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SIGN CHANGING SOLUTIONS WITH CLUSTERED LAYERS NEAR

THE ORIGIN FOR SINGULARLY PERTURBED SEMILINEAR
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Abstract. We study sign changing solutions to equations of the form

−ǫ2∆u + u = f(u) in B, ∂νu = 0 on ∂B,

where B is the unit ball in R
N

(N ≥ 2), ǫ is a positive constant and f(u) behaves like |u|p−1u (but

not necessarily odd) with 1 < p < (N + 2)/(N − 2) if N ≥ 3, and 1 < p < ∞ if N = 2. We show

that for any given positive integer n, this problem has a sign changing radial solution vǫ(|x|) which

changes sign at exactly n spheres ∪n
j=1{|x| = ρǫ

j}, where 0 < ρǫ
1 < · · · < ρǫ

n < 1 and as ǫ → 0,

ρǫ
j → 0 and vǫ(r) → 0 uniformly on compact subsets of (0, 1]. Moreover, given any sequence ǫk → 0,

there is a subsequence ǫki
such that uǫ(|x|) := vǫ(ǫ|x|) converges to some U in C1

loc
(R

N
) along this

subsequence, and U = U(|x|) is a radial sign changing solution of

−∆U + U = f(U) in R
N , U ∈ H1

(R
N

)

with exactly n zeros: 0 < ρ1 < · · · < ρn < ∞, and ǫ−1ρǫ
j → ρj along the subsequence ǫki

. Hence

the sharp layers of the sign changing solution vǫ are clustered near the origin.

The same result holds if the Neumann boundary condition is replaced by the Dirichlet boundary

condition, or if B is replaced by R
N .
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1. Introduction. Positive solutions of the singularly perturbed Neumann prob-

lem

−ǫ2∆u + u = f(u) in Ω, ∂νu = 0 on ∂Ω (1.1)

have been investigated extensively in the past decade. Here Ω is a bounded smooth

domain in R
N

(N ≥ 2), ǫ is a positive constant and f(u) behaves like up
with 1 <

p < (N + 2)/(N − 2) if N ≥ 3, and 1 < p < ∞ if N = 2. It is known that for small ǫ,
(1.1) has positive solutions with sharp peaks concentrating at certain interior points

as well as on the boundary of Ω; for example, it was shown in [GW] that given any

nonnegative integers k and n with k + n > 0, (1.1) has, for small ǫ > 0, a positive

solution which concentrates at exactly k peaks in the interior of Ω and n peaks on the

boundary of Ω. For more results and background, we refer to the survey [N]. Positive
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solutions with sharp layers also exist; see for example [MN], [AMN1], [AMN2] and

the references therein. Recently, for the case that Ω is the unit ball, it was shown in

[MNW] that given any positive integer n, for all small ǫ, (1.1) has a positive radial

solution uǫ which concentrates at n spheres ∪n
j=1

{|x| = rǫ
j}, where 1 > rǫ

1
> · · · > rǫ

n

are such that rǫ
j−1

− rǫ
j ∼ ǫ log

1

ǫ , j = 1, ..., N , rǫ
0

= 1. Thus the sharp layers are

clustered at the boundary of Ω.

Much less is known for sign changing solutions of (1.1). In this paper, we show

that if Ω is the unit ball as in [MNW], and if f(u) behaves like |u|p−1u (with p as

above), but not necessarily odd in u, then for any given positive integer n, problem

(1.1) has a sign changing radial solution vǫ(|x|) which changes sign at exactly n spheres

∪n
j=1

{|x| = ρǫ
j}, where 0 < ρǫ

1
< · · · < ρǫ

n < 1 and as ǫ → 0, ρǫ
j → 0 and vǫ(r) → 0

uniformly on compact subsets of (0, 1]. Moreover, given any sequence ǫk → 0, there

is a subsequence ǫki
such that uǫ(|x|) := vǫ(ǫ|x|) converges to some U in C1

loc(R
N

)

along this subsequence, and U = U(|x|) is a radial sign changing solution of

−∆U + U = f(U) in R
N , U ∈ H1

(R
N

), (1.2)

U(r) has exactly n zeros: 0 < ρ1 < · · · < ρn < ∞, and ǫ−1ρǫ
j → ρj along the

subsequence ǫki
. Hence in contrast to the positive solution uǫ of [MNW], the sharp

layers of the sign changing solution vǫ are clustered near the origin, spaced apart in

the order of ǫ, but in general not evenly in the limit.

