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A LOCAL-STRUCTURE-PRESERVING LOCAL DISCONTINUOUS

GALERKIN METHOD FOR THE LAPLACE EQUATION
∗

FENGYAN LI† AND CHI-WANG SHU‡

Abstract. In this paper, we present a local-structure-preserving local discontinuous Galerkin

(LDG) method for the Laplace equation. The method is based on the standard LDG formulation

and uses piecewise harmonic polynomials, which satisfy the partial differential equation (PDE) ex-

actly inside each element, as the approximating solutions for the primitive variable u, leading to a

significant reduction of the degrees of freedom for the final system and hence the computational cost,

without sacrificing the convergence quality of the solutions. An a priori error estimate in the energy

norm is established. Numerical experiments are performed to verify optimal convergence rates of the

local-structure-preserving LDG method in the energy norm and in the L2-norm, as well as to com-

pare it with the standard LDG method to demonstrate comparable performance of the two methods

even though the new local-structure-preserving LDG method is computational less expensive.
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1. Introduction. It is well known that by allowing discontinuities in the finite

element solution spaces, discontinuous Galerkin (DG) methods [5, 7], or the local

discontinuous Galerkin (LDG) methods for partial differential equations (PDEs) con-

taining higher than first spatial derivatives [6, 13, 14, 15], have more degrees of freedom

compared with the traditional finite element methods. This is often considered as a

drawback of the DG (or LDG) methods. However, these “extra” degrees of freedom

may provide algorithm developers opportunities to design stable and accurate schemes

by properly choosing the inter-element treatment (also called numerical fluxes). This

issue has been pursued by many authors regarding different problems, see for example

the review paper [7] and the special issue of the Journal of Scientific Computing on

discontinuous Galerkin methods [8].

In this paper, we study a local-structure-preserving LDG method for solving the

Laplace equation as a model equation, to explore another issue related to these “extra”

degrees of freedom. That is, the discontinuities of the solution spaces also provide

flexibility for us to choose the local solution spaces in each element, which is definitely

not easy for traditional continuous finite element methods.

Our local-structure-preserving LDG method for the Laplace equation is based

on the standard LDG method for elliptic equations [2]. The distinctive feature of

the method is the use of harmonic polynomials (polynomials which satisfy △u = 0)

to approximate the primitive variable u in each element. In other words, the PDE

is satisfied exactly in each element by the numerical solution. As a byproduct, the

number of degrees of freedom for the final system is significantly reduced, therefore

less computational cost is expected compared with the standard LDG method. Mean-

while, the approximation properties of the chosen spaces can guarantee no loss of the
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accuracy. This local-structure-preserving idea has been successfully studied for sev-

eral equations: the Maxwell equations [4] and the MHD equations [10] in which the

solution spaces are locally divergence-free, and the Hamilton-Jacobi equations [11] in

which the solution space is locally curl-free.

Following the approach in [2], we prove that if harmonic polynomials of degree

at most k are used for the primitive variable u, with properly chosen spaces for

the auxiliary variable q = ∇u, the numerical solutions will give an optimal k-th order

approximation in the energy norm (the error of q in L2
-norm plus terms involving the

jumps of u across element interfaces) for sufficiently smooth solutions. This estimate is

confirmed by numerical experiments. These numerical experiments also demonstrate

that the optimal (k+1)-th order accuracy is achieved for u in the L2
-norm, though

the proof of this result cannot be obtained by the direct application of the standard

duality argument due to the choice of the solution spaces. This is left as an open issue

to be addressed later.

Notice that the spirit of the LDG method, for which the auxiliary variable q ≈ ∇u
can be locally eliminated, ensures us a final system with the size depending only on

the dimension of the space for u [2]. A simple derivation shows that the dimension

of our proposed space for u depends on the polynomial degree k linearly, whereas the

dimension of the standard choice of the LDG solution space depends on k quadrati-
cally. At the same time, one can see numerically that this local-structure-preserving

LDG method gives comparable results as the ones by the standard LDG method,

and the condition number of the final linear system is in the same order as the one

of the standard LDG method. Therefore with the reduced degrees of freedom, less

computational cost is needed using this proposed method in order to achieve the same

accuracy for the approximation, while certain structure of the solution is maintained

exactly in each element.

The paper is organized as follows. In Section 2, we introduce the local-structure-

preserving LDG method for the Laplace equation. The well-posedness of the method

is established in the same section. Section 3 contains an a priori error estimate in

the energy norm, which is confirmed by numerical experiments in Section 4. Also in

Section 4, we include the numerical convergence study for the solution u in the L2
-

norm, a comparison between the results of the local-structure-preserving LDG method

and the ones of the standard LDG method as well as the numerical results with an

alternative choice of the space for qh. We end in Section 5 with some concluding

remarks.

2. Local-structure-preserving LDG method. The following model problem

is considered

−△ u = 0 in Ω

u = gD on ΓD (2.1)

∂u

∂n
= gN · n on ΓN

where Ω ⊂ R
d

is a bounded domain with the outward unit normal n to its boundary

Γ = ΓN ∪ ΓD. We assume |ΓD|Rd−1 > 0 for simplicity.

The standard LDG method for solving (2.1) would start with a triangulation Th

of the domain Ω with the element being denoted by K, the edge by e, the diameter of

K by hK , and the meshsize by h = maxK∈Th
hK . We further denote by Ei the union

of all interior edges, by ED the union of the edges on ΓD, and by EN the union of the
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edges on ΓN . By introducing the auxiliary variable q = ∇u, (2.1) can be rewritten as

q = ∇u in Ω (2.2)

−∇ · q = 0 in Ω (2.3)

u = gD on ΓD (2.4)

q · n = gN · n on ΓN (2.5)

Following the usual definition of the LDG method for elliptic equations, see e.g.

[2], we obtain the LDG method for (2.2)-(2.5): find (uh,qh) ∈ Vh × Mh such that

∀K ∈ Th,

∫

K

qh · rdx = −

∫

K

uh∇ · rdx +

∫

∂K

ûhr · nKds, (2.6)

∫

K

qh · ∇vdx =

∫

∂K

vq̂h · nKds. (2.7)

Here nK is the outward unit normal vector of ∂K. There are two things to be specified

in order to finalize the method. One is to choose the numerical fluxes: ûh and q̂h,

which we take as in [2]

q̂ ={{q}} − C11[[u]] − C12[[q]] (2.8)

û = {{u}}+ C12 · [[u]] (2.9)

for any interior edge e, and

q̂ :=

{
q

+ − C11(u
+
n

+
+ gDn

−
) on ΓD

gN on ΓN
(2.10)

û :=

{
gD on ΓD

u+
on ΓN

(2.11)

for edges on the domain boundary. Here the average {{·}} and the jump [[·]] are defined

as follows: at any point x ∈ e ∈ Ei,

{{u}} := (u+

+ u−
)/2, {{q}} := (q

+

+ q
−

)/2 (2.12)

[[u]] := (u+

n
+

+ u−
n
−

)/2, [[q]] := (q
+

· n
+

+ q
−
· n

−
)/2, (2.13)

with the following meanings of the notations: suppose e = K+∩K−
, let n

+
and n

−
be

the outer unit normals of K+
and K−

along e respectively, and (u+,q+
) (respectively

(u−,q−
)) be the trace of the piecewise smooth function (u,q) inside K+

(respectively

K−
) along e. For a boundary edge e ⊂ K, we denote K+

= K and n
+

is the outer

unit normal along ∂Ω. The parameters C11 and C12 in general depend on x ∈ e, and

we will comment on the choice of these parameters later.

