
Assuming that ϕ : M → R is a function of class C1 and q : R

3 → R
3 is a vector

field of class C1, we have,
∫

M

qT · ∇TϕdM = −

∫

M

divqT ϕdM, (4.5)

2ϕ(qT · ∇Tϕ) = qT · ∇T (ϕ2). (4.6)

From (4.5) and (4.6), we conclude the following formula

2

∫

M

ϕ(qT · ∇Tϕ) dM =

∫

M

qT · ∇T (ϕ2) dM = −

∫

M

divT qT |ϕ|
2dM. (4.7)

We observe that in the particular case when m(x) = x− x0, x ∈ R
3 and x0 ∈ R

3

is a fixed point in R
3, we have

div m = 3, divT mT = 2 + (m · ν)TrB. (4.8)

where B is the second fundamental form of M (the shape operator) and Tr is the
trace. Let ϕ and m defined as above. We also have,

∇Tϕ · ∇TmT · ∇Tϕ = |∇Tϕ|
2 + (m · ν)(∇Tϕ ·B · ∇Tϕ). (4.9)

The proof of the above formulas can be found in Nedelec [NE], Lemrabet [LEM1],
Heminna [HEM3] and references therein.

Remark 4.1. The sign of B can change in the literature. In our case, we
remember that B = −dN , where N is the Gauss map related to ν.

The formula (4.8) can be rewritten by

div m = 3, divT mT = 2 + 2H (m · ν). (4.10)

where H = trB
2 is the mean curvature of M.

We define a continuous linear operator −∆M̃ : H1(M̃) → (H1(M̃))′, where M̃
is a nomempty open subset of M (sometimes the whole M) such that

〈−∆M̃ϕ, ψ〉 =

∫

M̃

∇Tϕ · ∇Tψ dM, ∀ϕ, ψ ∈ H1(M̃) (4.11)
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and, in particular,

〈−∆M̃ϕ,ϕ〉 =

∫

M̃

|∇Tϕ|
2 dM, ∀ϕ ∈ H1(M̃). (4.12)

The operator −∆M̃ + I defines an isomorphism from H1(M̃) over [H1(M̃)]′. We

observe that when M̃ is a manifold without boundary, and this is the case, for instance,
if M̃ = M, we have H1(M̃) = H1

0 (M̃) and, consequently, [H1(M̃)]′ = H−1(M̃).

Remark 4.2. It is convenient to observe that all the classical formulas above
stated can be extended for Sobolev spaces by using density arguments.

The proof of Theorem 3.1 proceeds through several steps.

4.2. An identity. We begin by proving the following proposition

Proposition 4.2.1. Let M ⊂ R
3 be an oriented regular compact surface without

boundary and q a vector field with q = qT + (q · ν)ν. Then, for every regular solution
u of (1.2) we have the following identity

[
∫

M

ut qT · ∇Tu dM

]T

0

+
1

2

∫ T

0

∫

M

(divT qT )
{

|ut|
2
− |∇Tu|

2
}

dMdt (4.13)

+

∫ T

0

∫

M

∇Tu · ∇T qT · ∇Tu dMdt+

∫ T

0

∫

M

a(x) g(ut)(qT · ∇Tu)dMdt = 0.

Proof. Multiplying the equation of (1.2) by the multiplier qT ·∇Tu and integrat-
ing on M×]0, T [, we obtain

0 =

∫ T

0

∫

M

(utt − ∆Mu+ a(x)g(ut))(qT · ∇Tu) dM dt. (4.14)

Next, we will estimate some terms on the RHS of identity (4.14). Taking (4.11),
(4.6) and (4.7) into account, we obtain

∫ T

0

∫

M

(−∆Mu) (qT · ∇Tu) dMdt =

∫ T

0

∫

M

∇Tu · ∇T (qT · ∇Tu) dMdt

=

∫ T

0

∫

M

∇Tu · ∇T qT · ∇Tu dMdt+
1

2

∫ T

0

∫

M

qT · ∇T [|∇Tu|
2]dMdt (4.15)

=

∫ T

0

∫

M

∇Tu · ∇T qT · ∇Tu dMdt−
1

2

∫ T

0

∫

M

|∇Tu|
2
divT qT dMdt,

and, integrating by parts and considering (4.7), we obtain
∫ T

0

∫

M

(utt + a(x) g(ut)) (qT · ∇Tu) dMdt (4.16)