Sign changing solutions for singularly perturbed problems similar to (1.1) over a

bounded domain with Dirichlet boundary conditions, or over R
N

, have been studied

in several papers; see for example [CDNY], [BCW], [DP] and the references therein.

However, the solutions obtained in these papers are peaked solutions, namely they

concentrate at isolated points, and the profile of the peak is determined by a posi-

tive solution of the corresponding entire space problem. Moreover, the approach in

[CDNY] requires a special geometric condition on the underlying domain (which is

not satisfied by a ball). The approaches in the other papers rely on an x-dependent

term in the equation whose behavior determines the existence of such solutions and

the location of the peaks; for a homogeneous problem like (1.1) these approaches do

not work in general. In contrast, our analysis does not rely on such an x-dependent

term, and the asymptotic profile of our solution is determined by a sign changing

entire space solution. To our knowledge, this seems the first research on solutions of

singularly perturbed elliptic problems with sharp layers clustered near a point.

The proof of our result is relatively simple, and relies on the radial symmetry of

the problem. We follow a well-known approach which uses the Nehari manifold and a

minimization argument over functions obtained by piecing together a prescribed num-

ber of positive and negative solutions of (1.1) over neighboring annuli, and estimates

of the energy levels of each such positive and negative solutions. Such an approach

has been developed and refined in [CSS], [CZ], [BW], [LW] and many other papers.

In this paper, we mainly follow [BW].

This approach can treat equations more general than (1.1). More precisely, we

consider the following problem

−ǫ2∆u + b(|x|)u = f(|x|, u) in B, ∂νu = 0 on ∂B, (1.3)

where B is the unit ball in RN
(N ≥ 2), b : [0, 1] → R

+, f : [0, 1] × R
1 → R

1
are

continuous functions, and f is locally Lipschitz in u uniformly for r ∈ [0, 1]. Moreover,

as in [BW], we make the following assumptions:
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(B) b(r) ≥ a0 > 0 for all r ∈ [0, 1].

(F1) There exist a1, R > 0 such that

|f(r, u)| ≤ a1|u|
s

for r ∈ [0, 1], |u| ≥ R,

where 1 < s < (N + 2)/(N − 2) if N ≥ 3, 1 < s < ∞ if N = 2.

(F2) There exists µ > 2 such that

µF (r, u) := µ

∫ u

0

f(r, v)dx ≤ uf(r, u) for r ∈ [0, 1], u ∈ R
1.

(F3) limK→∞ infr∈[0,1],|u|≥K F (r, u) > 0.

(F4) lim|u|→0
f(r, u)/u = 0 uniformly in r ∈ [0, 1].

(F5) f(r, u)/u is increasing in u ∈ R
1 \ {0} for every r ∈ [0, 1].

Our main result in this paper is the following theorem.

Theorem 1.1. Suppose that (B) and (F1)-(F5) are satisfied. Then for every
integer k ≥ 1, there exists a pair of radial solutions u+

ǫ (|x|) and u−
ǫ (|x|) of (1.3), with

u−
ǫ (0) < 0 < u+

ǫ (0), having precisely k zeros: 0 < ρ±
1,ǫ < · · · < ρ±k,ǫ < 1. Moreover,

as ǫ → 0, ρ±j,ǫ → 0 for j = 1, ..., k and u±
ǫ (r) → 0 uniformly on compact subsets of

(0, 1], and for any positive sequence ǫn → 0, there exists a subsequence ǫni
such that

U±
ǫ (|x|) := u±

ǫ (ǫ|x|) converges to some U± in C1

loc(R
N

) along this subsequence, and
U±

(|x|) is a pair of radial sign changing solutions of

−∆U + b(0)U = f(0, U) in R
N , U ∈ H1

(R
N

) (1.4)

satisfying U−
(0) < 0 < U+

(0), with exactly k zeros: 0 < ρ±
1

< · · · < ρ±k < ∞, and
ǫ−1ρ±j,ǫ → ρ±j along the subsequence ǫni

.