To complete the scheme, the second component is to choose the solution spaces

Vh and Mh. The standard choice of these spaces is [2]

V̄h := V̄ k
h = {u ∈ L2

(Ω) : u|K ∈ P k
(K), ∀K ∈ Th},

M̄h := M̄
k
h = {q ∈ [L2

(Ω)]
d

: q|K ∈ [P k
(K)]

d, ∀K ∈ Th},
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Table 2.1

The dimensions of the local-structure-preserving space V k

h
|K and the standard space V̄ k

h
|K in

each element.

k 1 2 3 4 5 6 7

dim(V k
h |K) 3 5 7 9 11 13 15

dim(V̄ k
h |K) 3 6 10 15 21 28 36

where P k
(K) denotes the space of polynomials in K of degree at most k. In this

paper, we would like to propose a different choice of the solution spaces

Vh := V k
h = {u ∈ L2

(Ω) : u|K ∈ P k
(K),△u|K = 0, ∀K ∈ Th},

Mh := M
k
h = {q ∈ [L2

(Ω)]
d

: q|K ∈ [P k
(K)]

d,∇ · q|K = 0, ∀K ∈ Th}.

Notice the piecewise harmonic polynomials are used as the approximations for u. It is

easy to write a local basis of V k
h |K . For example, if we take K = [−

1

2
, 1

2
]×[−

1

2
, 1

2
] ⊂ R

2
,

one choice of the basis of V k
h |K could be:

k = 1 : 1, x, y
k = 2 : add x2 − y2

, xy
k = 3 : add x3 − 3xy2

, y3 − 3x2y
k = 4 : add x4 − 6x2y2

+ y4
, x3y − xy3

Remark 2.1.

• Using the piecewise harmonic polynomials (△u = 0) for uh, the PDE is
satisfied exactly in each element by the approximating solutions.

• Due to the choice of the numerical fluxes (2.8)-(2.11), the function qh can
be locally solved in terms of uh from (2.6) and eliminated from the equations,
hence the size of the final system to be solved only depends on the size of the
solution space for uh. This is the reason that the method is called a local

discontinuous Galerkin method in [6].
• Notice that the dimension of this local-structure-preserving space V k

h |K for
uh is 2k + 1, which depends on k linearly, whereas the dimension of the
standard choice of the space V̄ k

h |K for uh is (k + 2)(k + 1)/2, which depends
on k quadratically. In other words, using the proposed space will significantly
reduce the degrees of freedom of the final system especially for large k. In
Table 2.1, we display the dimensions of these two spaces for some values of
the polynomial degree k.

• Besides the consideration on the approximating properties of the discrete
spaces Vh and Mh, there is one more condition needed on these spaces which
ensures the well-posedness of the scheme (see Lemma 2.2) and the error es-
timate (see Theorem 3.1); that is

∇Vh ⊂ Mh (2.14)

From (2.14), one can see that there are some alternative choices for Mh:

Mh = M̄
k
h, or Mh = M̄

k−1

h .

We will further comment on these choices in Remark 3.6.
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• The coefficient C11 needs to be positive for the well-posedness of the scheme
(Lemma 2.2). Throughout this paper, C12 is taken to be O(1). In the numeri-
cal experiments, we take C12 to be along the (pre-chosen) direction of the nor-
mal vector of each edge with the modulus 1/2. By doing so, if C11 = 0 in (2.8)-
(2.11), the numerical fluxes become the “alternating fluxes” (û, q̂) = (u+,q−

),
or = (u−,q+

), which simplify the computation and make the stencil narrower
when the auxiliary variable q is locally eliminated. Such “alternating fluxes”
have been used extensively in time-dependent problems [6, 14, 15, 13] with
great success.

By summing up over all K ∈ Th, the method can be written as: find (uh,qh) ∈

Vh × Mh, such that

a(qh, r) + b(uh, r) =F (r) ∀ r ∈ Mh (2.15)

−b(v,qh) + c(uh, v) =G(v) ∀ v ∈ Vh (2.16)

where

a(q, r) =

∫

Ω

q · rdx

b(u, r) =

∑

K∈Th

∫

K

u∇ · rdx −

∫

Ei

({{u}} + C12 · [[u]])[[r]]ds −

∫

EN

ur · nds

= −
∑

K∈Th

∫

K

∇u · rdx +

∫

Ei

({{r}} − C12[[r]]) · [[u]]ds +

∫

ED

ur · nds

c(u, v) =

∫

Ei

C11[[u]] · [[v]]ds +

∫

ED

C11uvds

F (r) =

∫

ED

gDr · nds, G(v) =

∫

ED

C11gDvds +

∫

EN

vgN · nds.

A more compact way of writing the scheme is to find (uh,qh) ∈ Vh ×Mh, which

satisfies

A(qh, uh; r, v) = F(r, v) ∀ (v, r) ∈ Vh × Mh (2.17)

where

A(q, u; r, v) = a(q, r) + b(u, r) − b(v,q) + c(u, v), F(r, v) = F (r) + G(v).

Lemma 2.2 (Well-posedness). The LDG method defined by (2.17) with C11 > 0

provides a unique approximation solution (uh,qh) ∈ Vh × Mh.

Proof. Exactly the same argument as that in the Proposition 2.1 in [2] can be

used here, since the condition (2.14) is the only property of Vh and Mh needed in the

proof.

3. An a priori error estimate in the energy norm. In this section, we

present an a priori error estimate in the energy norm for the scheme (2.17). We

follow a similar argument as that in [2]. Since what we emphasize in this paper is the

local-structure-preserving idea, we assume the full elliptic regularity in this section

for simplicity. That is, the exact solution (u,q) ∈ V × M, where

V := {u ∈ Hs+2

(Ω) : △u = 0 in Ω} M := {q ∈ [Hs+1

(Ω)]
d

: ∇·q = 0 in Ω}, s ≥ 0.



