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MONOTONE MAPS OF Rn ARE QUASICONFORMAL∗

KARI ASTALA† , TADEUSZ IWANIEC‡ , AND GAVEN J. MARTIN§

For Neil Trudinger

Abstract. We give a new and completely elementary proof showing that a δ–monotone mapping
of Rn, n ≥ 2 is K–quasiconformal with linear distortion

K ≤
1 +

√
1− δ2

1−
√

1− δ2

This sharpens a result due to L. Kovalev.
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1. Introduction. In [?] L.V. Kovalev proved the interesting fact that a δ–
monotone mapping of Rn is K–quasiconformal for some distortion constant K de-
pending only on δ. Here we give a new poof of this result using methods which are
rather more elementary than those employed in [?], going through a compactness ar-
gument which is more or less standard in the theory of quasiconformal mappings. We
are also able to give the precise estimates relating the monotonicity constant δ and
the distortion constant K (these precise estimates were already given in two dimen-
sions in our earlier work [?].) We remark that the proof given here works without
modification for monotone mappings of Hilbert spaces.

Let us recall the relevant definitions. A function h : Ω ⊂ Rn → Rn is called
δ–monotone, 0 < δ ≤ 1 if for every z, w ∈ Ω

〈h(z)− h(w), z − w〉 ≥ δ|h(z)− h(w)||z − w| (1)

There is no supposition of continuity here. It is obvious from the definition at (1) that
the family of δ–monotone maps is invariant under rescaling and translation. Of course
〈h(z)− h(w), z−w〉 = |h(z)− h(w)||z−w| cos(α) where α is the angle between these
vectors. Thus δ–monotone maps are prevented from rotating the vector formed from a
pair of points more than an angle | arccos(δ)| < π/2. Monotone mappings have found
wide application in partial differential equations for decades, particularly those second
order PDEs of divergence type, because of the well known Minty-Browder theory
[?, ?]. Roughly the monotonicity condition is used to bound a nonlinear operator
away from a curl. See the monograph [?] for some of this theory and connections
with quasiconformal mappings and second order nonlinear divergence equations in
the plane. This brings us to our next definition. An orientation preserving injection
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f : Ω ⊂ Rn → Rn is called K–quasiconformal if there is H < ∞ so that for each
x ∈ Rn the infinitesimal linear distortion

lim sup
r→0

max|ζ|=r |f(x+ ζ)− f(x)|
min|ζ|=r |f(x+ ζ)− f(x)|

≤ H (2)

The maximal linear distortion K is the essential supremum of the quantity of the left-
hand side of (2). Condition (2) guarantees the map has W 1,n

loc (Ω) regularity among
many other things [?].

2. The main result. Here then is the theorem we want to prove.

Theorem 1. Let h : Ω ⊂ Rn → Rn be δ–monotone. Then either h is constant or
else a quasiconformal homeomorphism with linear distortion bounded by

K =
1 +

√
1− δ2

1−
√

1− δ2

This bound on the linear distortion is sharp for every δ ∈ (0, 1].

Proof. Let us begin by exhibiting sharpness. It suffices to consider monotone maps
of the complex plane C. Higher dimensional examples follow by the obvious extension.
Considering an arbitrary linear map h(z) = αz + βz of the complex plane C we need
an estimate of the monotonicity of this map. As monotonicity is invariant under
adding a constant we need an estimate at 0, where the condition 〈h(z), z〉 ≥ δ|h(z)||z|
can be written as

<e[(αz + βz)z] ≥ δ|αz + βz|, |z| = 1

Assuming β 6= 0, we ask that <e( α
|β| + λ) ≥ δ

∣∣ α
|β| + λ

∣∣ for every |λ| = 1, or that the
disk with center α/|β| and radius 1 is contained in the cone

C(δ) = {z = x+ iy : δ|y| ≤
√

1− δ2 x }

The set of such possible center points forms another cone, with same opening and di-
rection as C(δ) but with vertex z0 = 1√

1−δ2 . Hence the requirement of δ-monotonicity
takes the form

δ
∣∣=m(α)

∣∣ = δ
∣∣=m(

α− |β|√
1− δ2

)∣∣ ≤ √
1− δ2 <e

(
α− |β|√

1− δ2

)
Multiplying and reorganizing we have that the linear map h(z) = αz + βz is δ-
monotone if and only if

|β|+ δ |=m α| ≤
√

1− δ2 <e α (3)

As a particular consequence, under δ-monotonicity we have |β| ≤
√

1− δ2 |α|, so that
the linear distortion of h,

K(h) =
|α|+ |β|
|α| − |β|

≤ 1 +
√

1− δ2

1−
√

1− δ2
(4)

The equality occurs for the δ-monotone mapping h(z) = z+kz, where k =
√

1− δ2 ∈
[0, 1). Thus the result, if true, is sharp.
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To study the general δ-monotone mappings we adopt the following notation. The
cone

Cδ
w(z) =

{
ζ ∈ Ω :

∣∣∣∣ ζ − w

|ζ − w|
− z − w

|z − w|

∣∣∣∣ < δ

2

}
(5)

has w as its vertex and opens up in the direction z − w. It is the union of all rays
starting at w and making an angle less than 2 arcsin(δ/4) with the ray in direction
z − w.

