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NAVIER-STOKES APPROXIMATIONS TO 2D VORTEX SHEETS

IN HALF PLANE
∗
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†
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‡
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§

Abstract. This paper concerns the two-dimensional Euler equations with vortex-sheets initial

data in half plane and in the domain Ω = {(x1, x2) : x2 ≥ γ(x1)}, γ(x1) = 0 for |x1| ≥ x0, x0 is a

fixed constant, and γ(x1) is a sufficient smooth and simple curve. The Navier-Stokes approximations

are constructed in this paper and by means of vanishing the viscosity, the global existence of weak

solutions is obtained under the assumption that the initial vorticity is of one-sign. Navier boundary

conditions are applied when constructing the Navier-Stokes approximations.

Key words. Vanishing viscosity limit, Euler equations, vortex-sheets data, Navier-Stokes ap-

proximations.
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1. Introduction. We consider the following two-dimensional incompressible
Euler equations



















∂tu+ u · ∇u + ∇p = 0 x ∈ H, t > 0,

divu = 0 x ∈ H, t > 0,

|u(x, t)| → 0 |x| → ∞,

(1.1)

where H = {(x1, x2) : x2 ≥ 0}. Define Γ
.
= ∂H = {x2 = 0}. The unknown func-

tions p = p(x, t) and u = (u1(x, t), u2(x, t)) represent the pressure and velocity fields
function, respectively.

The initial and boundary conditions of (1.1) are imposed as

u(x, t = 0) = u0 x ∈ H, (1.2)

and

u · n = 0 on Γ. (1.3)

In (1.3), n means the unit normal vector of Γ.
The vorticity of the velocity u(x, t) is denoted by ω(x, t) = curlu and the initial

vorticity is given by ω0(x) = curlu0. Roughly speaking, for a general domain Ω ⊆ R2,
the initial data of (1.1) are called vortex-sheets data if the initial velocity is locally
square integrable and the initial vorticity is a finite Radon measure,that is, u0 ∈
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loc(Ω), ω0 ∈ BM(Ω), where BM(Ω) is the finite Radon measure spaces. There are
a lot of studies in recent years on the existence of weak solutions of (1.1) when the
initial data are vortex-sheets data. In 1991, Delort first proved the global existence
of weak solutions to (1.1) under the assumption that the initial vorticity is a vortex-
sheets data and of one-sign (see [1]). The approximate solutions were constructed
through mollifying the initial data in [1]. Later on, for one-sign initial vorticity, the
convergence to the classical weak solutions of vortex-sheets problem for various types
of the approximate solutions has been established (see [4], [16], [17]). In particular, for
the Cauchy problem, the Navier-Stokes approximations were constructed by Majda
in [16] and the vortex-method approximations were constructed by Liu and Xin in
[11] and [12]. In the case that the vorticity changes signs, Lopes Filho, Nussenzveig
Lopes and Xin established in [14] the global existence of weak solutions to the two-
dimensional vortex-sheets problem under the assumption that initial vorticity holds
reflection symmetry. In [15], the authors generalized the above result to the case of
exterior domain which is symmetric with respect to the x1 axis. The existence of
weak solutions of two-dimensional incompressible Euler equations with ω0 ∈ L1(R2)
was studied in [19]. Some studies on the convergence of the approximate solutions of
the three-dimensional axisymmetric Euler equations are referred to [2] and [7]-[9].