220 F. LI AND C.-W. SHU

The general cases can be obtained by more delicate analysis. We further assume the

triangulations Th are regular; that is, there exists a positive constant σ independent

of h such that

hK

ρK

≤ σ, ∀ K ∈ Th. (3.1)

Here ρK is the diameter of the biggest ball BK included in K. And K is star-shaped

with respect to BK .

Theorem 3.1 (Error estimate in the energy norm). Let (u,q) ∈ V × M be the
exact solution of (2.1) and (uh,qh) ∈ V k

h × M
k
h be the approximate local-structure-

preserving LDG solution of (2.17). For C12 = O(1), we have

|(q − qh, u − uh)|A ≤ ChP
||u||s+2, (3.2)

where

|(q, u)|A =

(
||q||

2

0
+

∫

Ei

C11|[[u]]|
2ds +

∫

ED

C11u
2ds

)
1/2

(3.3)

P =

{
min{s +

1

2
, k} C11 ∼ O(1)

min{s + 1, k} C11 ∼ O(h−1
).

(3.4)

Here the constant C depends on Ω, d, s and σ.

There are mainly two ingredients in the proof. One is the Galerkin orthogonality

from the consistency of the scheme:

A(q − qh, u − uh; r, v) = 0, ∀ (v, r) ∈ Vh × Mh. (3.5)

The other is the approximation property of the solution spaces Vh and Mh.

Lemma 3.2 (Approximation property of Vh and Mh: I). There exists a constant
C = C(s, d, σ), such that ∀ (w, r) ∈ V ×M, there exist (wh, rh) ∈ V k

h ×M
k
h satisfying

‖w − wh‖0,K ≤Ch
min{s+1,k}+1

K |w|s+2,K , |w − wh|1,K ≤ Ch
min{s+1,k}
K |w|s+2,K

(3.6)

‖r− rh‖0,K ≤Ch
min{s,k}+1

K |r|s+1,K . (3.7)

Proof. First we assume s is an integer. (3.7) is a part of the results of Theorem

4.3 in [1]. (3.6) can be obtained by following the proofs of Theorems 4.1, 4.2 and 4.3

in [1] line by line with the following modification in the proof of Theorems 4.2 and

4.3: Notationwise, we regard D in the proof as our K and we let B and S in the proof

be the same; We start with a scaler function v ∈ V |K instead of a vector v ∈ S
m

(D)

and all the functions involved are scaler as well; We replace the divergence operator

“div” by the Laplace operator “△” (this operator appears at the very end of these

two proofs). The Interpolation Theorem (see Theorem 1.4 in [9]) can give the results

for general s ≥ 0.

With the same notations as in Lemma 3.2, if we introduce Π as the L2
projection

from M onto Mh, we further have the following results:
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Corollary 3.3 (Approximation property of Vh and Mh: II).

‖w − wh‖0,∂K ≤Ch
min{s+1,k}+1/2

K |w|s+2,K (3.8)

‖r− Πr‖0,K ≤Ch
min{s,k}+1

K |r|s+1,K (3.9)

‖(r − Πr) · n‖0,∂K ≤Ch
min{s,k}+1/2

K |r|s+1,K . (3.10)

Proof. (3.8) holds because of (3.6) and |v|2
0,∂K ≤ C

{
h−1

K ‖v‖2

0,K + ‖v‖0,K |v|1,K

}

for v ∈ H1
(K). We get (3.9) because of ‖r − Πr‖0,K = infrh∈Mh

‖r − rh‖0,K and

(3.7). Notice ∇ · (r − Πr)|K = 0, (3.9) and the trace theorem with the scaling for

p ∈ H(div, K) [12]: ‖p · n‖0,∂K ≤ C(h−1

K ‖p‖2

0,K + ‖∇ · p‖2

0,K)
1/2

lead to (3.10).

The following inverse inequality (see [3]) and a key inequality related to the inte-

gral of the average / jump functions will also be needed in the proof:

Lemma 3.4 (Inverse inequality). For w ∈ P k
(K), we have

||w||0,∂K ≤ Ch
−1/2

K ||w||0,K . (3.11)

Lemma 3.5 (Inequality related to the average and jump functions). If e =

K+ ∩ K−, with the notations defined by (2.12) and (2.13), we have

∫

e

({{a}} − C12[[a]]) · [[b]]ds ≤ C

(
∑

K∈K+∪K−

1

C11

‖a · nK‖
2

0,∂K

)
1/2(∫

e

C11|[[b]]|
2ds

)
1/2

where the constant C depends on C12.

Proof. By definition

∫

e

({{a}} − C12[[a]]) · [[b]]ds

=

∫

e

(
a

+
+ a

−

2
− C12(a

+

· n
+

+ a
−
· n

−
)

)
· (b+

n
+

+ b−n
−

)ds

=

∫

e

(
(a

+ · n+
)n

+
+ (a

− · n−
)n

−

2
− C12(a

+

· n
+

+ a
−
· n

−
)

)
· (b+

n
+

+ b−n
−

)ds

≤ C

(
∑

K∈K+∪K−

1

C11

‖a · nK‖
2

0,∂K

)
1/2(∫

e

C11|[[b]]|
2ds

)
1/2

. (3.12)

Now we are ready to prove our main result.

Proof. [Proof of Theorem 3.1] Without loss of generality, we take C11(x) = c11

in the proof for the simplicity of the notation, where c11 is a constant which might

depend on the meshsize h. Let Πq be the L2
projection of q onto M

k
h, and Hu ∈ V k

h

be the approximation function to u described in Lemma 3.2. Notice

|(eq, eu)|A = | (q − Πq + Πq− qh, u −Hu + Hu − uh) |A

≤ | (q − Πq, u −Hu) |A + | (Πq − qh,Hu − uh) |A

= I + II. (3.13)
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We now estimate the terms I and II separately.

I
2

= | (q − Πq, u −Hu) |
2

A

= A(q − Πq, u −Hu;q− Πq, u −Hu)

= a(q − Πq,q− Πq) + c(u −Hu, u −Hu)

≤
∑

K

(
||q − Πq||

2

0,K + 2c11||u −Hu||2
0,∂K

)

≤ C
∑

K

(
h

2min{s,k}+2

K ||q||
2

s+1,K + c11h
2min{s+1,k}+1

K ||u||2s+2,K

)
. (3.14)

In the last inequality we use the approximation results in Corollary 3.3.