Remark 1.2. The conditions (F2), (F3) and (F5) can be relaxed. In [LW],

among other things, it was shown that the result in [BW] remain true if (F2), (F3)

and (F5) are relaxed to

(F
′
2) lim|u|→∞

F (r,u)

u2 = ∞;

(F
′
5) f(r, u)u − 2F (r, u) is nondecreasing in |u| and increasing for |u| > 0 small.

One easily checks that by making changes similar to [LW] in our arguments below,

Theorem 1.1 remains valid under these changes of assumptions on f(r, u).

The rest of the paper is organized as follows. In section 2, we modify the approach

of [BW] to obtain radially symmetric positive and negative solutions on annuli or balls,

by making use of suitable Nehari manifolds. In section 3, we estimate the energy levels

of the solutions obtained in section 2 and study the behavior of these energy levels

as the underlying domain and ǫ change, to obtain crucial information which will be

needed in section 4, where the existence and asymptotic profile of the sign changing

radial solution are proved.
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2. Positive and negative radial solutions. Setting v(x) = u(ǫx), we can

reformulate (1.3) as

−∆v + bǫ(|x|)v = fǫ(|x|, v) in Bǫ, ∂νv|∂Bǫ
= 0, (2.1)

where bǫ(|x|) = b(ǫ|x|), fǫ(|x|, v) = f(ǫ|x|, v) and Bǫ = {x ∈ R
N

: |x| < ǫ−1}.
Our arguments in this section are modifications of those in [BW]. We provide

sufficient details here for completeness and for the reason that they are needed in the

estimates in section 3 later, which play a pivotal role in determining the profile of our

sign changing solutions as ǫ → 0.

Fix ǫ > 0 and ρ ∈ (0, ǫ−1
). We consider the mixed boundary value problem

{

−∆v + bǫ(|x|)v = fǫ(|x|, v) for |x| ∈ (ρ, ǫ−1
),

v = 0 for |x| = ρ, ∂νv = 0 for |x| = ǫ−1.
(2.2)

In order to obtain a positive solution of (2.2), we consider the modified problem

{

−∆v + bǫ(|x|)v = g(|x|, v) for |x| ∈ (ρ, ǫ−1
),

v = 0 for |x| = ρ, ∂νv = 0 for |x| = ǫ−1,
(2.3)

where

g(r, u) = gǫ(r, u) =

{

fǫ(r, u) for u ≥ 0,

−fǫ(r,−u) for u ≤ 0.

Denote M = M(ρ) = M(ρ, ǫ−1
) := {x ∈ R

N
: ρ < |x| < ǫ−1} and let X = X(M)

be the Hilbert space of all radial functions in H1
(M) satisfying u(ρ) = 0, with the

usual norm

[

∫

M

(

|∇u|2 + u2
)

dx
]

1/2

,

and E = E(M) be the subspace of X such that

‖u‖2

= ‖u‖2

M :=

∫

M

(

|∇u|2 + bǫ(|x|)u
2
)

dx < ∞.

(In fact, E = X ; E 6= X is possible only when Bǫ is replaced by R
N

.) Due to (B),

there is a continuous embedding (for N ≥ 3)

E ⊂ X ⊂ Lq
(M) for 2 ≤ q ≤

2N

N − 2
,

which is true for q ∈ (2,∞) when N = 2. Define

φ(u) = φM (u) = φǫ,M (u) :=
1

2

∫

M

(

|∇u|2 + bǫ(|x|)u
2
)

dx −

∫

M

G(|x|, u)du,

where G(r, u) = Gǫ(r, u) =
∫ u

0
gǫ(r, v)dv.

Because of (F1), φ is well-defined on E and is C1
, and critical points of φ are

classical solutions of (2.3). A necessary condition for u ∈ E to be a critical point of φ
is that

(φ′
(u), u) :=

1

2
‖u‖2 −

∫

M

g(|x|, u)udx = 0.
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We define the associated Nehari manifold by

N = NM = Nǫ,M :=
{

u ∈ E \ {0} : (φ′
(u), u) = 0

}

.

We will show that

λ := inf
N

φ(u)

is a critical value of φ with a corresponding positive critical point. To this end, we

need several lemmas.