It should be noted that in [14] the authors constructed the approximate solu-
tions by smoothing the initial data. And in [14] the authors pointed out a question
whether the approximate solutions of (1.1) can be constructed by the solutions of the
Navier-Stokes equations with no-slip boundary condition u = 0 on Γ. In this paper,
we partially answer the question through constructing the Navier-Stokes approxima-
tions by using the free Navier boundary conditions (see (1.5)) instead of the no-slip
boundary conditions. More precisely, we consider the following Navier-Stokes system















∂tu
ǫ + uǫ · ∇uǫ + ∇pǫ − ǫ∆uǫ = 0 x ∈ H, t > 0,

divuǫ = 0 x ∈ H, t > 0,

|uǫ|(x, t) → 0 as |x| → ∞,

(1.4)

with the free Navier boundary conditions as

ωǫ(x, t) = curluǫ = 0, uǫ · n = 0 x ∈ Γ, t > 0, (1.5)

and initial data as

uǫ(x, t = 0) = uǫ
0, ωǫ(x, t = 0) = ωǫ

0 x ∈ H. (1.6)

In (1.6), the initial vorticity ωǫ
0

is a smooth and compactly supported function such
that ωǫ

0 tends to ω0 as ǫ → 0 in BM(H). Then by the classical theory of the 2D
incompressible Navier-Stokes equations (see [10] for instance), there exists a unique
smooth solution ωǫ to the initial-boundary problem (1.4)-(1.6). Our main task of this
paper is to take the limit of ωǫ as ǫ tends to zero and obtain that the limit ω is the
weak solution of 2D Euler equations when the initial data are vortex-sheets ones. A
new ingredient of this paper is that we use the Navier-Stokes approximations and the
Navier boundary conditions (1.5) are applied. In fact, we can generalize our results
to the domain Ω = {(x1, x2) : x2 ≥ γ(x1)}, where γ is a simple and smooth curve,
and even more generally, to the exterior domain with reflection symmetry.

Before end this section, we point out that the general Navier boundary conditions,
which were first used by Navier in 1827, mean that there is a stagnant layer of fluid
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close to the wall allowing a fluid to slip, and the slip velocity is proportional to
the shear stress (see [5], [6],[13],[20] and references therein). The Navier boundary
condition (1.5), which is called a free Navier boundary condition, is a special form of
the general Navier boundary conditions (see [20]).

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries and the definition of weak solutions of (1.1). In Section 3, by a priori
estimates, it is obtained that the convergence of viscous approximates to a weak solu-
tion of (1.1)-(1.3) in H. In Section 4, the cases of more general domain are discussed.

2. Some preliminaries. By Biot-Savart law, the velocity can be recovered from
the vorticity in the following way.

u = u(x, t) = KH[ω](x, t) ≡
∫

H

KH(x, y)ω(y, t) dy, (2.1)

where

KH(x, y) =
(x− y)⊥

2π|x− y|2 − (x− y∗)⊥

2π|x− y∗|2

with x⊥ = (−x2, x1) and x∗ = (x1,−x2). Let ω0 = ω0(x) ∈ BM(H) be a Radon
measure with compact support such that u0 = KH[ω0] ∈ (L2(H))2.

From (1.4)-(1.6), the initial-boundary problem of the vorticity equation of the 2D
Navier-Stokes equations can be expressed as



































ωǫ
t + uǫ · ∇ωǫ = ǫ∆ωǫ x ∈ H, t > 0,

divuǫ = 0, curluǫ = ωǫ x ∈ H, t > 0,

uǫ · n = 0, ωǫ = 0 x ∈ Γ, t > 0,

ωǫ(x, t = 0) = ωǫ
0
(x) x ∈ H,

|uǫ(x, t)| → 0 as |x| → ∞.

(2.2)

Define the set of the admissible test functions by

A ≡ {ϕ ∈ C∞([0,∞) × H̄)| ϕ ≡ 0 on Γ}.
Then the definition of the weak solutions of (1.1)-(1.3) can be defined as (see [14])

Definition 2.1. The function ω ∈ L∞([0,∞);BMloc(H)) is called a weak solu-
tion of the incompressible 2D Euler equations with initial data ω0 if:

(i) the velocity u ≡ KH[ω] belongs to L∞
loc([0,∞);L2(H)2), and

(ii) for any test function ϕ ∈ A, it holds that
∫ ∞

0

∫

H

ϕt ω(x, t)dxdt +

∫

H

ϕ(x, 0)ω0(x)dx

+

∫ ∞

0

∫

H

∫

H

Hϕ(x, y, t)ω(x, t)ω(y, t)dydxdt = 0, (2.3)

where Hϕ(x, y, t) ≡ 1

2
(∇ϕ(x, t) ·KH(x, y) + ∇ϕ(y, t) ·KH(y, x)).