=

[
∫

M

ut(qT · ∇Tu)

]T

0

−

∫ T

0

∫

M

ut(qT · ∇Tut)dMdt

+

∫ T

0

∫

M

a(x) g (ut) (qT · ∇Tu)dMdt

=

[
∫

M

ut(qT · ∇Tu)

]T

0

+
1

2

∫ T

0

∫

M

(divT qT ) |ut|
2 dMdt

+

∫ T

0

∫

M

a(x) g (ut) (qT · ∇Tu)dMdt.
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Combining (4.14), (4.15) and ( 4.16), we deduce (4.13), which concludes the proof
of Proposition 4.2.1.

Employing (4.13) with q(x) = m(x) = x− x0 for some x0 ∈ R
3 fixed and taking

(4.8) and (4.9) into account, we infer

[
∫

M

utmT · ∇Tu dM

]T

0

+

∫ T

0

∫

M

{

|ut|
2
− |∇Tu|

2
}

dMdt (4.17)

+

∫ T

0

∫

M

[|∇Tu|
2 + (m · ν)(∇Tu · B · ∇Tu)] dMdt

+

∫ T

0

∫

M

(m · ν)H
{

|ut|
2
− |∇Tu|

2
}

dMdt

+

∫ T

0

∫

M

a(x) g(ut)(mT · ∇Tu)dMdt = 0.

We have the following identity:

Lemma 4.2.3. Let u be a weak solution to problem (1.2) and ξ ∈ C1(M). Then

[
∫

M

ut ξ u dM

]T

0

=

∫ T

0

∫

M

ξ|ut|
2dMdt−

∫ T

0

∫

M

ξ|∇Tu|
2dMdt (4.18)

−

∫ T

0

∫

M

(∇Tu · ∇T ξ)u dMdt−

∫ T

0

∫

M

a(x) g(ut) ξ u dMdt.

Proof. Multiplying the first equation of (1.2) by ξ u and integrating by parts we
obtain the desired.

Substituting ξ = 1
2 in (4.18) and combining the obtained result with identity

(4.17) we deduce

[
∫

M

utmT · ∇Tu dM

]T

0

+
1

2

[
∫

M

ut u dM

]T

0

(4.19)

+

∫ T

0

E(t) dt+

∫ T

0

∫

M

a(x) g(ut)(mT · ∇Tu)dMdt

+
1

2

∫ T

0

∫

M

a(x) g(ut)u dMdt

= −

∫ T

0

∫

M

(m · ν)H
{

|ut|
2
− |∇Tu|

2
}

dMdt.

−

∫ T

0

∫

M

(m · ν)(∇T u ·B · ∇Tu) dMdt.

Analysis of the terms which involve the shape operator B

Let us focus our attention on the shape operator B : TxM → TxM. There exist
an orthonormal basis {e1, e2} of TxM such that Be1 = k1e1 and Be2 = k2e2. k1 and
k2 are the principal curvatures of M at x. The matrix of B with respect to the basis
{e1, e2} is given by
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B :=

(

k1 0

0 k2

)

.

Setting ∇Tu = (ξ, η) the coordinates of ∇Tu in the basis {e1, e2}, for each x ∈ M,
we deduce that

∇Tu ·B · ∇Tu = k1ξ
2 + k2η

2. (4.20)

Then, from (4.20), we infer

(m · ν)

[

(∇Tu ·B · ∇Tu) −
1

2
Tr(B)|∇Tu|

2

]

(4.21)

= (m · ν)

[

(k1 − k2)

2
ξ2 +

(k2 − k1)

2
η2

]

.

Remark 4.3. Observe that this is the precise moment that the intrinsic proper-

ties of the manifold M appear, that is, we strongly need that the term −
∫ T

0

∫

M
(m ·

ν)Hu2
t dM dt lies in a region where the damping term is effective. Remember that

the damping term is effective on an open set M∗ which contains M\ ∪k
i=1 M0i. So,

assuming that H ≤ 0 and since m(x) · ν(x) ≤ 0 on M0, we have

−

∫ T

0

∫

M0

(m · ν)H |ut|
2
dMdt ≤ 0.

