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A CLASS OF SOBOLEV TYPE INEQUALITIES
∗

GU-JI TIAN† AND XU-JIA WANG‡

Abstract. In this paper, we prove that for any strictly convex polynomial, or more generally

any strictly convex function satisfying appropriate conditions, there is an associated Sobolev type

inequality.
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1. Introduction. Sobolev type inequalities play a crucial role in the study

of local behavior of solutions to elliptic partial differential equations. To prove the

local estimates such as the Harnack inequality and Hölder continuity, usually one first

proves related Sobolev type inequalities [GT]. In particular various weighted Sobolev

type inequalities have been established in the study of degenerate elliptic equations,

such as those generated by vector fields which satisfy Hormander’s condition [CDG,

FGW1, FGW2, FL, GN, L1].

In this paper we consider the inverse problem. We prove that the Sobolev inequal-

ity can also be obtained from the Harnack inequality. We will prove a family of Sobolev

type inequalities from the Harnack inequality for the linearized Monge-Ampere equa-

tion, established by Caffarelli and Gutierrez [CG2]. We prove that for each convex

function satisfying appropriate conditions, there is an associate Sobolev type inequal-

ity. For example the classical Sobolev embedding W 1,2
0

(Ω) →֒ L2n/(n−2)
(Ω) is associ-

ated with the quadratic function ϕ(x) =
1

2
|x|2. Here we state the results for convex

polynomials.

Theorem 1.1. Let ϕ be a strictly convex polynomial in R
n, n ≥ 3. Denote by

A = {aij} the cofactor matrix of D2ϕ. Then for any bounded domain Ω ⊂ BR(0) and
any function u ∈ C∞

0
(Ω),

[
∫

Ω

|u|pν dx

]
1

p

≤ C

[
∫

Ω

∑

i,j
aijuxi

uxj
dx

]
1

2

, (1.1)

where

ν = detD2ϕ, (1.2)

and the constant p > 2 depends only on n and ϕ, and C also depends on R.

Theorem 1.1 is a special case of Theorem 3.1 below. In Theorem 3.1 we show

that (1.1) holds for any strictly convex function ϕ provided ν satisfies (3.14) and a

structure condition CG in Section 3. Let us consider some examples.
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Example 1. Let

ϕ(x) = |x1|
α+2

+

∑

i>1

x2

i , (1.3)

where α > −1. Then for any u ∈ C∞
0

(Ω),

[
∫

Ω

|u|p|x1|
α dx

]
1

p

≤ C

[
∫

Ω

u2

x1
+ |x1|

α
∑

i>1

u2

xi
dx

]
1

2

. (1.4)

The power p can easily computed by (3.33) and (3.40). The left hand side of (1.4) can

be replaced by the norm ‖u‖Lp
(Ω)

for a different p > 2 given by (3.37), see Remark

3.4. We remark that the functional on the right hand side of (1.4) is related to the

Grushin type operator [FGW2, M].

Example 2. More generally, let

ϕ(x) = |x1|
α1+2

+ · · · + |xn|
αn+2, (1.5)

where αi > −1 satisfy (3.42). Then we obtain

[
∫

Ω

|u|pσ dx

]
1

p

≤ C

[
∫

Ω

∑

i
σi u

2

xi
dx

]
1

2

, (1.6)

where σ(x) =
∏

|xi|αi , σi(x) = σ(x)/xαi

i . When α1, · · · , αn satisfies the condition

(3.41), we can drop the weight σ and (1.6) holds for a different p > 2, see Remark 3.4.

Note also that (1.6) holds obviously if one replaces σi by another function σ̂i which

satisfies σ̂i(x) ≥ 0, 6≡ 0 and σ̂i ≥ σi, where i = 1, 2, · · · , n. Hence (1.6) represents a

family of Sobolev type inequalities.