Lemma 2.1. φ satisfies the assumptions of the mountain pass theorem on E,
namely,

(a) φ(0) = 0 and there exist r0 > 0, ǫ0 > 0 such that φ(u) ≥ ǫ0 if ‖u‖ = r0.
(b) For every u ∈ E \ {0} there exists t0 > 0 such that φ(tu) < 0 if t ≥ t0.
(c) φ satisfies the Palais-Smale condition.

Proof. This is standard; (a) follows from (B), (F1) and (F4), (b) is a consequence

of (F2) and (F3), (c) is implied by (F1) and (F2). We omit the details.

Thus we may apply the mountain pass theorem of Ambrosetti and Rabinowitz to

conclude that

c = cM = cǫ,M := inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)) ≥ ǫ0 > 0

is a critical value of φ, where

Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, φ(γ(1)) < 0}.

Lemma 2.2. For any u ∈ E \ {0}, there exists a unique t = t(u) > 0 such that
t(u)u ∈ N , the maximum of φ(tu) for t ∈ [0,∞) is achieved at t = t(u), and the
function from E \ {0} to [0,∞), u 7→ t(u), is continuous.

Proof. Fix u ∈ E \ {0} and consider the function

h(t) := φ(tu), t ∈ (0,∞).

We have

h′
(t) = (φ′

(tu), u) = t‖u‖2 −

∫

M

g(|x|, tu)udx.

Hence tu ∈ N if and only if h′
(t) = 0, that is

‖u‖2

=
1

t

∫

M

g(|x|, tu)udx.

By (F5), the right-hand side of the above identity is an increasing function of t, and

by Lemma 2.1, h(0 + 0) = 0, h(t) > 0 for t > 0 small and h(t) < 0 for t > 0 large.

Therefore maxh(t) is achieved at a unique t = t(u) > 0. It follows that h′
(t(u)) = 0

and hence t(u)u ∈ N . The fact that u 7→ t(u) is continuous follows easily from the

uniqueness of t(u) and the boundedness of t(u), the latter follows from (F2), (F3) and

(F5), which imply ug(r, u) ≥ a2|u|µ for some a2 > 0 and all u ∈ R
1
.

Lemma 2.3. λ = c = d := infu∈E\{0} maxt≥0 φ(tu).
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Proof. By Lemma 2.2 we clearly have λ = d. Since φ(tu) < 0 for u ∈ E \ {0} and

large t > 0, we infer c ≤ d. On the other hand, every γ ∈ Γ has to cross N . This is

because, by Lemma 2.2,

N = {t(u)u : u ∈ E \ {0}} = ∂D,

where

D := {tu : u ∈ E \ {0}, 0 ≤ t < t(u)},

which contains a neighborhood of 0 in E, and φ ≥ 0 in D. Therefore, c ≥ λ.

Lemma 2.4. If u0 ∈ N and φ(u0) = λ, then u0 is a critical point of φ.

Proof. This follows from the quantitative deformation lemma, and the proof is

exactly the same as in Lemma 3.4 of [BW].

Since φ satisfies the Palais-Smale condition and λ = c > 0, λ is always achieved

by some u0 ∈ N and hence Lemma 2.4 guarantees that φ has a critical point v ∈ N .

Since g(r, u) is odd in u, we see that u(x) := |v(x)| belongs to N and φ(u) = φ(v) = λ.

Hence u is a nontrivial nonnegative solution of (2.3). Since f is locally Lipschitz in

u, by the maximum principle, it is positive and hence is a positive solution of (2.2).

We can obtain a negative solution of (2.2) analogously, by defining g(r, u) by

g(r, u) =

{

−fǫ(r,−u) for u ≥ 0,

fǫ(r, u) for u ≤ 0.

For later reference, we denote the corresponding φ, N , λ, etc. by φ−
, N−, λ−

,...,

respectively.

For fixed ǫ > 0 and 0 ≤ ρ < σ ≤ ǫ−1
, we also consider the Dirichlet problem over

D = D(ρ, σ) := interior of {x ∈ R
N

: ρ ≤ |x| < σ}:

−∆v + bǫ(|x|)v = fǫ(|x|, v) in D, v ∈ H1

0
(D). (2.4)

In this case, we define X = X(D) to be the Hilbert space of all radial functions

in H1

0
(D) with the usual norm, and define E, φ, N , λ, c, d analogously. The same

argument shows that φ achieves its minimum on N at a critical point of φ, which

gives rise to a positive solution of (2.4). One can also obtain a negative solution

of (2.4) by the same trick of redefining g(r, u). To distinguish the solutions for the

various situations, we will write u+

ǫ,M , u−
ǫ,M , u+

ǫ,D, u−
ǫ,D, with the obvious meanings.