II
2

=A(Πq − qh,Hu − uh;Πq− qh,Hu − uh)

=A(Πq − q,Hu − u;Πq− qh,Hu − uh) (Galerkin orthogonality)

=a(Πq − q,Πq− qh) + b(Hu − u,Πq− qh)

− b(Hu − uh,Πq− q) + c(Hu − u,Hu − uh). (3.15)

Since Π is an L2
projection from M to Mh, from the definition of a(·, ·), the first

term in (3.15) is zero. Now let us look at the second term in (3.15):

b(Hu − u,Πq− qh) = −
∑

K∈Th

∫

K

∇(Hu − u) · (Πq− qh)dx

+

∫

Ei

({{Πq− qh}} − C12[[Πq − qh]]) · [[Hu − u]]ds +

∫

ED

(Hu − u)(Πq− qh) · nds

≤

(
∑

K∈Th

‖∇(Hu − u)‖
2

0,K

)
1/2
(
∑

K∈Th

‖Πq− qh‖
2

0,K

)
1/2

+ C

(
∑

K∈Th

hK‖Πq− qh‖
2

0,∂K

)
1/2
(
∑

K∈Th

1

hK

‖Hu − u‖2

0,∂K

)
1/2

≤

(
∑

K∈Th

‖∇(Hu − u)‖
2

0,K +
1

hK

‖Hu − u‖2

0,∂K

)
1/2
(
∑

K∈Th

‖Πq− qh‖
2

0,K

)
1/2

.

(3.16)

Here the inverse inequality (3.11) is used and C depends on C12. Now we turn to

estimate the third term in (3.15):

b(Hu − uh,Πq − q) = −
∑

K∈Th

∫

K

∇(Hu − uh) · (Πq − q)dx

+

∫

Ei

({{Πq− q}} − C12[[Πq − q]]) · [[Hu − uh]]ds +

∫

ED

(Hu − uh)(Πq − q) · nds.

The volume integral above is zero since Π is an L2
projection from M to Mh and we
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have the inclusion relation (2.14): ∇Vh ⊂ Mh. Now we can apply Lemma 3.5 and get

b(Hu − uh,Πq− q)

≤C

(
∑

K∈Th

1

c11

‖(Πq− q) · nK‖
2

0,∂K

)
1/2

×

(∫

Ei

c11|[[Hu − uh]]|
2ds +

∫

ED

c11|Hu − uh|
2ds

)
1/2

. (3.17)

The last term in (3.15) is

c(Hu − u,Hu − uh)

≤

(∫

Ei

c11|[[Hu − u]]|
2ds +

∫

ED

c11(Hu − u)
2ds

)
1/2

×

(∫

Ei

c11|[[Hu − uh]]|
2ds +

∫

ED

c11(Hu − uh)
2ds

)
1/2

≤C

(
∑

K∈Th

c11‖Hu − u‖2

0,∂K

)
1/2(∫

Ei

c11|[[Hu − uh]]|
2ds +

∫

ED

c11(Hu − uh)
2ds

)
1/2

.

(3.18)

Now by putting (3.16) (3.17) (3.18) together,

II
2

≤ C Λ(Πq− q,Hu − u) II

where C depends on C12, and

Λ(p, v)
2

=

∑

K∈Th

(
‖∇v‖2

0,K + (
1

hK

+ c11)‖v‖
2

0,∂K +
1

c11

‖p · nK‖
2

0,∂K

)
.

Therefore we have

II ≤C Λ(Πq − q,Hu − u)

≤C

{
∑

K∈Th

(
1

c11

h
2min{s,k}+1

K ||q||
2

s+1,K + (c11 +
1

hK

)h
2min{s+1,k}+1

K ||u||2s+2,K

)}1/2

(3.19)

In the last step, we again use the approximation results in Lemma 3.2 and Corollary

3.3. Now combining (3.13) (3.14) (3.19), we obtain our main result in error estimate

(3.2)-(3.4).

Remark 3.6. We can get the same optimal error estimates as (3.2)-(3.4) if we
replace the discrete spaces by V k

h × M̄
k
h. If we instead use V k

h × M̄
k−1

h , the inclusion
relation (2.14) still holds and we can get the estimate as (3.2) yet with

P =

{
min{s +

1

2
, k −

1

2
} C11 ∼ O(1)

min{s + 1, k} C11 ∼ O(h−1
)

In other word, C11 ∼ O(1) does not give optimal error estimate results in this case.



224 F. LI AND C.-W. SHU

Remark 3.7. Unfortunately, a direct application of the standard duality argu-
ment [2] can not provide the error estimate for u in the L2-norm due to the choice
of the solution space. This issue will be addressed elsewhere. Numerically, however,
we observe the optimal convergence rate for u in the L2-norm, see Tables 4.1-4.2 in
Section 4.

4. Numerical results. In this section, we include two numerical examples in

the two dimensional case. One is the smooth example with the exact solution u(x, y) =

e−x
cos(y) on [0, 1]× [0, 1]. The other is the singular example with the exact solution

u(x, y) = rα
sin(αθ) on [0, 1]× [0, 1], where (r, θ) is the polar coordinate and α = 4/3.

The Dirichlet boundary condition with empty Neumann boundary is considered in

both cases. We also compute the singular example with α = 2/3 and obtain similar

results, which are not included here to save space. The computation is performed

on uniform rectangular meshes, with the parameter C12 to be along the (pre-chosen)

direction of the normal vector of each edge with the modulus 1/2 (see Remark 2.1).

Diagonally pre-conditioned Conjugate Gradient iterative method is used to solve the

final linear system, the stopping criterion is such that the relative residual error is less

than 10
−13

.

The following notations are used in Tables 4.1-4.8: LSP means the local-structure-

preserving LDG method; Std means the standard LDG method; Mix means the local-

structure-preserving LDG method with V k
h × M̄

k
h as the solution spaces.

4.1. Validation of the error estimate with different C11. We first check

the convergence behavior of our local-structure-preserving LDG method for smooth

and singular solutions with different stabilizing parameter C11, see Tables 4.1 and

4.2. For both C11 = 10 = O(1) and C11 = 1/h = O(1/h), the theoretical convergence

result is confirmed. The errors for both cases are in the same magnitude. Moreover,

the case with C11 = O(1) seems to give relatively better convergence rates for qh

in the L2
-norm and for (uh,qh) in the energy norm, and the convergence rates are

also higher than the theoretically expected ones. Although we have not provided an

error estimate for u in the L2
-norm theoretically, we observe numerically the (k+1)-th

order convergence rate for smooth solutions which are optimal.

4.2. Comparison of the local-structure-preserving LDG method and

the standard LDG method. When we introduce the local-structure-preserving

LDG method, we claim that by doing so, the size of the final linear system is greatly

reduced due to the choice of the solution spaces. In this subsection, we show that

this theoretically less expensive method will produce comparable results as the stan-

dard LDG methods do for both the smooth example and the singular example with

different choices of the stabilizing parameter C11, see Tables 4.3-4.6. Therefore we

conclude that we provide a less expensive method which can produce equally good

approximations.