Example 3. Let ϕ be a strictly convex function satisfying

C1 ≤ detD2ϕ ≤ C2 in Ω (1.7)

for two positive constants C1, C2, then for any u ∈ C∞
0

(Ω),

[
∫

Ω

|u|
2n

n−2 dx

]
n−2

2n

≤ C

[
∫

Ω

aij(x)uxi
uxj

dx

]
1

2

(1.8)

provided aij are integrable functions. Obviously the exponent in (1.8) is sharp. Note

that even in dimension two, there are many nonsmooth, strictly convex functions

satisfying (1.7). For example, the following two functions satisfy (1.7) in Br(0) for

some r > 0 [W],

ϕ(x) =
x2

1

log | log |x|2|
+ x2

2
log | log |x|2|; (1.9)

and

ϕ(x) =

{

x4

1
+

3

2
x2

2
/x2

1
if |x2| < |x1|3,

1

2
x2

1
x

2/3

2
+ 2x

4/3

2
if |x2| > |x1|3.

(1.10)

Both functions ϕ are C1,α
but not C1,1

smooth, and the corresponding matrix {aij}
is both degenerate and singular.

We would like to point out that for most convex functions ϕ, the associated

Sobolev type inequalities we obtained are either new or improve previous ones. Our

proof is based on a crucial lemma (Lemma 2.1), of which the proof is essentially

due to Carron [C] but we made some necessary modifications. Lemma 2.1 shows
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that the Sobolev inequality follows from a decay estimate (2.2) of the corresponding

Green function. This argument also applies to more general elliptic operators, namely

we can also obtain the Sobolev type inequality from the Harnack inequality for other

degenerate or singular linear elliptic equations. In particular our argument also applies

to linear elliptic equations on manifolds. Note also that in Lemma 2.1 we allow a weight

µ, which can be the function ν given in (1.2) as in Theorems 1.1 and 3.1, or ν ≡ 1 as

in Theorem 3.2. But other choices are also possible.

This paper is arranged as follows. In Section 2 we prove the crucial lemma. In

Section 3 we use the Harnack inequality to establish a decay estimate for the Green

function.

This paper is dedicated to Professor Neil Trudinger on the occasion of his 65th

birthday. We would like to express our gratitude for his enthusiasm, influence, and

leadership in elliptic partial differential equations. In particular the second author

would like to thank him for his friendship in their collaboration over the last ten

years.

2. A crucial lemma. Let L =
∑

∂xi
(aij(x)∂xj

) be a linear elliptic operator in

a bounded domain Ω. We assume that L is uniformly elliptic but our argument below

does not depend on the upper and lower bounds of the eigenvalues of the matrix {aij}.
Let G(x, y) be the Green function of L in Ω, namely G(·, y) is a positive solution of

−L[G(·, y)] = δy in Ω, (2.1)

G(·, y) = 0 on ∂Ω,

where δy is the Dirac measure at y ∈ Ω. For an integrable function µ, we also denote

by µ the corresponding measure, that is for any Borel set S ⊂ R
n
,

µ(S) =

∫

S

dµ =

∫

S

µdx.

Lemma 2.1. Suppose there is an integrable, almost everywhere positive function
µ such that for any t > 0,

µ{x ∈ Ω : G(x, y) > t} ≤ Kt−p/2, (2.2)

where p > 2 and K > 0 are constants. Suppose also that µ satisfies the doubling
condition, namely there exists a constant b > 0 such that

µ[B(x, r)] ≥ bµ[B(x, 2r)] (2.3)

for any ball B(x, 2r) ⋐ Ω. Then for any smooth function u ∈ C∞
0

(Ω), we have the
inequality

[
∫

Ω

|u|pdµ

]
1

p

≤ C

[
∫

Ω

∑

aijuxi
uxj

dx

]
1

2

, (2.4)

where the constant C depends only on n, p, b, and K.

Proof. Our proof is inspired by that in [C], see also Chapter 8 of [H]. For any

open set U ⊂ Ω, let ψ1 = ψ1,U be the first eigenfunction, and λ1 = λ1,U the first
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eigenvalue, of the operator L in U , namely

L[ψ1] = λ1µψ1 in U,

ψ1 = 0 on ∂U.

Let GU be the Green function of L in U . Then we have

ψ1(y) = λ1

∫

U

µGU (x, y)ψ1(x)dx.

Suppose ψ1 attains its maximum at ȳ. Letting y = ȳ in the above formula, we obtain

1 ≤ λ1

∫

U

µGU (x, y)dx.