In addition, supposing that M0i is umbilical for every i = 1, . . . , k, then, having
(4.21) in mind, we also have that

∫ T

0

∫

M0i

(m · ν)
[

H |∇Tu|
2 − (∇Tu · B · ∇Tu)

]

dMdt = 0, i = 1, . . . , k.

More generally, assuming that the principal curvatures k1 and k2 satisfy |k1(x)−
k2(x)| < εi (here, εi is assumed sufficiently small) for all x ∈ M0i, i = 1, · · · , k, we
deduce that

∣

∣

∣

∣

∣

k
∑

i=1

∫ T

0

∫

M0i

(m · ν)
[

H |∇Tu|
2 − (∇Tu · B · ∇Tu)

]

dMdt

∣

∣

∣

∣

∣

≤

k
∑

i=1

∫ T

0

∫

M0i

|(m · ν)||k1 − k2||ξ
2 + η2|dM dt

≤

k
∑

i=1

Riεi

∫ T

0

∫

M0i

|∇Tu|
2dM dt ≤ 2

k
∑

i=1

Riεi

∫ T

0

E(t) dt,

where Ri = maxx∈M0i
||x− x0||R3 .

Set M2 = M\ ∪k
i=1 M0i. In the case where M0i are umbilical, recalling (4.19)
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taking (4.21) and Remark 4.3 into consideration, we deduce

∫ T

0

E(t) dt ≤ −

[
∫

M

utmT · ∇Tu dM

]T

0

−
1

2

[
∫

M

ut u dM

]T

0

(4.22)

+

∫ T

0

∫

M2

(m · ν)
[

H |∇Tu|
2 − (∇Tu ·B · ∇Tu)

]

dMdt

−

∫ T

0

∫

M2

(m · ν)H |ut|
2
dMdt

−

∫ T

0

∫

M

a(x) g(ut)(mT · ∇Tu)dMdt

−
1

2

∫ T

0

∫

M

a(x) g(ut)u dMdt.

In the general case, the unique difference in the proof is that the term
∫ T

0
E(t) dt

that appears on the LHS of (4.22) will be multiplied by a positive constant C, provided
that we consider εi small enough. For simplicity we shall assume that C = 1.

We will denote

χ =

[
∫

M

utmT · ∇Tu dM

]T

0

+
1

2

[
∫

M

ut u dM

]T

0

. (4.23)

Next we will estimate some terms in (4.22). Let us denote:

R := max
x∈M

||m(x)||Rn = max
x∈M

||x− x0||Rn . (4.24)

Estimate for I1 :=
∫ T

0

∫

M a(x) g(ut)(mT · ∇Tu)dMdt.

By Cauchy-Schwarz inequality, taking (4.24) into account and considering the

inequality ab ≤ a2

4η + ηb2, where η is a positive number, we obtain

|I1| ≤
||a||L∞(M)R

2

η

∫ T

0

∫

M

a(x)|g(ut)|
2dMdt+ 2η

∫ T

0

E(t) dt. (4.25)

Estimate for I2 = 1
2

∫ T

0

∫

M a(x) g(ut)u dMdt.
Similarly we infer

|I2| ≤
||a||L∞(M)λ

−1
1

16η

∫ T

0

∫

M

a(x)|g(ut)|
2 dMdt+ 2η

∫ T

0

E(t) dt, (4.26)

where λ1 comes from the Poincaré inequality given in (2.5).

Choosing η = 1/8 and inserting (4.23), (4.25) and (4.26) into (4.22) yields

1

2

∫ T

0

E(t) dt ≤ |χ| + C1

∫ T

0

∫

M

a(x) (g(ut))
2dMdt (4.27)

+ C1

∫ T

0

∫

M2

[|∇Tu|
2 + a(x)u2

t ] dMdt

where

C1 := max
{

||a||L∞(M)[2
−1λ−1

1 + 8R2], ||B||R + |H |R, R |H |a−1
0

}

,
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||B|| = sup
x∈M

|Bx|, and |Bx| = sup
{v∈TxM;|v|=1}

|Bxv|.