4.3. The local-structure-preserving LDG method with Mh or M̄h as the

space for qh. In this subsection, we use V k
h ×M

k
h and V k

h ×M̄
k
h as the solution spaces

in the local-structure-preserving LDG method (2.17). Similar convergence rates and

comparable numerical results are observed, see Tables 4.7-4.8. Notice that in actual

implementation, once the inclusion relation (2.14) and the approximation properties

in Lemma 3.2 and Corollary 3.3 are satisfied, there is still plenty of room for choosing

the space for the auxiliary variable qh. The P 1
results are not included in the tables

as they are actually the same as the P 1
results in Tables 4.3 and 4.4.
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Table 4.1

Local-structure-preserving LDG solutions with different parameter C11 for the smooth example
u(x, y) = e−x

cos(y). h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 1
-LSP with C11 = 10

h0 5.33E-04 - 6.61E-03 - 3.15E-02 -

h0/2 1.41E-04 1.92 2.07E-03 1.67 6.64E-03 1.44

h0/4 3.64E-05 1.95 6.28E-04 1.72 2.40E-03 1.47

h0/8 9.30E-06 1.97 1.89E-04 1.74 8.57E-04 1.48

h0/16 2.35E-06 1.98 5.63E-05 1.74 3.04E-04 1.49

h0/32 5.91E-07 1.99 1.67E-05 1.75 1.08E-04 1.50

P 1
-LSP with C11 = 1/h

h0 5.33E-04 - 6.61E-03 - 1.80E-02 -

h0/2 1.34E-04 1.99 3.11E-03 1.08 9.04E-03 1.00

h0/4 3.36E-05 1.99 1.50E-03 1.05 4.52E-03 1.00

h0/8 8.42E-06 2.00 7.34E-04 1.03 2.26E-03 1.00

h0/16 2.11E-06 2.00 3.63E-04 1.02 1.13E-03 1.00

h0/32 5.27E-07 2.00 1.80E-04 1.01 5.66E-04 1.00

P 2
-LSP with C11 = 10

h0 1.20E-05 - 2.89E-04 - 4.71E-04 -

h0/2 1.93E-06 2.64 5.16E-05 2.49 9.55E-05 2.30

h0/4 2.92E-07 2.73 8.08E-06 2.67 1.85E-05 2.37

h0/8 4.11E-08 2.83 1.15E-06 2.81 3.46E-06 2.42

h0/16 5.48E-09 2.90 1.56E-07 2.89 6.31E-07 2.46

h0/32 7.10E-10 2.95 2.04E-08 2.93 1.13E-07 2.48

P 2
-LSP with C11 = 1/h

h0 1.20E-05 - 2.89E-04 - 4.71E-04 -

h0/2 1.53E-06 2.97 7.51E-05 1.95 1.20E-04 1.97

h0/4 1.93E-07 2.99 1.91E-05 1.97 3.04E-05 1.98

h0/8 2.43E-08 2.99 4.82E-06 1.99 7.65E-06 1.99

h0/16 3.04E-09 2.99 1.21E-06 1.99 1.92E-06 2.00

h0/32 3.81E-10 3.00 3.03E-07 2.00 4.80E-07 2.00

P 3
-LSP with C11 = 10

h0 2.31E-07 - 5.65E-06 - 7.78E-06 -

h0/2 1.74E-08 3.73 5.33E-07 3.41 8.10E-07 3.26

h0/4 1.26E-09 3.79 4.78E-08 3.48 8.11E-08 3.32

h0/8 8.71E-11 3.85 4.44E-09 3.43 7.97E-09 3.35

h0/16 5.57E-12 3.97 4.50E-10 3.30 7.85E-10 3.34

P 3
-LSP with C11 = 1/h

h0 2.31E-07 - 5.65E-06 - 7.78E-06 -

h0/2 1.46E-08 3.98 7.21E-07 2.97 9.85E-07 2.98

h0/4 9.15E-10 3.99 9.10E-08 2.99 1.24E-07 2.99

h0/8 5.74E-11 3.99 1.14E-08 2.99 1.55E-08 3.00

h0/16 4.11E-12 3.80 1.43E-09 3.00 1.94E-09 3.00
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Table 4.2

Local-structure-preserving LDG solutions with different parameter C11 for the singular example
u(x, y) = rα

sin(αθ), where (r, θ) is the polar coordinate and α = 4/3. h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 1
-LSP with C11 = 10

h0 5.72E-04 - 8.36E-03 - 2.46E-02 -

h0/2 1.47E-04 1.96 3.21E-03 1.38 9.13E-03 1.43

h0/4 3.78E-05 1.97 1.24E-03 1.37 3.35E-03 1.45

h0/8 9.62E-06 1.97 4.81E-04 1.36 1.22E-03 1.46

h0/16 2.45E-06 1.98 1.88E-04 1.35 4.43E-04 1.46

h0/32 6.23E-07 1.97 7.44E-05 1.34 1.62E-04 1.46

P 1
-LSP with C11 = 1/h

h0 5.72E-04 - 8.36E-03 - 2.46E-02 -

h0/2 1.46E-04 1.97 3.54E-03 1.24 1.25E-02 0.98

h0/4 3.70E-05 1.98 1.53E-03 1.21 6.29E-03 0.99

h0/8 9.35E-06 1.98 6.77E-04 1.18 3.16E-03 0.99

h0/16 2.36E-06 1.99 3.08E-04 1.14 1.59E-03 0.99

h0/32 5.92E-07 1.99 1.43E-04 1.10 7.96E-04 1.00

P 2
-LSP with C11 = 10

h0 5.30E-05 - 2.35E-03 - 2.83E-03 -

h0/2 1.13E-05 2.23 9.03E-04 1.38 1.02E-03 1.48

h0/4 2.36E-06 2.26 3.52E-04 1.36 3.78E-04 1.43

h0/8 4.84E-07 2.28 1.38E-04 1.35 1.44E-04 1.39

h0/16 9.81E-08 2.30 5.47E-05 1.34 5.58E-05 1.37

h0/32 1.97E-08 2.32 2.16E-05 1.34 2.19E-05 1.35

P 2
-LSP with C11 = 1/h

h0 5.30E-05 - 2.35E-03 - 2.83E-03 -

h0/2 1.06E-05 2.33 9.32E-04 1.33 1.12E-03 1.33

h0/4 2.10E-06 2.33 3.70E-04 1.33 4.46E-04 1.33

h0/8 4.17E-07 2.33 1.47E-04 1.33 1.77E-04 1.33

h0/16 8.27E-08 2.33 5.83E-05 1.33 7.03E-05 1.33

h0/32 1.64E-08 2.33 2.31E-05 1.33 2.79E-05 1.33

P 3
-LSP with C11 = 10

h0 1.98E-05 - 1.62E-03 - 1.73E-03 -

h0/2 4.23E-06 2.23 6.34E-04 1.36 6.58E-04 1.39

h0/4 9.01E-07 2.23 2.48E-04 1.35 2.54E-04 1.37

h0/8 1.89E-07 2.25 9.78E-05 1.35 9.90E-05 1.36

h0/16 3.91E-08 2.27 3.86E-05 1.34 3.89E-05 1.35

P 3
-LSP with C11 = 1/h

h0 1.98E-05 - 1.62E-03 - 1.73E-03 -

h0/2 3.93E-06 2.33 6.44E-04 1.33 6.87E-04 1.33

h0/4 7.80E-07 2.33 2.56E-04 1.33 2.72E-04 1.33

h0/8 1.54E-07 2.33 1.01E-04 1.33 1.08E-04 1.33

h0/16 3.07E-08 2.33 4.03E-05 1.33 4.29E-05 1.33
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Table 4.3