By (2.2),

∫

U

µGU (x, y)dx =

∫ ∞

0

µ{GU (·, y) > t} (2.5)

≤

∫ ∞

0

min{µ(U), Kt−p/2}

= Tµ(U) +K

∫ ∞

T

t−p/2

≤ C [µ(U)]
1− 2

p ,

where T is chosen such that KT−p/2
= µ(U). It follows that

λ1,U [µ(U)]
1− 2

p ≥ C−1. (2.6)

Denote

c∗ = inf
U⋐Ω

λ1,U [µ(U)]
1− 2

p , (2.7)

s∗ = inf{

∫

Ω

aijuiuj : u ∈ C1

0
(Ω),

∫

Ω

F (u) dµ = 1}, (2.8)

where F (u) =
∫ u

0
f(t)dt and

f(t) =

{

|t|p−1
if |t| < k,

kp−1
if |t| ≥ k,

and k > 1 is a constant which will be sent to infinity. Suppose the infimum (2.8) is

attained by a positive function v = vk ∈ C1
(Ω). Then v vanishes on ∂Ω and satisfies

the equation

−L[v] = λ̂µf(v) in Ω, (2.9)

where λ̂ is the Langrange multiplier. By our choice of f ,
1

pf(v)v ≤ F (v) ≤ f(v)v.

Hence multiplying (2.9) by v and taking integration we obtain

λ̂ ≤ s∗ ≤ pλ̂. (2.10)

We point out here that we only use the existence of a Hölder continuous solution v
but do not need any a priori bound for this solution. Hence we do not need any a

priori bounds for the eigenvalues of {aij}.
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Denote M = ‖v‖L∞ , Ωt = {v(x) > M − t}. For t ∈ (0,M), we claim

µ(Ωt) ≥

(

t c∗

2s∗Mp−1

)

p

p−2

. (2.11)

Indeed, by (2.9),

λ1(Ωt) ≤

∫

Ωt

aijvivj dx
∫

Ωt

(v −M + t)2 dµ

=

∫

Ωt

(v −M + t)(−Lv) dx
∫

Ωt

(v −M + t)2 dµ

≤ s∗Mp−1

∫

Ωt

(v −M + t) dµ
∫

Ωt

(v −M + t)2 dµ

≤ s∗Mp−1

(

µ(Ωt)
∫

Ωt

(v −M + t)2 dµ

)

1/2

.

Noting that
∫

Ωt

(v −M + t)2 dµ ≥
( t

2

)

2

µ(Ωt/2
),

we obtain from (2.7),

c∗µ(Ωt)
2

p
−1 ≤ λ1(Ωt) ≤

2s∗Mp−1

t

(

µ(Ωt)

µ(Ωt/2
)

)

1/2

.

It follows that

µ(Ωt) ≥ βµ(Ωt/2
)

p

3p−4 , (2.12)

where

β =

(

t c∗

2s∗Mp−1

)

2p

3p−4

By iteration,

µ(Ωt) ≥ β
P

m−1

k=0 (
p

3p−4 )
k

µ
(

Ωt/2
m

)(
p

3p−4 )
m

.

Let a = sup
Ω
|Dv|. We have Ωt/2

m ⊃ B(x0,
t

2
ma ), where x0 is the maximum point of

v. Hence by the doubling condition (2.3),

µ[Ωt/2
m ] ≥ µ[B(x0,

t

2ma
)] ≥ bm−m0µ[B(x0,

t

2m0a
)],

where m0 is the smallest integer such that B(x0,
t

2
m0a ) ⊂ Ω. Recalling that p > 2, we

obtain

µ
(

Ωt/2
m

)(
p

3p−4 )
m

→ 1

as m→ ∞. Therefore we get

µ(Ωt) ≥ β
P

∞

k=0(
p

3p−4 )
k

= β
3p−4

2(p−2) =

(

t c∗

2s∗Mp−1

)

p

p−2

and so (2.11) is proved.
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Now we have

1 =

∫

Ω

F (v)dµ =

∫ F (M)

0

µ{x ∈ Ω : F (v)(x) > t}dt

=

∫ M

0

µ{x ∈ Ω : v(x) > t}F ′
(t)dt

=

∫ M

0

µ{x ∈ Ω : v(x) > M − t}F ′
(M − t)dt

=

∫ M

0

µ(Ωt)F
′
(M − t)dt

≥

(

c∗

2s∗Mp−1

)

p

p−2
∫ M

0

t
p

p−2F ′
(M − t)dt

=

(

c∗

2s∗

)

p

p−2
∫

1

0

t
p

p−2

F ′
(M(1 − t))

Mp−1
dt.