Similarly, we will write

N±
ǫ,M , λ±

ǫ,M ,N±
ǫ,D, λ±

ǫ,D, etc.

3. Qualitative properties of λ±
ǫ,M and λ±

ǫ,D. In this section, we examine the

behavior of λ±
ǫ,M and λ±

ǫ,D as ρ and σ vary. Since our proof for λ+
and λ−

is the same,

we will omit the superscripts + and − and simply write λǫ,M or λǫ,D. To emphasize

the dependence on ρ and σ, we further write

λǫ,D = λǫ,D(ρ, σ), λǫ,M = λǫ,M (ρ).

Lemma 3.1. Suppose that (B), (F1)-(F5) are satisfied. Then the following con-
clusions hold:
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(i) If 0 ≤ ρ ≤ ρ′ < σ′ ≤ σ ≤ ǫ−1, then λǫ,D(ρ, σ) ≤ λǫ,D(ρ′, σ′
).

(ii) If 0 < ρ ≤ ρ′ < ǫ−1, then λǫ,M (ρ) ≤ λǫ,M (ρ′) ≤ λǫ,D(ρ′, ǫ−1
).

(iii) For any given δ0 > 0, there exist positive constants b0, d0 and σ0, all inde-
pendent of ǫ, ρ and σ such that

λǫ,D(ρ, σ) ≥ b0|D(ρ, σ)|−σ0 for 0 ≤ ρ < σ ≤ ǫ−1,

λǫ,M (ρ) ≥ b0|M(ρ, ǫ−1

)|−σ0 for 0 ≤ ρ < ǫ−1,

λǫ,D(ρ, σ) ≥ d0ρ
N−1 whenever δ0 ≤ ρ < σ ≤ ǫ−1,

λǫ,M (ρ) ≥ d0ρ
N−1 whenever δ0 ≤ ρ < ǫ−1.

Proof. Since a function in H1

0
(D(ρ′, σ′

)) can be regarded as a function in

H1

0
(D(ρ, σ)) by extension to the value of 0, we find ND(ρ′,σ′

)
⊂ ND(ρ,σ)

. Hence

λǫ,D(ρ, σ) ≤ λǫ,D(ρ′, σ′
).

Similarly, ND(ρ′,ǫ−1
)
⊂ NM(ρ′,ǫ−1

)
⊂ NM(ρ,ǫ−1

)
implies λǫ,M (ρ) ≤ λǫ,M (ρ′) ≤

λǫ,D(ρ′, ǫ−1
). This proves (i) and (ii).

By (F2), for every u ∈ ND(ρ,σ)
or NM(ρ,ǫ−1

)
, we have, denoting Ω = D(ρ, σ) or

M(ρ, ǫ−1
),

φ(u) ≥
1

2
‖u‖2 −

1

µ

∫

Ω

g(|x|, u)udx =

(

1

2
−

1

µ

)

‖u‖2. (3.1)

By (F1) and (F4), we can find a3 ≥ a1 such that

|gǫ(|x|, u)| ≤
1

2
a0|u| + a3|u|

s
for all u ∈ R

1, ǫ > 0.

Therefore, for u ∈ ND(ρ,σ)
or NM(ρ,ǫ−1

)
we have

‖u‖2

=

∫

Ω

gǫ(|x|, u)udx

≤
1

2
a0

∫

Ω

u2dx + a3

∫

Ω

|u|s+1dx

≤
1

2
‖u‖2

+ a3

(

∫

Ω

|u|qdx
)

s+1

q
(

∫

Ω

1dx
)

1− s+1

q

≤
1

2
‖u‖2

+ a3‖u‖
s+1

Lq |Ω|1−
s+1

q ,

where s + 1 < q ≤ 2N/(N − 2) when N ≥ 3, s + 1 < q < ∞ for N = 2. By the

Sobolev embedding theorem, there exists a4 depending only on N and q such that

‖u‖Lq ≤ a4‖u‖. Hence

‖u‖2 ≤
1

2
‖u‖2

+ a3a
s+1

4
‖u‖s+1|Ω|1−

s+1

q .