It remains to estimate the quantity
∫ T

0

∫

M2
|∇Tu|

2 dMdt in terms of the damping

term
∫ T

0

∫

M
[a(x) |g(ut)|

2 +a(x) |ut|
2] dMdt. For this purpose we have to built a “cut-

off” function ηε on a specific neighborhood of M2. First of all, define η̃ : R → R such
that

η̃(x) =







1 if x ≤ 0
(x− 1)2 if x ∈ [1/2, 1]

0 if x > 1

and it is defined on (0, 1/2) in such a way that η̃ is a non-decreasing function of class
C1. For ε > 0, set η̃ε(x) := η̃(x/ε). It is straightforward that there exist a constant
M which does not depend on ε such that

|η̃′ε(x)|
2

η̃ε(x)
≤
M

ε2

for every x < ε.
Now, let ε > 0 be such that

ω̃ε := {x ∈ M; d(x,

k
⋃

i=1

∂M0i) < ε}

is a tubular neighborhood of
⋃k

i=1 ∂M0i and ωε := ω̃ε ∪ M2 is contained in M∗.
Define ηε : M → R as

ηε(x) =







1 if x ∈ M2

η̃ε(d(x,M2)) if x ∈ ωε\M2

0 otherwise.

It is straightforward that ηε is a function of class C1 on M due to the smoothness
of ∂M2 and ∂ωε. Notice also that

|∇T ηε(x)|
2

ηε(x)
=

|η̃′ε(d(x,M2))|
2

η̃ε(d(x,M2))
≤
M

ε2
(4.28)

for every x ∈ ωε\M2. In particular, |∇T ηε|
2

ηε
∈ L∞(ωε).

Taking ξ = ηε in the identity (4.18) we obtain

∫ T

0

∫

ωε

ηε|∇Tu|
2dMdt (4.29)

= −

[
∫

ωε

utuηε dM

]T

0

+

∫ T

0

∫

ωε

ηε|ut|
2 dM

−

∫ T

0

∫

ωε

u(∇Tu · ∇T ηε) dMdt−

∫ T

0

∫

ωε

a(x) g(ut)uηε dMdt.

Next we will estimate the terms on the RHS of (4.29).

Estimate for K1 :=
∫ T

0

∫

ωε
ηε|ut|

2 dMdt
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From (2.3), since ηε ≤ 1 and ωε ⊂ M∗, where the damping lies, we deduce

K1 ≤ a−1
0

∫ T

0

∫

M

a(x)u2
t dM dt. (4.30)

Estimate for K2 := −
∫ T

0

∫

ωε
a(x) g(ut)uηε dMdt.

The Cauchy-Schwarz inequality, the inequality ab ≤ 1
4αa

2 + αb2 and (2.5) yield

|K2| ≤
λ−1

1 ||a||L∞(M)

4α

∫ T

0

∫

M

a(x) |g(ut)|
2 dM + 2α

∫ T

0

E(t) dt, (4.31)

where α is an arbitrary positive constant.

Estimate for K3 :=
∫ T

0

∫

ωε
u(∇Tu · ∇T ηε)dMdt.

Considering (4.28) and applying Cauchy-Schwarz inequality, we can write

|K3| ≤
1

2

∫ T

0

[
∫

ωε

ηε|∇Tu|
2 dM +

∫

ωε

|∇T ηε|
2

ηε
|u|2 dM

]

dt (4.32)

≤
1

2

∫ T

0

[
∫

ωε

ηε|∇Tu|
2 dM +

M

ε2

∫

ωε

|u|2 dM

]

dt.

Combining (4.29)-(4.32) we arrive to the following inequality

1

2

∫ T

0

∫

ωε

ηε|∇Tu|
2 dMdt ≤ |Y| +

λ−1
1 ||a||L∞(M)

4α

∫ T

0

∫

M

a(x) |g(ut)|
2 dM

+ 2α

∫ T

0

E(t) dt+
M

2ε2

∫ T

0

∫

ωε

|u|2 dM dt, (4.33)

+ a−1
0

∫ T

0

∫

M

a(x)u2
t dM dt.

where

Y := −

[
∫

ωε

utuηε dM

]T

0

. (4.34)

Thus, combining (4.33) and (4.27), having in mind that

1

2

∫ T

0

∫

M2

|∇Tu|
2 dMdt ≤

1

2

∫ T

0

∫

ωε

ηε|∇Tu|
2 dMdt

and choosing α = 1/16C1 we deduce

1

4

∫ T

0

E(t) dt ≤ |χ| + 2C1|Y| (4.35)