Local-structure-preserving LDG solutions and the standard LDG solutions for the smooth ex-
ample u(x, y) = e−x

cos(y). C11 = 10. h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 1
-LSP

h0 5.33E-04 - 6.61E-03 - 3.15E-02 -

h0/2 1.41E-04 1.92 2.07E-03 1.67 6.64E-03 1.44

h0/4 3.64E-05 1.95 6.28E-04 1.72 2.40E-03 1.47

h0/8 9.30E-06 1.97 1.89E-04 1.74 8.57E-04 1.48

h0/16 2.35E-06 1.98 5.63E-05 1.74 3.04E-04 1.49

h0/32 5.91E-07 1.99 1.67E-05 1.75 1.08E-04 1.50

P 1
-Std

h0 5.33E-04 - 6.78E-03 - 1.81E-02 -

h0/2 1.40E-04 1.93 2.16E-03 1.65 6.66E-03 1.44

h0/4 3.62E-05 1.95 6.79E-04 1.67 2.41E-03 1.47

h0/8 9.21E-06 1.97 2.18E-04 1.64 8.62E-04 1.48

h0/16 2.32E-06 1.99 7.26E-05 1.59 3.06E-04 1.49

h0/32 5.84E-07 1.99 2.48E-05 1.55 1.09E-04 1.50

P 2
-LSP

h0 1.20E-05 - 2.89E-04 - 4.71E-04 -

h0/2 1.93E-06 2.64 5.16E-05 2.49 9.55E-05 2.30

h0/4 2.92E-07 2.73 8.08E-06 2.67 1.85E-05 2.37

h0/8 4.11E-08 2.83 1.15E-06 2.81 3.46E-06 2.42

h0/16 5.48E-09 2.90 1.56E-07 2.89 6.31E-07 2.46

h0/32 7.10E-10 2.95 2.04E-08 2.93 1.13E-07 2.48

P 2
-Std

h0 8.55E-06 - 4.70E-04 - 5.52E-04 -

h0/2 1.08E-06 2.98 1.21E-04 1.95 1.32E-04 2.06

h0/4 1.36E-07 2.99 3.11E-05 1.97 3.24E-05 2.03

h0/8 1.70E-08 3.00 7.86E-06 1.98 8.03E-06 2.01

h0/16 2.13E-09 3.00 1.98E-06 2.00 2.00E-06 2.00

h0/32 2.67E-10 3.00 4.96E-07 2.00 4.98E-07 2.00

P 3
-LSP

h0 2.31E-07 - 5.65E-06 - 7.78E-06 -

h0/2 1.74E-08 3.73 5.33E-07 3.41 8.10E-07 3.26

h0/4 1.26E-09 3.79 4.78E-08 3.48 8.11E-08 3.32

h0/8 8.71E-11 3.85 4.44E-09 3.43 7.97E-09 3.35

h0/16 5.57E-12 3.97 4.50E-10 3.30 7.85E-10 3.34

P 3
-Std

h0 1.32E-07 - 6.52E-06 - 7.57E-06 -

h0/2 8.61E-09 3.94 8.24E-07 2.98 8.96E-07 3.08

h0/4 5.51E-10 3.97 1.03E-07 2.99 1.08E-07 3.05

h0/8 3.50E-11 3.98 1.30E-08 3.00 1.33E-08 3.03

h0/16 3.17E-12 3.46 1.63E-09 3.00 1.65E-09 3.01
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Table 4.4

Local-structure-preserving LDG solutions and the standard LDG solutions for the smooth ex-
ample u(x, y) = e−x

cos(y). C11 = 1/h. h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 1
-LSP

h0 5.33E-04 - 6.61E-03 - 1.80E-02 -

h0/2 1.34E-04 1.99 3.11E-03 1.08 9.04E-03 1.00

h0/4 3.36E-05 1.99 1.50E-03 1.05 4.52E-03 1.00

h0/8 8.42E-06 2.00 7.34E-04 1.03 2.26E-03 1.00

h0/16 2.11E-06 2.00 3.63E-04 1.02 1.13E-03 1.00

h0/32 5.27E-07 2.00 1.80E-04 1.01 5.66E-04 1.00

P 1
-Std

h0 5.33E-04 - 6.78E-03 - 1.81E-02 -

h0/2 1.34E-04 1.99 3.16E-03 1.10 9.05E-03 1.00

h0/4 3.36E-05 2.00 1.51E-03 1.06 4.52E-03 1.00

h0/8 8.43E-06 2.00 7.37E-04 1.04 2.26E-03 1.00

h0/16 2.11E-06 2.00 3.64E-04 1.02 1.13E-03 1.00

h0/32 5.27E-07 2.00 1.81E-04 1.02 5.66E-04 1.00

P 2
-LSP

h0 1.20E-05 - 2.89E-04 - 4.71E-04 -

h0/2 1.53E-06 2.97 7.51E-05 1.95 1.20E-04 1.97

h0/4 1.93E-07 2.99 1.91E-05 1.97 3.04E-05 1.98

h0/8 2.43E-08 2.99 4.82E-06 1.99 7.65E-06 1.99

h0/16 3.04E-09 2.99 1.21E-06 1.99 1.92E-06 2.00

h0/32 3.81E-10 3.00 3.03E-07 2.00 4.80E-07 2.00

P 2
-Std

h0 8.55E-06 - 4.70E-04 - 5.52E-04 -

h0/2 1.06E-06 3.02 1.23E-04 1.93 1.42E-04 1.96

h0/4 1.31E-07 3.01 3.14E-05 1.97 3.60E-05 1.98

h0/8 1.64E-08 3.00 7.95E-06 1.98 9.06E-06 1.99

h0/16 2.04E-09 3.00 2.00E-06 1.99 2.27E-06 2.00

h0/32 2.56E-10 3.00 5.01E-07 2.00 5.69E-07 2.00

P 3
-LSP

h0 2.31E-07 - 5.65E-06 - 7.78E-06 -

h0/2 1.46E-08 3.98 7.21E-07 2.97 9.85E-07 2.98

h0/4 9.15E-10 3.99 9.10E-08 2.99 1.24E-07 2.99

h0/8 5.74E-11 3.99 1.14E-08 2.99 1.55E-08 3.00

h0/16 4.11E-12 3.80 1.43E-09 3.00 1.94E-09 3.00

P 3
-Std

h0 1.31E-07 - 6.52E-06 - 7.57E-06 -

h0/2 8.30E-09 3.99 8.39E-07 2.96 9.64E-07 2.97

h0/4 5.21E-10 4.00 1.06E-07 2.98 1.22E-07 2.99

h0/8 3.28E-11 3.99 1.34E-08 2.99 1.53E-08 2.99

h0/16 8.45E-12 1.96 1.68E-09 2.99 1.91E-09 3.00
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Table 4.5