Denote η = k/M . By our definition of f , we have

F ′
(M(1 − t)) =

{

pMp−1
(1 − t)p−1

if 1 − η < t < 1,

kp−1
if 0 < t < 1 − η.

Hence we have

∫

1

0

t
p

p−2

F ′
(M(1 − t))

Mp−1
dt =

∫

1−η

0

t
p

p−2 ηp−1

+ p

∫

1

1−η

t
p

p−2 (1 − t)p−1. (2.13)

Recalling that
∫

Ω
F (u)dµ = 1, we have

1 =

∫

Ω

F (v)dµ ≥
1

p

∫

ω

kpdµ =
1

p
kpµ(ω),

namely

µ(ω) ≤ pk−p, (2.14)

where ω = {v > k}. Recalling also that v satisfies the equation

L(v) = λ̂kp−1µ in ω

and by (2.10), λ̂ ≤ s∗ ≤ C, hence by the boundary condition v = k on ∂ω we have

v(x) ≤ k + λ̂kp−1

∫

ω

G(x, y)dµ

≤ k + Ckp−1µ(ω)
1− 2

p ,

where G is the Green function in ω and we have used the estimate (2.5). By (2.14),

it follows that

M = sup v ≤ (1 + C)k.

Therefore we obtain η =
k
M ≥ (1 + C)

−1
. By (2.13) we therefore obtain

∫

1

0

t
p

p−2

F ′
(M(1 − t))

Mp−1
dt ≥ C > 0



a class of sobolev type inequalities 269

Consequently we obtain

s∗ ≥ C1c
∗.

From (2.8) we obtain

∫

Ω

aijuiuj dx ≥ C1c
∗

[
∫

Ω

f(u)|u| dµ

]

2/p

(2.15)

for any u ∈ C1

0
(Ω). Sending k → ∞, we obtain (2.4).

Remark 2.1. In (2.8) we may choose F (u) = |u|p−ε
and letting ε→ 0[H]. Indeed,

since p ≤ 2n
n−2

, by the Sobolev embedding W 1,2
(Ω) →֒ L

2n

n−2 (Ω), the infimum (2.8) is

attained by a minimizer vε. By the above argument we then obtain

[
∫

Ω

|u|p−ε dµ

]
2

p−ε

≤ C

∫

Ω

aijuiuj dx, (2.16)

where C is a constant independent of ε. Sending ε→ 0 we also obtain (2.4). Our mod-

ification in (2.8) is to avoid the use of the Sobolev embedding W 1,2
(Ω) →֒ L

2n

n−2 (Ω).

3. Estimate for the Green function. The purpose of this section is to verify

the decay estimate (2.2) for the Green function of the linearized Monge-Ampere equa-

tion. By the Harnack inequality of Caffarelli and Gutierrez [CG2], we can prove a more

general Wolff potential estimate for functions which is sub-harmonic with respect to

the linear elliptic operator Lϕ, as in [TW1] for quasilinear subelliptic equations. For

the linearized Monge-Ampere equation, it suffices to replace the metric ball in [TW1]

by sub-level sets of the convex function ϕ. We refer the reader to [KM, L, TW1] for

the Wolff potential estimate and [CW, FS, FJK, L2] for estimates for Green functions.

Let ϕ be a smooth, strictly convex function. The linearized Monge-Ampere equa-

tion relative to the function ϕ is given by

Lϕ[u] = f(x), (3.1)

where

Lϕ[u] =

∑

i,j
∂xi

(aij(x)∂xj
u)

=

∑

i,j
aij(x)∂xi

∂xj
u,

and {aij} is the cofactor matrix of D2ϕ. The second equality is due to that {aij} is

of divergence free, i.e.,
∑

i
∂xi

aij(x) = 0 ∀ j.

Denote

ν = detD2ϕ.