+max{C1, 8C
2
1λ

−1
1 ||a||L∞(M), 2C1a

−1
0 }

∫ T

0

∫

M

[a(x) |g(ut)|
2 + a(x) |ut|

2] dMdt

+
MC1

ε2

∫ T

0

∫

ωε

|u|2 dM dt.
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On the other hand, from (4.23), (4.34) and (2.9) the following estimate holds

|χ| + 2C2|Y| ≤ C(E(0) + E(T )) (4.36)

= C

[

2E(T ) +

∫ T

0

∫

M

a(x) g(ut)ut dM

]

,

where C is a positive constant which depends also on R.
Then, (4.35) and (4.36) yield

T E(T ) ≤

∫ T

0

E(t) dt (4.37)

≤ C E(T ) + C

[

∫ T

0

∫

M

[a(x) |g(ut)|
2 + a(x) |ut|

2] dMdt

]

+ C

∫ T

0

∫

ωε

|u|2 dM dt,

where C is a positive constant which depends on a0, ||a||∞, λ1, R, |H |, ||B|| and M
ε2 .

Our aim is to estimate the last term on the RHS of (4.37). In order to do this let
us consider the following lemma, where T0 is a positive constant which is sufficiently
large for our purpose.

Lemma 4.1. Under the hypothesis of Theorem 3.1 and for all T > T0, there exists
a positive constant C(T0, E(0)) such that if (u, ut) is the solution of (1.2) with weak
initial data, we have

∫ T

0

∫

M

|u|2 dM dt ≤ C(T0, E(0))

{

∫ T

0

∫

M

(

a(x) g2(ut) + a(x)u2
t

)

dM dt

}

.(4.38)

Proof. We argue by contradiction. For simplicity we shall denote u′ := ut. Let us
suppose that (4.38) is not verified and let {uk(0), u′k(0)} be a sequence of initial data
where the corresponding solutions {uk}k∈N of (1.2) with Ek(0), which is assumed to
be uniformly bounded in k, verifies

lim
k→+∞

∫ T

0 ||uk(t)||2L2(M)dt
∫ T

0

∫

M
(a(x) g2(u′k) + a(x)u′2k ) dM dt

= +∞, (4.39)

that is

lim
k→+∞

∫ T

0

∫

M

(

a(x) g2(u′k) + a(x)u′2k
)

dM dt
∫ T

0
||uk(t)||2L2(M)dt

= 0. (4.40)

Since Ek(t) ≤ Ek(0) ≤ L, where L is a positive constant, we obtain a subsequence,
still denoted by {uk} from now on, which verifies the convergence:

uk ⇀ u weakly in H1(ΣT ), (4.41)

uk ⇀ u weak star in L∞(0, T ;V ), (4.42)

u′k ⇀ u′ weak star in L∞(0, T ;L2(M)). (4.43)
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Employing compactness results we also deduce that

uk → u strongly in L2(0, T ;L2(M)). (4.44)

At this point we will divide our proof into two cases, namely: when u 6= 0 and
u = 0.

(i) Case (I): u 6= 0.
We also observe that from (4.40) and (4.44) we have

lim
k→+∞

∫ T

0

∫

M

(

a(x) g2(u′k) + a(x)u′2k
)

dM dt = 0 (4.45)

Passing to the limit in the equation, when k → +∞, we get,

{

utt − ∆M u = 0 on M× (0, T )

ut = 0 on M∗ × (0, T ),
(4.46)

and for ut = v, we obtain, in the distributional sense

{

vtt − ∆M v = 0 on M× (0, T ),

v = 0 on M∗ × (0, T ).

From uniqueness results from the work of Triggiani and Yao [TRI-YAO], we con-
clude that v ≡ 0, that is, ut = 0 Returning to (4.46) we obtain the following elliptic
equation for a.e. t ∈ (0, T ) given by

∆M u = 0 on M

which implies that u = 0, which is a contradiction.

(ii) Case (II): u = 0.