Remark 2.1. The weak solution defined above is called a “boundary-coupled
weak solution” in [14], and it is stronger than the standard one in the sense that we
only require that the test function vanishes at the boundary.

Remark 2.2. Hϕ(x, y, t) is globally bounded in H × H × [0,∞) (see [17]).
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3. Convergence theorem. We will begin with a reasonably straightforward
generalization of the argument used in [14] to show that the vorticity has no con-
centration up to the boundary. This argument mainly consists of the following two
lemmas.

Lemma 3.1. Let ωǫ = ωǫ(x, t) be a nonnegative and smooth solution of (2.2).
Let ϕ = ϕ(x) be a nonnegative smooth function on H with bounded derivatives up to
second order. Then the following inequality holds:

d

dt

∫

H

ϕ(x)ωǫ(x, t) dx

≤
∫

Γ

(1

2
|uǫ · n⊥|2∇ϕ · n⊥

)

dS + ǫ

∫

H

∆ϕωǫdx

+

∫

H

[

((uǫ
1)

2 − (uǫ
2)

2)ϕx1x2
− uǫ

1u
ǫ
2(ϕx1x1

− ϕx2x2
)
]

dx. (3.1)

Proof. For simplicity, (uǫ, ωǫ) will be denoted by (u, ω) in the proof. Using the
equations in system (2.2), it holds that

d

dt

∫

H

ϕ(x)ω(x, t) dx =

∫

H

ϕ(x)ωtdx

= −
∫

H

div(uω)ϕdx+ ǫ

∫

H

ϕ∆ωdx

=

∫

H

(u · ∇ϕ)ωdx+ ǫ

∫

Γ

∂ω

∂n
ϕdS + ǫ

∫

H

∆ϕωdx

≡ I1 + I2 + I3. (3.2)

Since ω = −divu⊥, then

I1 =

∫

H

(u · ∇ϕ) · (−divu⊥) dx

=

∫

H

∇(u · ∇ϕ) · u⊥dx −
∫

Γ

(u · ∇ϕ) · (u⊥ · n) dS.

Note that

∇(∇ϕ · u) · u⊥ = ∇(
|u|2
2

) · ∇⊥ϕ+ (u2

1 − u2

2)ϕx1x2
− u1u2(ϕx1x1

− ϕx2x2
).

Therefore,

I1 =

∫

H

[

∇(
|u|2
2

) · ∇⊥ϕ+ (u2

1
− u2

2
)ϕx1x2

(3.3)

− u1u2(ϕx1x1
− ϕx2x2

)
]

dx−
∫

Γ

(u · ∇φ)(u⊥ · n)dS

=

∫

H

[

(u2

1 − u2

2)ϕx1x2
− u1u2(ϕx1x1

− ϕx2x2
)
]

dx

+

∫

Γ

( |u|2
2

∇⊥ϕ− (∇ϕ · u)u⊥
)

· n dS, (3.4)
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where we used the decay of |u| at infinity. Due to the boundary condition ω = 0, x ∈ Γ,
and the nonnegativity of ωǫ and ϕ, one has

I2 = −ǫ
∫

Γ

∂ω

∂x2

ϕdS ≤ 0.

In addition, by direct calculation, one has

∫

Γ

( |u|2
2

∇⊥ϕ− (∇ϕ · u)u⊥
)

· ndS =

∫

Γ

1

2
|u · n⊥|2∇ϕ · n⊥dS.

where the boundary condition u ·n = 0 on {x2 = 0} has been used. Putting (3.4) and
the above equality into (3.2), we obtain (3.1) and the proof of the lemma is complete.