Assume that ν satisfies the structure condition:

CG For any given ε > 0, there exists δ > 0 such that for any convex set S ⊂ Ω and

any set E ⊂ S, if |E| ≤ δ|S|, then

∫

E

ν dx ≤ ε

∫

S

ν dx, (3.2)

where | · | denotes the Lebesgue measure.
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When ϕ satisfies the condition CG, Caffarelli and Gutierrez [CG2] proved a Har-

nack inequality for positive solutions to the equation

Lϕ[u] = 0. (3.3)

Their Harnack inequality can be stated as follows.

Lemma 3.1. Let ϕ be a smooth, strictly convex function in Ω satisfying condition
CG. Let u be a positive solution to (3.3) in the sub-level set

Sϕ(y, h) := {x ∈ Ω : ϕ(x) < ℓy(x) + h}, (3.4)

where ℓy is the tangent plane of ϕ at y. If Sϕ(y, h) is strictly contained in Ω, we have

sup

Sϕ(y,h/2)

u ≤ C inf
Sϕ(y,h/2)

u, (3.5)

where C is a constant depending only on n and the structure condition CG.

It is convenient to use the above Harnack inequality in a normalized form. Let

U be a bounded convex domain. There is a unique ellipsoid E, called the minimum
ellipsoid of U , which attains the minimum volume among all ellipsoids containing U .

Moreover

1

n
E ⊂ U ⊂ E, (3.6)

where αE denotes the α-dilation of E with respect to its center. Choosing the coor-

dinates properly, we assume that E is given by

E = {
∑ x2

i

r2i
< 1}. (3.7)

Making the linear transform x→ x̂ = Tx,

x̂i = xi/ri, i = 1, 2, · · · , n, (3.8)

such that T (E) is the unit ball. Also let

ϕ̂(x̂) =
1

h
[ϕ(x) − ℓy − h] (3.9)

such that

ϕ̂|
∂Û

= 0, inf ˆU ϕ̂ = −1, (3.10)

where Û = T (U). In the following we say ϕ̂ and Û are normalized if the minimum

ellipsoid of Û is the unit ball and ϕ̂ satisfies (3.10).

Note that the structure condition CG is invariant under the above changes. Under

condition CG, the function ϕ̂ is strictly convex and uniformly Hölder continuous in

Û with Hölder exponent 1/n [P]. Therefore by the finite covering [CG1] and the

invariance of the Harnack inequality under linear transforms, we see that if u is a

positive solution to (3.3) in Sϕ(y, h) − Sϕ(y, h/2), then

sup

∂Sϕ(y,3h/4)

u ≤ C inf
∂Sϕ(y,3h/4)

u. (3.11)

The next lemma is related to capacity estimate in potential theory.
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Lemma 3.2. Let ϕ̂ be a normalized function defined in a normalized domain Ω.
Suppose ϕ̂ satisfies the condition CG. Let w be the solution of

Lϕ̂[w] = 0 in U, (3.12)

w = ϕ̂ on ∂U,

where U = {x ∈ Ω : − 1

2
< ϕ̂(x) < 0}. Then

C1 ≤

∫

∂Ω

∑

i,j
aij(x)wiγj ≤ C2, (3.13)

where γ is the unit outer normal of ∂Ω.

Proof. The condition CG implies that ν = detD2ϕ̂ satisfies the doubling condi-

tion, namely ν(Ω) ≤ Cν(Ω
1/2

), where Ωt = {x ∈ Ω : ϕ̂(x) < −t}, t ∈ (0, 1). Since

ϕ̂ and Ω are normalized, we have dist(Ω
1/2
, ∂Ω) > C and ν(Ω

1/2
) ≤ C for a different

constant C.

Observing that Lϕ̂[ϕ̂] = ndetD2ϕ̂ ≥ 0 and w = ϕ̂ = 0 on ∂U , by the comparison

principle we have 0 ≥ w ≥ ϕ̂ in U . Hence

∫

∂Ω

∑

i,j
aij(x)wiγj ≤

∫

∂Ω

∑

i,j
aij(x)ϕ̂iγj

= n

∫

Ω

detD2ϕ̂ ≤ C.