Defining

ck :=

[

∫ T

0

∫

M

|uk|
2dM dt

]1/2

, (4.47)

and

uk :=
1

ck
uk, (4.48)

we obtain

∫ T

0

∫

M

|uk|
2dM dt =

∫ T

0

∫

M

|uk|
2

c2k
dM dt =

1

c2k

∫ T

0

∫

M

|uk|
2dM dt = 1. (4.49)

Setting

Ek(t) :=
1

2

∫

M

|u′k|
2 dM +

1

2

∫

M

|∇uk|
2 dM,
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we deduce automatically that

Ek(t) =
Ek(t)

c2k
. (4.50)

Recalling (4.37) we obtain, for T large enough, that

E(T ) ≤ Ĉ

[

∫ T

0

∫

M

(a(x) g2(ut) + a(x)u2
t ) dM dt+

∫ T

0

∫

M

|u|2 dM dt

]

.

Employing the identity E(T )−E(0) = −
∫ T

0

∫

M a(x) g(ut)ut dM dt, we can write

E(t) ≤ E(0) ≤ C̃

[

∫ T

0

∫

M

(a(x) g2(ut) + a(x)u2
t ) dM dt+

∫ T

0

∫

M

|u|2 dM dt

]

,

for all t ∈ (0, T ), with T large enough. The last inequality and (4.50) give us

Ek(t) :=
Ek(t)

c2k
≤ C̃

[

∫ T

0

∫

M
(a(x) g2(u′k) + a(x)u′2k )
∫ T

0

∫

M
|uk|2 dM dt

+ 1

]

. (4.51)

From (4.40) and (4.51) we conclude that there exists a positive constant M̂ such
that

Ek(t) :=
Ek(t)

c2k
≤ M̂, for all t ∈ [0, T ] and for all k ∈ N,

that is,

1

2

∫

M

|u′k|
2 dM +

1

2

∫

Ω

|∇uk|
2 dM ≤ M̂, for all t ∈ [0, T ] and for all k ∈ N. (4.52)

For a subsequence {uk}, we obtain

uk ⇀ u weak star in L∞(0, T ;V ), (4.53)

u′k ⇀ u′ weak star in L∞(0, T ;L2(M)), (4.54)

uk → u strongly in L2(0, T ;L2(M)). (4.55)

We observe that from (4.45) we deduce

lim
k→+∞

∫ T

0

∫

M

a(x) g2(u′k)

c2k
dM dt = 0

and lim
k→+∞

∫ T

0

∫

M

a(x) |u′k|
2 dM dt = 0. (4.56)

In addition uk satisfies the equation

u′′k − ∆Muk + a(x)
g(u′k)

ck
= 0 on M× (0, T ).

Passing to the limit when k → +∞ taking the above convergence into account,
we obtain

{

u′′ − ∆Mu = 0 on M× (0, T ),

u′ = 0 on M∗ × (0, T ).
(4.57)
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Then, v = ut verifies, in the distributional sense
{

vtt − ∆M v = 0 on M

v = 0 on M∗.

Applying uniqueness results due to Triggiani and Yao [TRI-YAO] we obtain that
v = ut = 0. Returning to (4.57) we obtain, for a.e. t ∈ (0, T ) that

∆M u = 0 on M

from what we deduce that u = 0, which is a contradiction in view of (4.49) and (4.55).
The lemma is proved.

Inequalities (4.37) and (4.38) lead us to the following result.

Proposition 5.2.2: For T > 0 large enough, the solution [u, ut] of (2.2) satisfies

E(T ) ≤ C

∫ T

0

∫

M

[

a(x) |ut|
2 + a(x) |g (ut)|

2
]

dMdt (4.58)

where the constant C = C(T0, E(0), ||a||∞, a0, λ1, R, ||B||, M
ε2 ).

4.3. Conclusion of Theorem 3.1. In what follows we will proceed exactly as
in Lasiecka and Tataru’s work[LA-TA](see Lemma 3.2 and Lemma 3.3 of the referred
paper) adapted to our context. Let

Σα = {(t, x) ∈ Σ/ |ut| > 1 a. e.} ,

Σβ = Σ\Σα.