Remark 3.1. Actually, in (3.1), one has

∫

Γ

(1

2
|uǫ · n⊥|2∇ϕ · n⊥

)

dS =
1

2

∫

+∞

−∞

(uǫ
1
(x1, 0, t))

2ϕx1
(x1, 0) dx1.

Choosing φ = arcctg(x1), x1 ∈ [−L,L] in (3.1), integrating in time, we have the
following a priori estimate on u1(x1, 0, t)

∫ T

0

∫ L

−L

∣

∣uǫ
1
(x1, 0, t)

∣

∣

2
dx1dt ≤ C, (3.5)

where L is an any constant satisfying 0 < L < ∞, and C is a constant depending on
‖ω0‖L1 , ‖u0‖L2 , T and L. This can be proved in a completely similar way presented
in [14] and we omit it here.

It follows from (3.5) that the total mass of the vorticity in a disk around a point
on the interface {x2 = 0} decays as the disk shrinks to a point. More precisely,

Lemma 3.2. Let (uǫ, ωǫ) be the smooth solution of (1.4) as in Lemma 3.1. Set
x0 = (a, 0) ∈ R2. If L > 0 and δ > 0 are such that (a− δ, a+ δ) ⊂ (−L,L), then

∫

B(x0,δ)∩H

ωǫ(y, t)dy ≤ C
√
δ
(

∫ L

−L

|uǫ
1(x1, 0, t)|2dx1

)
1

2

,

where C is a universal constant.

The proof of Lemma 3.2 is referred to that of Lemma 2 in [14].
The key issue in the proof of the global existence of weak solutions, as formulated

by Schochet in [17], is to control the possible concentrations in the limit process of
the sequence {ωǫ} as ǫ → 0. To this end, we will use a priori estimate (3.5) and the

log−
1

2 decay of circulation in small circles, first observed by Majda in [16]. In fact,
the a priori logarithmic decay in circulation turns out to be a local feature of flows
with one-sign vorticity, which was pointed out by Schochet in [17]. More precisely,
we have

Theorem 3.3. Under the assumptions of Lemma 3.2, for every T > 0, and each
compact set Σ ⊆ H̄, there exists a constant C > 0 such that for any 0 < δ < 1,

∫ T

0

(

sup
x∈Σ

∫

B(x,δ)∩H

ωǫ(y, t) dy
)

dt ≤ C| log δ|− 1

2 .
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Proof. This proof can be seen in [14]. For completeness, we just list the sketch
of the proof here. Fix Σ ⊆ B(0, R) ∩ H with R > 0 and 0 < δ < 1. Define a cut off
function as

ηδ(z) =



















1 if |z| ≤ δ,

log(|z|)−log(
√

δ)

log(
√

δ)
if δ ≤ |z| ≤

√
δ,

0 if |z| ≥
√
δ.

Integrating by parts and using the fact that ωǫ = ∇⊥ · uǫ, one has

∫

B(x,δ)∩H

ωǫ(y, t) dy ≤
∫

B(x,
√

δ)∩H

ηδ(x− y)ωǫ(y, t) dy

=

∫

B(x,
√

δ)∩H

∇yηδ(x− y) · (uǫ)⊥(y, t) dy

+

∫

B(x,
√

δ)∩Γ

ηδ(x− y) · uǫ(y, t) · n⊥dS.

Note that the other boundary terms vanish since ηδ(x − y) = 0 for y ∈ ∂B(x,
√
δ).

Therefore,

∫

B(x,δ)∩H

ωǫ(y, t)dy

≤ C| log δ|− 1

2 ‖u0‖L2(H)

+
(

∫

B(x,
√

δ)∩Γ

|uǫ · n⊥|2dS
)

1

2 |B(x,
√
δ) ∩ Γ| 12 .

Finally, it follows easily that |B(x,
√
δ)∩Γ| ≤ C

√
δ, which, together with (3.5), yields

the desired estimate. The proof of the theorem is complete.
Now we are ready to obtain the existence to the problem (1.1)-(1.3) by using the

Navier-Stokes approximations (1.4)-(1.5).