We obtain the second inequality. To prove the first inequality, we extend w smoothly

to the whole domain Ω. Noting that Lϕ̂[w] = 0 in U , by (3.2) we have

∫

∂Ω

∑

i,j
aij(x)wiγj =

∫

∂Ω1/2

∑

i,j
aij(x)wiγj

≥

∫

∂Ω1/2

∑

i,j
aij(x)ϕ̂iγj

= n

∫

Ω1/2

detD2ϕ̂ ≥ C.

We are ready to prove (2.2) for the linearized Monge-Ampere equation.

Lemma 3.3. Let ϕ be a smooth, strictly convex function defined in a neighborhood
of Ω. Suppose ϕ satisfies condition CG. Let G(·, y) be the Green function of Lϕ in Ω,
where y ∈ Ω. Suppose for any sub-level set Sϕ(y, h) ⊂⊂ Ω,

C1|Sh|
1+θ ≤ ν(Sh) ≤ C2|Sh|

1

n−1
+σ, Sh := Sϕ(y, h), (3.14)

where θ ≥ 0, C1, C2, σ > 0 are constants. Then we have

ν{x ∈ Ω : G(x, y) > t} ≤ Kt−
n(1+θ)

(n−1)(1+θ)−1 . (3.15)

Proof. Since ϕ is defined in a neighborhood of Ω, by considering the Green

function of Lϕ in a larger domain we may assume that dist(y, ∂Ω) ≥ c0.
By the Harnack inequality (3.11), we have

sup

∂Sh

G(·, y) ≤ C inf
∂Sh

G(·, y) (3.16)
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provided S2h is compactly contained in Ω. For any large t > 1, let h such that

inf
∂Sh

G(·, y) = t. (3.17)

Let E be the minimum ellipsoid of S2h. Suppose E is given by (3.7). Let x̂ = Tx be

the linear transform given in (3.8), and let

ϕ̂ = [ϕ− ℓy − 2h]
/

r[ν(S2h)]
1/n, (3.18)

û = [u− inf
S2h

u]
/

r[ν(S2h)]
1/n, (3.19)

where r = (r1 · · · rn)
1/n

. Then equations (1.2) and (3.1) change to

detD2ϕ̂ = ν̂, (3.20)

Lϕ̂[û] = f̂ , (3.21)

where

ν̂(x̂) =
rn

ν(S2h)
ν(x), f̂(x̂) =

rn

ν(S2h)
f(x) at x̂ = T (x).

Denote

Ŝh = {x̂ = T (x) : x ∈ Sh}.

By direct computation,

ν̂(Ŝ2h) :=

∫

ˆS2h

dν̂ =
rn

ν(S2h)

ν(S2h)

r1 · · · rn
= 1, (3.22)

∫

ˆS2h

f̂dx̂ =
rn

ν(S2h)

∫

S2h

f dx

r1 · · · rn
=

1

ν(S2h)

∫

S2h

f dx.

Let

u∗ = ν(S2h) û =
1

r
[ν(S2h)]

1− 1

n [u− inf
S2h

u]. (3.23)

Then we have

Lϕ̂[u∗] = f∗
in Ŝ2h, (3.24)

where f∗
(x̂) = rnf(x),

∫

ˆS2h

f∗ dx̂ = 1 if

∫

S2h

fdx = 1. (3.25)

From now on, we let the function u in (3.19) be the Green function G(·, y). We

claim that

u∗ ≥ c∗ on ∂Ŝh. (3.26)

To prove (3.26), noting that Ŝ2h is normalized and ϕ̂ = 0 on ∂Ŝ2h, by (3.22) and

condition CG we have

−C1 ≤ inf ˆS2h
ϕ̂ ≤ −C2, (3.27)

namely, ϕ̂ is normalized up to a constant under control. If (3.26) is not true, by the

Harnack inequality, u∗ is nonnegative but small everywhere on ∂Ŝh. Recalling that

u∗ ≥ 0 in Ŝ2h, by replacing u∗ by the Green function of Lϕ̂ in Ŝ2h, we may assume

that u∗ = 0 on ∂Ŝ2h. Let w be the solution of (3.12). Then −w > C∗u∗ on ∂Ŝh for a
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large constant C∗
. Hence −w > C∗u∗ in Ŝ2h − Ŝh. By the divergence structure of Lϕ̂

and integrating by parts, we have

∫

∂ ˆS2h

âijwiγj ≥ C∗

∫

∂ ˆS2h

âij(−u
∗
i )γj = C∗

∫

ˆS2h

Lϕ̂u
∗

= C∗,

where γ is the unit outer normal and {âij} is the cofactor matrix of D2ϕ̂. We reach

a contradiction with the second inequality in (3.13).