It follows that

‖u‖s−1 ≥
(

2a3a
s+1

4

)−1

|Ω|
s+1

q
−1,

‖u‖2 ≥ a5|Ω|−σ0 with a5 =
(

2a3a
s+1

4

)
2

1−s , σ0 =

(

1 −
s + 1

q

)

2

s − 1
.
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In view of (3.1), we obtain

φ(u) ≥ b0|Ω|−σ0 , b0 =

(

1

2
−

1

µ

)

a5.

Therefore

λǫ,M (ρ) ≥ b0|M(ρ, ǫ−1

)|−σ0 , λǫ,D(ρ, σ) ≥ b0|D(ρ, σ)|−σ0 .

To prove the last two inequalities in (iii), we let Ω denote either D(ρ, σ) or

M(ρ, ǫ−1
) and suppose u = u(r) = u(|x|) is a function in NΩ. Since

d

dr
(rN−1u2

) = 2uurr
N−1

+ (N − 1)u2rN−2

and u(ρ) = 0, we have, for r > ρ ≥ δ0,

rN−1u2

(r) = 2

∫ r

ρ

uurs
N−1ds + (N − 1)

∫ r

ρ

u2sN−2ds

≤ 2

∫

Ω

u|∇u|dx + (N − 1)ρ−1

∫

Ω

u2dx

≤ 2‖u‖L2‖∇u‖L2 + (N − 1)δ−1

0
‖u‖2

L2.

It follows that

u(r) ≤ r(1−N)/2
(

2‖u‖L2‖∇u‖L2 + (N − 1)δ−1

0
‖u‖2

L2

)

1/2

≤ a6ρ
(1−N)/2‖u‖. (3.2)

Hence

‖u‖2 ≤
1

2
a0‖u‖

2

L2 + a3

∫

Ω

|u|s+1dx

≤
1

2
‖u‖2

+ a3

∫

Ω

u2
(

a6ρ
(1−N)/2‖u‖

)s−1

dx

=
1

2
‖u‖2

+ a3a
s−1

6
ρ

1−N
2

(s−1)‖u‖s−1‖u‖2

L2

≤
1

2
‖u‖2

+ a7‖u‖
s+1ρ

1−N
2

(s−1).

We thus deduce

‖u‖s−1 ≥ (2a7)
−1ρ

N−1

2
(s−1),

and

φ(u) ≥
(

1

2
−

1

µ

)

‖u‖2 ≥
(

1

2
−

1

µ

)

(2a7)
2

1−s ρN−1.

The last two inequalities in (iii) hence follows.

Lemma 3.2. Suppose that 0 ≤ ρ < σ < ǫ−1

0
. Then there exists C0 > 0 depending

on D(ρ, σ) but independent of ǫ ∈ (0, ǫ0], and c0 > 0 independent of ρ, σ, ǫ such that

c0 ≤ λǫ,D(ρ, σ) ≤ C0, λǫ,M (ρ) ≤ C0.
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Proof. As before, by (F2), (F3) and (F5) there exists a2 > 0 independent of ǫ
such that

Gǫ(r, u) ≥ a2|u|
µ

for u ∈ R
1, ǫ > 0.

Therefore, if we fix a continuous function u0 ∈ E \ {0}, then

φ(tu0) =
t2

2
‖u0‖

2 −

∫

D(ρ,σ)

Gǫ(|x|, tu0)dx

≤
t2

2
‖u0‖

2 − a2t
µ

∫

D(ρ,σ)

|u0|
µdx

≤ 0

for t satisfying

t ≥ t0 :=

(‖u0‖2

2a2

/

∫

D(ρ,σ)

|u0|
µdx

)

1/(µ−2)

.

By Lemma 2.3 and the definition of d, we obtain

λǫ,D(ρ, σ) ≤ max
t∈[0,t0]

φ(tu0)

≤ max
t∈[0,t0]

t2

2
‖u0‖

2

= C0 :=
t2
0

2
‖u0‖

2.

By Lemma 3.1,

λǫ,M (ρ) ≤ λǫ,D(ρ, ǫ−1

) ≤ λǫ,D(ρ, σ) ≤ C0.