Then using hypothesis (iii) in Assumption 2.1, we obtain
∫

Σα

a(x)
(

[g (ut)]
2
+ (ut)

2
)

dΣα ≤
(

k−1 +K
)

∫

Σα

a(x)g (ut) utdΣα. (4.59)

Moreover, from (3.1) and from the fact that h
(

a(x)
1+||a||∞

g(ut)ut

)

≤ h(a(x)g(ut)ut),

we have
∫

Σβ

a(x)
(

[g (ut)]
2 + (ut)

2
)

dΣβ ≤ (1 + ||a||∞)

∫

Σβ

h (a(x)g (ut)ut) dΣβ . (4.60)

Then by Jensen’s inequality

(1 + ||a||∞)

∫

Σβ

h (g (ut)ut) dΣβ

≤ (1 + ||a||∞)meas (Σ) h

(

1

meas (Σ)

∫

Σ

a(x)g (ut)utdΣ

)

= (1 + ||a||∞)meas (Σ) r

(
∫

Σ

a(x)g (ut)utdΣ

)

, (4.61)

where r (s) = h
(

s
meas(Σ)

)

is defined in (3.2). Thus

∫

Σ

a(x)
(

[g (ut)]
2 + (ut)

2
)

dΣ ≤
(

k−1 +K
)

∫

Σ

a(x)g (ut)u tdΣ (4.62)

+(1 + ||a||∞)meas (Σ) r

(
∫

Σ1

a(x)g (ut)utdΣ

)

.
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Splicing, together, (4.58) and (4.63), we have

E(T ) ≤ (1 + ||a||∞)C

[

K0

(1 + ||a||∞)

∫

Σ

a(x)g (ut)utdΣ1

+meas (Σ) r

(
∫

Σ

a(x) g (ut) utdΣ

)]

, (4.63)

where K0 = k−1 +K. Setting

L =
1

Cmeas (Σ) (1 + ||a||∞)
,

c =
K0

meas (Σ) (1 + ||a||∞)
,

we obtain

p [E(T )] ≤

∫

Σ

a(x) g (ut) ut dΣ = E(0) − E(T ), (4.64)

where the function p is as defined in (3.3). To finish the proof of Theorem 3.1, we
invoke the following result from Lasiecka and Tataru [LA-TA]:

Lemma B. Let p be a positive, increasing function such that p(0) = 0. Since p is
increasing we can define an increasing function q, q(x) = x− (I + p)−1 (x) . Consider
a sequence sn of positive numbers which satisfies

sm+1 + p(sm+1) ≤ sm.

Then, sm ≤ S(m), where S(t) is a solution of the differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = s0.

Moreover, if p(x) > 0 for x > 0, then lim
t→∞

S(t) = 0.

With this result in mind, we replace T (resp. 0) in (4.64) with m(T + 1) (resp.
mT ) to obtain

E(m(T + 1)) + p (E(m(T + 1))) ≤ E(mT ), for m = 0, 1, .... (4.65)

Applying Lemma B with sm = E(mT ) we deduce

E(mT ) ≤ S(m), m = 0, 1, .... (4.66)

Finally, using the dissipativity of E(t) which is inherent in the relation (2.9) , we
have for t = mT + τ, 0 ≤ τ ≤ T,

E(t) ≤ E(mT ) ≤ S(m) ≤ S

(

t− τ

T

)

≤ S

(

t

T
− 1

)

for t > T , (4.67)

where we have used above the fact that S(.) is dissipative. The proof of Theorem 3.1
is now completed.
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H = 0

Fig. 2. Catenoid

H = 0

Fig. 3. Trinoid

4.4. Further Remarks. From the above procedure, we can construct a wide
assortment of compact surfaces by jointing pieces of different kind of surfaces. How-
ever, according to the position of the observer (point x0) the dissipative and the non
dissipative areas can change drastically. To illustrate this, let us consider the Catenoid
or the Trinoid (see figures 2 and 3 above) that are minimal surfaces, that is H = 0.

Considering a strategic piece of one of these surfaces we can construct another
compact surface according to the figure 4 below. Remember that the non dissipative
regions must occur where m(x) · ν(x) ≤ 0, H ≤ 0 and simultaneously we are forced
to consider |k1 − k2| sufficiently small (by parts). The dissipative area must contain
strictly the closure of the points x ∈ M such that m(x) · ν(x) > 0. It is not difficult
to see that the non dissipative area in the figure A can be located near the top and/or
near x0 while the non dissipative area in the figure B can be located in the middle
of surface and/or near x0, assuming evidently that k1 ≈ k2 on these non dissipative
areas.
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[LIONS2] J.L. Lions, Controlabilité exacte, perturbations et stabilisation de systèmes dis-
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