Local-structure-preserving LDG solutions and the standard LDG solutions for the singular ex-
ample u(x, y) = rα

sin(αθ), where (r, θ) is the polar coordinate and α = 4/3. C11 = 10. h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 1
-LSP

h0 5.72E-04 - 8.36E-03 - 2.46E-02 -

h0/2 1.47E-04 1.96 3.21E-03 1.38 9.13E-03 1.43

h0/4 3.78E-05 1.97 1.24E-03 1.37 3.35E-03 1.45

h0/8 9.62E-06 1.97 4.81E-04 1.36 1.22E-03 1.46

h0/16 2.45E-06 1.98 1.88E-04 1.35 4.43E-04 1.46

h0/32 6.23E-07 1.97 7.44E-05 1.34 1.62E-04 1.46

P 1
-Std

h0 5.73E-04 - 8.46E-03 - 2.47E-02 -

h0/2 1.47E-04 1.96 3.28E-03 1.37 9.15E-03 1.43

h0/4 3.74E-05 1.97 1.28E-03 1.35 3.36E-03 1.45

h0/8 9.47E-06 1.98 5.06E-04 1.34 1.23E-03 1.45

h0/16 2.38E-06 1.99 2.01E-04 1.33 4.47E-04 1.46

h0/32 5.98E-07 1.99 8.00E-05 1.33 1.63E-04 1.46

P 2
-LSP

h0 5.30E-05 - 2.35E-03 - 2.83E-03 -

h0/2 1.06E-05 2.33 9.32E-04 1.33 1.12E-03 1.33

h0/4 2.10E-06 2.33 3.70E-04 1.33 4.46E-04 1.33

h0/8 4.17E-07 2.33 1.47E-04 1.33 1.77E-04 1.33

h0/16 8.27E-08 2.33 5.83E-05 1.33 7.03E-05 1.33

h0/32 1.64E-08 2.33 2.31E-05 1.33 2.79E-05 1.33

P 2
-Std

h0 4.57E-05 - 2.46E-03 - 2.89E-03 -

h0/2 9.10E-06 2.33 9.76E-04 1.33 1.15E-03 1.33

h0/4 1.81E-06 2.33 3.88E-04 1.33 4.56E-04 1.33

h0/8 3.59E-07 2.33 1.54E-04 1.33 1.81E-04 1.33

h0/16 7.12E-08 2.33 6.11E-05 1.33 7.18E-05 1.33

h0/32 1.41E-08 2.33 2.42E-05 1.33 2.85E-05 1.33

P 3
-LSP

h0 1.98E-05 - 1.62E-03 - 1.73E-03 -

h0/2 4.23E-06 2.23 6.34E-04 1.36 6.58E-04 1.39

h0/4 9.01E-07 2.23 2.48E-04 1.35 2.54E-04 1.37

h0/8 1.89E-07 2.25 9.78E-05 1.35 9.90E-05 1.36

h0/16 3.91E-08 2.27 3.86E-05 1.34 3.89E-05 1.35

P 3
-Std

h0 1.40E-05 - 1.60E-03 - 1.67E-03 -

h0/2 2.77E-06 2.33 6.35E-04 1.33 6.64E-04 1.33

h0/4 5.50E-07 2.33 2.52E-04 1.33 2.64E-04 1.33

h0/8 1.09E-07 2.33 1.00E-04 1.33 1.05E-04 1.33

h0/16 2.16E-08 2.33 3.97E-05 1.33 4.15E-05 1.33
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Table 4.6

Local-structure-preserving LDG solutions and the standard LDG solutions for the singular ex-
ample u(x, y) = rα

sin(αθ), where (r, θ) is the polar coordinate and α = 4/3. C11 = 1/h. h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 1
-LSP