By definition, if h is δ–monotone we see that if ζ ∈ Cδ
w(z) where z, w ∈ Ω, then

|h(ζ)− h(w)| ≤ 2
δ
〈h(ζ)− h(w),

z − w

|z − w|
〉 (6)

This is because

|ζ − w|
|z − w|

〈h(ζ)− h(w), z − w〉

= 〈h(ζ)− h(w), ζ − w〉 − 〈h(ζ)− h(w), ζ − w − |ζ − w|
|z − w|

(z − w)〉

≥ (δ − δ

2
)|h(ζ)− h(w)||ζ − w|

and rearranging the non-zero terms gives (??). From this we deduce the following
estimate for h simply by adding the relevant estimates obtained by swapping z and
w.

Lemma 1. (Kovalev [?]) If h is δ–monotone and ζ ∈ Cδ
z (w) ∩ Cδ

w(z) =: Qδ
z,w,

then

|h(ζ)− h(w)|+ |h(ζ)− h(z)| ≤ 2
δ
〈h(z)− h(w),

z − w

|z − w|
〉 ≤ 2

δ
|h(z)− h(w)| (7)

 

z 

w 

r 

Intersection of cones Cδ
z (w) and Cδ

w(z)

The following lemma is obvious.

Lemma 2. Let r ≤ 1
5δ |z − w|. Then the intersection Qδ

z,w of the cones contains
the ball B

(
1
2 (z + w), r

)
∩ Ω.
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The following easy lemma concerning convex sets will be useful.

Lemma 3. Let L = {tζ : t ≥ 0} ∪ {tη : t > 0} with directions ζ, η ∈ Sn−1 not
equal or antipodal. Let Ω be a proper convex subset of Rn. Then there is a euclidean
motion ψ of Rn so that ψ(0) /∈ Ω yet for some s, t we have both ψ(tζ), ψ(sη) ∈ Ω.

Proof. It suffices to consider the two dimensional case. Then find a point x ∈ ∂Ω
with a uniquely defined support line and inward normal α. Rotate and translate so
that x is the image of 0 while the image of ζ+η is parallel to α. Now move the image
of 0 in the direction −α, away from Ω. For a sufficiently small move, the image of L
will have the desired properties.

 
 ζ 

0 

η 

α 

 Ω 

Remark. Lemma ?? is local in the sense that if Ω is a relatively convex proper
subset of a domain D (the intersection of a convex subset of Rn with D), then we may
find ψ so that ψ(0) /∈ Ω yet ψ(0) ∈ D and for some s, t we have both ψ(tζ), ψ(sη) ∈ Ω.

2.1. Weak quasisymmetry. A mapping h : Ω → Rn is weakly quasisymmetric
if there is a constant H <∞ such that for all z1, z2, w ∈ Ω,

|z1 − w| ≤ |z2 − w| implies |h(z1)− h(w)| ≤ H|h(z2)− h(w)| (8)

Note this a’priori does not require f to be continuous. However, that readily follows.

Lemma 4. (Tukia-Väisälä [?]) Let h be a weakly quasisymmetric function in a
domain Ω ⊂ Rn. Then f is either a homeomorphism or a constant.

Proof. If h is not constant, to see the mapping is a homeomorphism onto its
image, by (??) it is enough to establish continuity. Suppose that h is not continuous
at z0 ∈ Ω. Then there is a sequence of points zj → z0 such that for some ε > 0 we
have |h(zj)− h(z0)| ≥ ε. Passing to a subsequence we may assume that |zj+1 − z0| <
1
2 |zj − z0|. This in turn implies

|zj+1 − z0| ≤ |zj+1 − zj | (9)

Now weak quasisymmetry implies the image sequence is bounded, |h(zj) − h(z0)| ≤
H|h(z1) − h(z0)| for all j. We may again pass to a subsequence so as to be able to
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assume that h(zj) → a ∈ Rn, a 6= h(z0). But now of course we have from (??)

|h(zj+1)− h(z0)| ≤ H |h(zj+1)− h(zj)|

which is a clear contradiction as the left hand side is bounded below by ε and the
right hand side is tending to 0. Thus h is continuous, and hence a homeomorphism.