Denote Sk = Sϕ(y, 2−k
), tk = inf∂Sk

G(·, y), t̄k = sup∂Sk
G(·, y), rk = |Sk|1/n

.

From (3.23) and (3.26), it follows

tk+1 − tk ≥ c∗rk[ν(Sk)]
1

n
−1.

Hence

tk+1 ≥ c∗
∑k

j=1

rj [ν(Sj)]
1

n
−1.

By the Harnack inequality (3.16),

t̄k ≤ Ctk ≤ C1

∑k−1

j=1

rj [ν(Sj)]
1

n
−1.

We claim that there exists m > 0 such that for any k ≥ 0,

rk+m[ν(Sk+m)]
1

n
−1 ≥ 2rk[ν(Sk)]

1

n
−1. (3.28)

Indeed, by normalizing as in (3.8)-(3.10), it suffices to prove (3.28) for k = 0. But

when k = 0, (3.28) follows by the second inequality in assumption (3.14).

By induction and (3.28) it is easy to show that for any k ≥ 1,

rk[ν(Sk)]
1

n
−1 ≥ c1

∑k−1

j=1

rj [ν(Sj)]
1

n
−1.

As a consequence,

tk+1 ≥ (1 + δ0)tk (3.29)

for a positive constant δ0 depending only on c1 and m.

From (3.29) it follows that

u∗ ≤ c∗
1

on ∂Ŝh. (3.30)

Indeed, let m̄ ≥ 1 such that (1 + δ0)
m̄ > C, where C is the constant in the Harnack

inequality (3.16). Then we have {x ∈ Ω : u(x) > t} ⊂ Sϕ(y, 2m̄h). Hence u∗ ≤ 0 on

∂Ŝ2
m̄h. Similar to the proof of (3.26), we obtain (3.30) from Lemma 3.2.

From (3.23), (3.29) and (3.30) it follows that

1

r
[ν(Sh)]

1− 1

n t ≤ c∗
1
/δ0.

By the first inequality in assumption (3.14) and noting that rn ≈ |S2h| ≈ |Sh|, we

have r ≤ [ν(Sh)/C]
1/n(1+θ)

, where the notation a ≈ b means C−1a ≤ b ≤ Ca for some

constant C under control. Hence

[ν(Sh)]
1− 2+θ

n(1+θ) ≤
K

t
. (3.31)

We have proved (3.15).

By Lemma 3.3 and Lemma 2.1 we have therefore obtain
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Theorem 3.1. Let ϕ be a smooth, strictly convex function defined in a neigh-
borhood of a bounded domain Ω ⊂ R

n, n ≥ 3. Suppose ϕ satisfies (3.14), and the
structure condition CG. Then for any u ∈ C∞

0
(Ω),

[
∫

Ω

|u|p dν

]

1/p

≤ C

[
∫

Ω

aij(x)uiuj dx

]

1/2

, (3.32)

where

p =
2n(1 + θ)

(n− 1)(1 + θ) − 1
. (3.33)

and C depends only on n, the constants in (3.14), and the structure condition CG.

By the first inequality of (3.14) and (3.31) we have

|Sh|
1+θ− 2+θ

n ≤
K

t
. (3.34)

Hence if 1 + θ − 2+θ
n < 1, namely θ < 2

n−1
, we obtain

|Sh| ≤ Kt−p/2

(3.35)

for p =
2n

(n−1)(1+θ)−1
> 2. Therefore by Lemma 2.2, we obtain

Theorem 3.2. Let ϕ be a smooth, strictly convex function defined in in a neigh-
borhood of a bounded domain Ω ⊂ R

n, n ≥ 3. Suppose ϕ satisfies (3.14) with θ < 2

n−1
.