h0 5.72E-04 - 8.36E-03 - 2.46E-02 -

h0/2 1.46E-04 1.97 3.54E-03 1.24 1.25E-02 0.98

h0/4 3.70E-05 1.98 1.53E-03 1.21 6.29E-03 0.99

h0/8 9.35E-06 1.98 6.77E-04 1.18 3.16E-03 0.99

h0/16 2.36E-06 1.99 3.08E-04 1.14 1.59E-03 0.99

h0/32 5.92E-07 1.99 1.43E-04 1.10 7.96E-04 1.00

P 1
-Std

h0 5.73E-04 - 8.46E-03 - 2.47E-02 -

h0/2 1.46E-04 1.97 3.58E-03 1.21 1.25E-02 0.98

h0/4 3.71E-05 1.98 1.55E-03 1.21 6.30E-03 0.99

h0/8 9.37E-06 1.98 6.84E-04 1.18 3.17E-03 0.99

h0/16 2.36E-06 1.99 3.10E-04 1.14 1.59E-03 0.99

h0/32 5.93E-07 1.99 1.44E-04 1.11 7.96E-04 1.00

P 2
-LSP

h0 5.30E-05 - 2.35E-03 - 2.83E-03 -

h0/2 1.06E-05 2.33 9.32E-04 1.33 1.12E-03 1.33

h0/4 2.10E-06 2.33 3.70E-04 1.33 4.46E-04 1.33

h0/8 4.17E-07 2.33 1.47E-04 1.33 1.77E-04 1.33

h0/16 8.27E-08 2.33 5.83E-05 1.33 7.03E-05 1.33

h0/32 1.64E-08 2.33 2.31E-05 1.33 2.79E-05 1.33

P 2
-Std

h0 4.57E-05 - 2.46E-03 - 2.89E-03 -

h0/2 9.36E-06 2.29 9.58E-04 1.36 1.06E-03 1.45

h0/4 1.90E-06 2.30 3.77E-04 1.34 3.98E-04 1.41

h0/8 3.80E-07 2.32 1.49E-04 1.34 1.54E-04 1.37

h0/16 7.59E-08 2.32 5.91E-05 1.34 6.00E-05 1.36

h0/32 1.51E-08 2.33 2.35E-05 1.33 2.36E-05 1.34

P 3
-LSP

h0 1.98E-05 - 1.62E-03 - 1.73E-03 -

h0/2 3.93E-06 2.33 6.44E-04 1.33 6.87E-04 1.33

h0/4 7.80E-07 2.33 2.56E-04 1.33 2.72E-04 1.33

h0/8 1.54E-07 2.33 1.01E-04 1.33 1.08E-04 1.33

h0/16 3.07E-08 2.33 4.03E-05 1.33 4.29E-05 1.33

P 3
-Std

h0 1.40E-05 - 1.60E-03 - 1.67E-03 -

h0/2 2.81E-06 2.31 6.33E-04 1.34 6.49E-04 1.37

h0/4 5.64E-07 2.32 2.51E-04 1.34 2.54E-04 1.35

h0/8 1.12E-07 2.33 9.94E-05 1.33 1.00E-04 1.34

h0/16 2.24E-08 2.33 3.95E-05 1.33 3.96E-05 1.34
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Table 4.7

Local-structure-preserving LDG solutions using Mk

h
(LSP) or M̄k

h
(Mix) as the space for qh.

C11 = 10 for the smooth example u(x, y) = e−x cos(y). h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 2
-LSP

h0 1.20E-05 - 2.89E-04 - 4.71E-04 -

h0/2 1.93E-06 2.64 5.16E-05 2.49 9.55E-05 2.30

h0/4 2.92E-07 2.73 8.08E-06 2.67 1.85E-05 2.37

h0/8 4.11E-08 2.83 1.15E-06 2.81 3.46E-06 2.42

h0/16 5.48E-09 2.90 1.56E-07 2.89 6.31E-07 2.46

h0/32 7.10E-10 2.95 2.04E-08 2.93 1.13E-07 2.48

P 2
-Mix

h0 8.58E-06 - 4.73E-04 - 5.55E-04 -

h0/2 1.09E-06 2.98 1.23E-04 1.95 1.33E-04 2.06

h0/4 1.37E-07 2.99 3.13E-05 1.97 3.26E-05 2.03

h0/8 1.71E-08 3.00 7.90E-06 1.98 8.07E-06 2.01

h0/16 2.14E-09 3.00 1.99E-06 1.99 2.01E-06 2.01

h0/32 2.68E-10 3.00 4.98E-07 2.00 5.01E-07 2.00

P 3
-LSP

h0 2.31E-07 - 5.65E-06 - 7.78E-06 -

h0/2 1.74E-08 3.73 5.33E-07 3.41 8.10E-07 3.26

h0/4 1.26E-09 3.79 4.78E-08 3.48 8.11E-08 3.32

h0/8 8.71E-11 3.85 4.44E-09 3.43 7.97E-09 3.35

h0/16 5.57E-12 3.97 4.50E-10 3.30 7.85E-10 3.34

P 3
-Mix

h0 1.74E-07 - 8.31E-06 - 9.11E-06 -

h0/2 1.11E-08 3.96 1.05E-06 2.99 1.10E-06 3.05

h0/4 7.06E-10 3.98 1.32E-07 2.99 1.35E-07 3.03

h0/8 4.48E-11 3.98 1.65E-08 3.00 1.67E-08 3.01

h0/16 5.19E-12 3.11 2.06E-09 3.00 2.08E-09 3.01

Remark 4.1. The condition number of the final linear system of the local-
structure-preserving LDG method for the Laplace equation is in the same order as the
one from the standard LDG method for the same equation. This is observed through
our numerical experiments as the iteration numbers for convergence are comparable
for these two cases.

5. Concluding remarks. By taking advantage of the flexibility of choosing

solution spaces in the discontinuous Galerkin method and the local discontinuous

Galerkin method, we develop a local-structure-preserving local discontinuous Galerkin

method for the Laplace equation. In this method, the equation is locally satisfied

exactly by the approximating solutions and these approximations perform comparably

well as the standard approximations without this structure-preserving property. All

these are achieved with a significantly reduced computational cost. Future work will

include an L2
error estimate, and a generalization of the method to more general

PDEs such as the Poisson equation and other elliptic equations. The full elliptic

regularity is assumed in the analysis in this paper for simplicity. More general cases

can be analyzed with more delicate details.
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Table 4.8

Local-structure-preserving LDG solutions using Mk

h
(LSP) or M̄k

h
(Mix) as the space for qh.

C11 = 1/h for the smooth example u(x, y) = e−x cos(y). h0 = 0.1.

meshsize h ||eu||0 rate ||eq||0 rate ||(eq, eu)||A rate

P 2
-LSP

h0 1.20E-05 - 2.89E-04 - 4.71E-04 -

h0/2 1.53E-06 2.97 7.51E-05 1.95 1.20E-04 1.97

h0/4 1.93E-07 2.99 1.91E-05 1.97 3.04E-05 1.98

h0/8 2.43E-08 2.99 4.82E-06 1.99 7.65E-06 1.99

h0/16 3.04E-09 2.99 1.21E-06 1.99 1.92E-06 2.00

h0/32 3.81E-10 3.00 3.03E-07 2.00 4.80E-07 2.00

P 2
-Mix

h0 8.58E-06 - 4.73E-04 - 5.55E-04 -

h0/2 1.06E-06 3.01 1.24E-04 1.93 1.43E-04 1.96

h0/4 1.32E-07 3.01 3.16E-05 1.97 3.61E-05 1.98

h0/8 1.65E-08 3.00 7.99E-06 1.99 9.09E-06 1.99

h0/16 2.05E-09 3.00 2.01E-06 1.99 2.28E-06 2.00

h0/32 2.57E-10 3.00 5.03E-07 2.00 5.71E-07 2.00

P 3
-LSP

h0 2.31E-07 - 5.65E-06 - 7.78E-06 -

h0/2 1.46E-08 3.98 7.21E-07 2.97 9.85E-07 2.98

h0/4 9.15E-10 3.99 9.10E-08 2.99 1.24E-07 2.99

h0/8 5.74E-11 3.99 1.14E-08 2.99 1.55E-08 3.00

h0/16 4.11E-12 3.80 1.43E-09 3.00 1.94E-09 3.00

P 3
-Mix

h0 1.74E-07 - 8.30E-06 - 9.11E-06 -

h0/2 1.09E-08 3.99 1.06E-06 2.97 1.15E-06 2.98

h0/4 6.82E-10 4.00 1.33E-07 2.99 1.45E-07 2.99

h0/8 4.30E-11 3.99 1.67E-08 2.99 1.81E-08 3.00

h0/16 4.97E-12 3.11 2.09E-09 3.00 2.27E-09 3.00
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