Theorem 3.4. Suppose that ω0 ∈ BM(H) is nonnegative and has a compact sup-
port such that u0 = KH[ω0] ∈ (L2(H))2. Then the weak limit w ∈ L∞(0,∞;BM(H))
of the Navier-Stokes approximations (1.4)-(1.5) is a weak solution of (1.1)-(1.3).

Proof. Let ζ = ζ(x) ∈ C∞
c ([0,∞)) be nonnegative and monotonically decreasing

inside its support, with total integral 1, and fix the mollifier ψ(x) = ζ(|x|). Consider a
sequence of smooth and compactly supported functions {ωǫ

0}, obtained by convolving
ω0 with ψǫ = ψǫ(x) = 1

ǫ2ψ(x
ǫ ). As shown in [3], ωǫ

0
is uniformly bounded in L1(H) and

uǫ
0 = KH[ω0] ∈ (L2(H))2. Due to the classical theory of the incompressible Navier-

Stokes equations (see [10], [18]), there exists a smooth approximate solution (uǫ, ωǫ)
of (2.2).

In addition, as shown in [3], the following estimate holds for all T > 0,

sup
0≤t≤T

‖ωǫ‖L1(H) ≤ C, (3.6)

where the fact that ǫ
∫

Γ

∂ωǫ

∂n ≤ 0 has been used. Moreover, it holds that
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1

2

d

dt
‖uǫ‖2

L2(H)
+ ‖∇uǫ‖2

L2(H)
≤ C|uǫ|2L2(Γ)

≤ C‖uǫ‖L2(H)‖∇uǫ‖L2(H)

≤ C‖uǫ‖L2(H) +
1

2
‖∇uǫ‖2

L2(H)
, (3.7)

where the identity
∫

Γ

∂uǫ

∂n · uǫ = 1

2

∫

Γ
|uǫ|2 is used, due to the free boundary condition

(1.5) (see [10]). Therefore, we have

sup
0≤t≤T

‖uǫ‖L2(H) ≤ C.

Moreover, it is easy to obtain that there exists a 1 < M < ∞, such that {ωǫ
t} is

uniformly bounded in Lip([0, T ];H−M
loc (H)). In fact, letting ϕ ∈ C∞

c ((0,∞) × H) in
identity (2.3), one has

|
∫ T

0

∫

H

ϕt ω
ε(x, t) dxdt| ≤ Cϕ,

where Cϕ depends on ‖ϕ‖W 2,∞(H). By duality and the imbedding theorem, one has
ωt belongs to L∞(0, T ;H−M(H)) for any T > 0 and M > 3.

Thanks to the a prior estimate of ωǫ above and utilizing the Aubin-Lions Lemma,
there exists a limit ω ∈ L∞(0,∞;BM(H)) ∩ C([0, T );H−L(H)), for any T > 0 and
some L < M, such that, taking a subsequence if necessary, ωǫ ⇀ ω weak−∗ in
L∞(0,∞;BM(H)) and ωǫ → ω strongly in C([0, T );H−L(H)). To prove that ω is a
weak solution of (1.1)-(1.3), the only difficulty lies in the nonlinear term

WNL[ωǫ, ϕ] ≡
∫ T

0

∫

H

∫

H

Hϕ(x, y, t)ωǫ(x, t)ωǫ(y, t) dydxdt.

when we take the limit in the identity (2.3) as ǫ → 0. Using Theorem 3.3, together
with the boundedness of Hϕ given in Remark 2.2, and the fact that Hϕ is continuous
off of the diagonal x = y, we can deduce that WNL[ωǫ, ϕ] → WNL[ω, ϕ] as ǫ→ 0 in a
similar arguments given in [1], [17] and [14]. The proof of the theorem is finished.