On the other hand, by (F1), (F4) and the Sobolev embedding theorem, there

exists η0 > 0 independent of D(ρ, σ) and ǫ such that

φ(u) ≥
1

3
‖u‖2

if u ∈ E satisfies ‖u‖ ≤ η0.

It then follows from the mountain pass characterization of c = cD(ρ,σ)
that

λǫ,D(ρ, σ) ≥ c0 := η2

0
/3.

Lemma 3.3. If ρn → ρ ∈ (0, ǫ−1
) and σn → σ ∈ (ρ, ǫ−1

) as n → ∞, then

λǫ,D(0, σ) ≤ limn→∞λǫ,D(0, σn),

λǫ,D(ρ, σ) ≤ limn→∞λǫ,D(ρn, σn),

λǫ,M (ρ) ≤ limn→∞λǫ,M (ρn).

Proof. This follows from a simple modification of the proof of Proposition 4.1

part d) in [BW]. We omit the details.
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4. Existence and asymptotic profile. Set

sj =

{

+ for j even,

− for j odd,

and define, similar to [BW],

Λ
+

ǫ (ρ1, · · · , ρk) =

k−1
∑

j=0

λ
sj

ǫ,D(ρj , ρj+1) + λsk

ǫ,M (ρk),

for 0 = ρ0 < ρ1 < ... < ρk < ǫ−1
. For fixed ǫ > 0, it follows from Lemmas 3.1

and 3.3 that Λ
+

ǫ attains its minimum at some point (ρǫ
1
, ..., ρǫ

k), and corresponding to

each λ+

ǫ,D(ρǫ
j , ρ

ǫ
j+1

) with j even, by our results in section 2, there is a positive radial

solution u+

ǫ,j of (2.4) with D = D(ρǫ
j , ρ

ǫ
j+1

), and corresponding to each λ−
ǫ,D(ρǫ

j , ρ
ǫ
j+1

)

with j odd, there is a negative radial solution u−
ǫ,j of (2.4) with D = D(ρǫ

j , ρ
ǫ
j+1

).

Moreover, we have

u
sj

ǫ,j ∈ ND(ρǫ
j
,ρǫ

j+1
)
, φ

sj

D(ρǫ
j
,ρǫ

j+1
)
(u

sj

ǫ,j) = λ
sj

ǫ,D(ρǫ
j , ρ

ǫ
j+1

). (4.1)

Similarly, λsk

ǫ,M (ρǫ
k) corresponds to a radial solution usk

ǫ,k of (2.2), whose sign is the

same as sk, and

usk

ǫ,k ∈ NM(ρǫ
k
,ǫ−1

)
, φsk

M(ρǫ
k
,ǫ−1

)
(usk

ǫ,k) = λsk

ǫ,M (ρǫ
k). (4.2)

We now define u+

ǫ ∈ H1
(Bǫ) by

u+

ǫ (x) = u
sj

ǫ,j(x) if ρǫ
j ≤ |x| < ρǫ

j+1
, j = 0, ..., k, ρǫ

0
= 0, ρǫ

k+1
= ǫ−1.

By exactly the same argument used in the proof of Lemma 5.1 in [BW], we conclude

that u+

ǫ is a solution of (2.1).

If we define

sj =

{

− for j even,

+ for j odd,

then the above analysis gives rise to a radial solution u−
ǫ (|x|) of (2.1) which satisfies

u−
ǫ (0) < 0 with exactly k zeros in (0, ǫ−1

).

We next study the asymptotic profile of u+

ǫ as ǫ → 0; the analysis for u−
ǫ is similar.

To simplify notations, we write uǫ instead of u+

ǫ .