Suppose also that the structure condition CG holds. Then for any u ∈ C∞
0

(Ω),

[
∫

Ω

|u|p dx

]

1/p

≤ C

[
∫

Ω

aij(x)uiuj dx

]

1/2

, (3.36)

where

p =
2n

(n− 1)(1 + θ) − 1
. (3.37)

and C depends only on n, the constants in (3.14), and the structure condition CG.

Remark 3.1. In Theorems 3.1 and 3.2 we don’t assume the doubling condition

(2.3), as it follows from the condition CG. Note that if the first inequality of (3.14)

holds for all sub-level sets, then necessarily θ ≥ 0. Hence p ≤ 2n
n−2

.

Remark 3.2. In Theorems 3.1 and 3.2, the function ϕ is assumed to be smooth

and strictly convex. But the constant C in (3.32) and (3.36) do not depend on the

upper and lower bounds of D2ϕ. Therefore by approximation, Theorems 3.1 and 3.2

hold for strictly convex functions ϕ provided its cofactor matrix is integrable. More

precisely, let ϕε
be the mollification of ϕ and let aε

ij be the cofactor matrix of D2ϕε
,

then aε
ij converges to aij weakly as measures [TW2]. In particular, for any continuous

function fij ∈ C0
(Ω), one has

∫

Ω

aε
ijfijdx→

∫

Ω

aijfijdx. (3.38)

Remark 3.3. Let W 1,2
0,ϕ(Ω) be the completion of C∞

0
(Ω) under the norm

‖u‖W 1,2

0,ϕ
(Ω)

=
[

∫

Ω

∑

aijuiuj

]

1/2

. (3.39)
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Then by the Sobolev inequality (3.32) or (3.36), one can introduce a weak solution to

the linearized Monge-Ampere equation (3.1) with f ∈ L1
(Ω). Note that the matrix

{aij} can be both degenerate and singular. It is inconvenient to introduce a weak

solution for (3.1) without a Sobolev type inequality related to the norm (3.39).

Remark 3.4. Here we verify the conditions in Theorems 3.1 and 3.2 for the example

(1.5). For the first inequality in (3.14), it suffices to consider the sub-level sets Sϕ(y, h)

at y = 0. We have

ν = detD2ϕ ≈ |x1|
α1 · · · |xn|

αn ,

It is easy to compute that

|Sϕ(0, h)| ≈ h
1

α1+2
+···+ 1

αn+2 ,

ν(Sϕ(0, h)) ≈ h
α1+1

α1+2
+···+

αn+1

αn+2 .

Hence ν(Sϕ(0, h)) ≈ |Sϕ(0, h)|1+θ
with

1 + θ =

α1+1

α1+2
+ · · · + αn+1

αn+2

1

α1+2
+ · · · + 1

αn+2

=
n

1

α1+2
+ · · · + 1

αn+2

− 1. (3.40)

Therefore θ < 2

n−1
is equivalent to

1

α1 + 2
+ · · · +

1

αn + 2
>
n− 1

2
. (3.41)

Similarly, the second inequality of (3.14) holds if

n− 1 >
1

α1 + 2
+ · · · +

1

αn + 2
. (3.42)

Recall that αi > −1 for i = 1, 2, · · · , n. The function ν is allowed to be singular.

It is easy to see that (3.41) holds if αi ≤ 0 for all i ≥ 2, or if α1α2 < 4 and αi ≤ 0

for all i ≥ 3. In particular the Sobolev inequality (3.36) holds for the first example

(1.3) for all α > −1.

For the second example (1.5), we also note that the exponents p given in (3.33)

and (3.37), with θ given by (3.40) are optimal, as the inequality is invariant under

linear transforms which normalizes sub-level sets of ϕ. In particular we see that when

(3.41) is not satisfied, one cannot expect a Sobolev embedding W 1,2
0,ϕ(Ω) →֒ Lp

(Ω)

for any p > 2. It also means the Harnack inequality of Caffarelli and Gutierrez for

the linearized Monge-Ampère equation (3.3) cannot be obtained by the De Giorgi or

Nash-Moser iterations.
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tion, Trans. Amer. Math. Soc., 348 (1996), pp. 1075–1092.

[CG2] L.A. Caffarelli and C.E. Gutierrez, Properties of the solutions of the linearized

Monge-Ampere equation, Amer. J. Math., 119 (1997), pp. 423–465.
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