4. General domains. The above results can be easily generalized to the general
domain, which reads as

Theorem 4.1. Let Ω = {(x1, x2) : x2 ≥ γ(x1)}, where γ(x1) = 0 for |x1| ≥ x0, x0

is a fixed constant, and γ(x1) is a sufficient smooth and simple curve. Suppose that
ω0 ∈ BM(Ω) is nonnegative and has a compact support such that u0 = KH[ω0] ∈
(L2(Ω))2. Then the result of Theorem 3.4 holds true.

Defining a smooth map, which maps γ into a straight line, we can prove Theorem
4.1 in a similar way as Theorem 3.4 (see [14] for details). The main part is to obtain
the following estimate on the boundary value of u, which is similar to (3.5) in the case
of the half plane:

∫ T

0

∫

K

|u|2dSdt ≤ C, (4.1)

where K is a compact set of the boundary ∂Ω.
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To prove (4.1), we use the same test function as in (3.5), φ = arcctg(x1). Note
that, for this test function, for each compact subset K of ∂Ω, there exists c0 > 0
such that ∇ϕ · n⊥ ≤ −c0, i.e., ∇⊥ϕ · n ≥ c0 on K. Direct calculations show that
∇ϕ = (−(1 + x2

1
)−1, 0) with n⊥ = (1, 0) on the straight portion of ∂Ω and n⊥ =

(1 + (γ′(x1))
2)−

1

2 (1, γ′(x1)) on the curved portion of ∂Ω. It is noted that on the
curved portion of ∂Ω the constant c0 depends on the bound of γ′. It follows that

∫ T

0

∫

K

|u|2dSdt =

∫ T

0

∫

K

|u · n⊥|2dSdt

≤ 1

c0

∫ T

0

∫

K

|u · n⊥|2∇⊥ϕ · ndSdt

≤ 1

c0

(

∫

Ω

ϕ(x)ω0(x) dx −
∫

Ω

ϕ(x)ω(x, T ) dx

+

∫ T

0

∫

Ω

[

((u2)
2 − (u1)

2)ϕx1x2
+ u1u2(ϕx1x1

− ϕx1x2
)
]

dx

+ ǫ

∫ T

0

∫

Ω

∆ϕω dxdt
)

≤ 1

c0
(2T ‖ϕ‖L∞(Ω)‖ω0‖L1(Ω) + T ‖D2ϕ‖L∞(Ω)‖u0‖2

L2(Ω)

+ ǫT ‖D2ϕ‖L∞(Ω)‖ω0‖L1(Ω)),

where D2ϕ stands for a generic second derivative of ϕ.
In the final part of the paper, we point out that by using the Navier-Stokes

approximations, we can prove that the existence of weak solutions to (1.1) in an
exterior domain with reflection symmetry on the x1− axis under assumptions that
the initial vorticty is a vortex-sheets data with reflection symmetry (see [15]). More
precisely, let Ω = Ω+ ∪Ω−, where Ω+ = {(x1, x2) : x2 ≥ σ(x1)}, and Ω− = {(x1, x2) :
x2 ≤ −σ(x1)} with σ(x1) = 0 for |x1| ≥ x0, where x0 > 0 is a fixed number, and σ(x1)
is a sufficient smooth and simple curve. Then the result of Theorem 3.4 holds true for
the exterior problem of the 2D incompressible Euler equations under assumptions that
the initial vorticty is a vortex-sheets data with reflection symmetry. In fact, similar
to Theorem 2 in [14], the solution ω is a weak solution of the 2D Euler equations in
the upper domain Ω+ with initial data ω0 if and only if ω̃ is a weak solution of the 2D
Euler equations in the full domain Ω = Ω+ ∪Ω− with initial data ω̃0, where ω̃ and ω̃0

denote the odd extension of ω and ω̃0 to the domain Ω with respect to the variable
x1, respectively. Thus the vortex sheets problem on Ω = Ω+ ∪ Ω− can be reduced to
the vortex sheet problem on Ω+, which has been considered in Theorem 4.1.
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