2.2. Compactness. We begin with the following lemma.

Lemma 5. Let Ω ⊂ Rn be a domain containing the closed ball B(0, 3
δ ) and let

α ∈ Sn−1. Define

Fα = {h : Ω → Rn : h is δ–monotone, h(0) = 0 and |h(α)| = 1}

Then there is H = H(δ) <∞ such that for all |z| ≤ 1

sup
h∈Fα

|h(z)| < H (10)

Proof. Let X = {z ∈ Ω : suph∈Fα
|h(z)| <∞}. Then X is nonempty, {0, α} ⊂ X

and relatively convex by (??) with the choice ζ ∈ [z, w]∩Ω, given z, w ∈ X. Suppose
X 6= Ω. Using Lemma ?? and the subsequent remark, we can find z0 ∈ Ω\X and two
points u, v ∈ X such that the angle ∠(u, z0, v) is as close to π as we like. As u, v ∈ X,
R = suph∈Fα

|h(u)| + h(v)| < ∞. But z0 6∈ X implies there are δ–monotone maps
hj ∈ Fα with |hj(z0)| → ∞. But then ∠(hj(u), hj(z0), hj(v)) → 0 as the first and last
points here are in the ball B(0, R). Thus one of u− z0 or v− z0 is eventually rotated
by the mappings by an angle greater than π/2− ε, for ε > 0 as small as we like. This
contradicts δ–monotonicity. Thus X = Ω. We need uniformity in this estimate. By
hypothesis ±w = (± 3

δ , 0 . . . , 0) ⊂ Ω. Let M = suph∈Fα
|h(w)|+ |h(−w)| <∞. Then

Lemma ?? gives B(0, 1) ⊂ Cδ
−w(w) ∩ Cδ

w(−w). Hence we can apply (??) to see that
for all z ∈ B(0, 1) we have |h(w)− h(z)|+ |h(−w)− h(z)| ≤ 2

δM whereupon

|h(z)| ≤
(

1
2

+
1
δ

)
M = H

Finally to see that H does not depend on α it obviously suffices to make the following
observation: if h is δ–monotone and O is an orthogonal rotation, then OthO is δ–
monotone,

〈OthO(z)−OthO(w), z − w〉 = 〈hO(z)− hO(w), Oz −Ow〉
≥ δ|hO(z)− hO(w)||Oz −Ow|
≥ δ|OthO(z)−OthO(w)||z − w|

This completes the proof of the lemma.

2.3. Quasiconformality. We first establish quasiconformality without good es-
timates.

Lemma 6. Let h : Ω → Rn be a non constant δ–monotone mapping in a domain
Ω ⊂ Rn. Then h is a continuous injection whose linear distortion is bounded by
H = H(δ) of Lemma ??.
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Proof. If h is not injective, h(x) = h(y) for two distinct points x, y ∈ Ω and,
arguing as in the proof of Lemma ??, we see from (??) thatX = {z ∈ Ω : h(z) = h(x)}
is relatively convex in Ω while using Lemma ?? we obtain X = Ω. Thus h is constant.

Therefore we only need to establish the bound on the linear distortion. Let z0 ∈ Ω
with B(z0, d) ⊂ Ω and r < δd/3. Choose η ∈ Sn−1, such that

min
|ζ|=r

|h(z0 + ζ)− h(z0)| = |h(z0 + rη)− h(z0)|

Then define

g(z) =
h(z0 + rz)− h(z0)
|h(z0 + rη)− h(z0)|

and note that g is a δ–monotone mapping, g(0) = 0, |g(η)| = 1 and g is defined on a
domain containing B(0, 3

δ ). Hence

max|ζ|=r |h(z0 + ζ)− h(z0)|
min|ζ|=r |h(z0 + ζ)− h(z0)|

= max
|ξ|=1

|g(ξ)| < H

We see that h is weakly quasisymmetric in B(z0, δd/9), hence continuous, with linear
distortion bounded by H. Thus Lemma ?? is completed.

Finally, to get the sharp bound on the linear distortion we note that as a quasi-
conformal map any δ–monotone function is in W 1,n

loc (Rn) and admits a non-degenerate
(invertible) derivative almost everywhere. Given z ∈ Rn we set

dh[z0](z) = lim
ε→0

1
ε

(h(z0 + εz)− h(z0))

Using the continuity of the inner product we see that z 7→ dh[z0](z) is a δ–monotone
linear map. Furthermore, the linear distortion of h is the essential supremum of the
linear distortions of the maps dh[z0], z0 ∈ Ω. Thus it is enough to consider the linear
mappings dh[z0]. We restrict this to the two plane Π spanned by the directions in
which the minimal and maximal stretchings occur. Let P : Rn → Π be the projection
into this plane. It is easy to see that

P ◦ dh(x0)|Π : Π → Π

is δ–monotone as a map of Π (identified as R2) to itself - the angle between a vector
and its image is only decreased under projection. The result then follows as per our
very first calculation at (4). For further details and interesting connections see [?].

This finally completes the proof of Theorem 1.
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