Lemma 4.1. Fix ǫ0 > 0 small, let ǫ ∈ (0, ǫ0] and uǫ be the radial solution of (2.2)
described above, and 0 < ρǫ

1
< ... < ρǫ

k < ǫ−1 the zeros of uǫ(r). Then there exists
δ > 0 independent of ǫ such that

ρǫ
j+1

− ρǫ
j ≥ δ, ρǫ

k ≤ δ−1 for ǫ ∈ (0, ǫ0], j = 0, ..., k, ρǫ
0

= 0, ρǫ
k+1

= ǫ−1. (4.3)

Proof. Fix 0 < ρ∗
1

< ... < ρ∗k < ǫ−1

0
. By Lemma 3.2, we obtain

Λǫ(ρ
ǫ
1
, ..., ρǫ

k) ≤ Λǫ(ρ
∗
1
, ..., ρ∗k)

=

k−1
∑

j=0

λ
sj

ǫ,D(ρ∗j , ρ
∗
j+1

) + λsk

ǫ,M (ρ∗k) (4.4)

≤ (k + 1)C0
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for all ǫ ∈ (0, ǫ0], where C0 depends on (ρ∗
1
, ..., ρ∗k) but is independent of ǫ. In view of

Lemma 3.1, we necessarily have

ρǫ
j+1

− ρǫ
j ≥ δ, ρǫ

k ≤ δ−1

for some δ > 0 independent of ǫ.

Theorem 4.2. For any positive sequence ǫn → 0, there exists a subsequence {ǫni
}

such that along this subsequence uǫ → U in C1

loc(R
N

), where U = U(r) is a radial
solution of (1.4) satisfying U(0) > 0, with exactly k zeros: 0 < ρ1 < ... < ρk < ∞.
Moreover, ρǫ

j → ρj along ǫni
for j = 1, ..., k.

Proof. To simplify notations we will write un = uǫn
. Using (4.1), (4.2), (4.4) and

(3.1), we find that {‖uǫ‖H1
(Bǫ)

: 0 < ǫ ≤ ǫ0} is bounded. Since by (4.3) we have

ρǫ
1
≥ δ, we may now apply (3.2) to conclude that

uǫ(r) ≤ Cr(1−N)/2

for all r ≥ ρǫ
1

and some C > 0 independent of ǫ. (4.5)

Using the boundedness of {‖un‖H1
(Bǫn )

}, (F1) and a standard bootstrapping argu-

ment, we find that

un(r) ≤ C for 0 ≤ r ≤ ρǫn

1
, n ≥ 1.

Therefore {‖un‖L∞
(Bǫn )

} is bounded, and hence

|fǫn
(|x|, un)| ≤ C

for some C > 0 and all n ≥ 1 and x ∈ Bǫn
. We may now apply standard elliptic

regularity theory (see [GT]) to the equation satisfied by un, and a diagonal process to

extract a subsequence {uni
} of {un} such that uni

→ U in C1

loc(R
N

). It is easily seen

that U solves the differential equation in (1.4) in the weak sense. Since each un is

radial, so is U . Since {‖un‖H1
(Bǫn )

} is bounded, say ‖un‖H1
(Bǫn )

≤ C, we deduce that

‖U‖H1
(Bǫ)

≤ C for each ǫ > 0. It follows that U ∈ H1
(R

N
), and by bootstrapping

it is a classical solution of (1.4). We may assume that ρ
ǫni

1
→ ρ1 ∈ [δ, δ−1

]. Then by

Lemma 3.2 we deduce that

φ
0,D(0,ρ1)

(U) = lim
i→∞

φ
ǫni

,ρ
ǫni
1

(uni
) ≥ c0 > 0.

This implies that U 6≡ 0. Since f is locally Lipschitz in u, by the uniqueness of the

initial value problem for ODEs (we remark that this is not affected by the singularity of

the ODE for U(r) at r = 0), necessarily U(0) > 0 and U has exactly k nondegenerate

zeros 0 < ρ1 < ... < ρk ≤ δ−1
, for otherwise, for large i, uni

would not have exactly

k zeros with none of which lying outside (0, δ−1
]. It then follows that ρ

ǫni

j → ρj as

i → ∞, for every j = 1, ..., k.

It is easily seen that Theorem 1.1 follows from (4.3), (4.5) and Theorem 4.2.

Remark 4.3. If we replace the Neumann boundary condition in (1.3) by the

homogeneous Dirichlet boundary condition, then our analysis carries over with no

extra difficulties. Hence the conclusions in Theorem 1.1 remain valid for this case.

Our arguments can also be easily modified to treat the case where we replace B by

R
N

and require u ∈ H1
(R

N
) in (1.3). Therefore the conclusions of Theorem 1.1 hold

for this case as well. Moreover, Remark 1.2 also applies to these cases.
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