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DATA ASSIMILATION FOR CONSERVATION LAWS∗

CLAUDE BARDOS† AND OLIVIER PIRONNEAU‡

Abstract. Data Assimilation is important in meteorology and oceanography, because it is a way
to improve the models with newly measured data, statically or dynamically. It is a type of inverse
problem for which the most popular solution method is least square with regularization and optimal
control algorithms. As control theory assumes differentiability, there are mathematical difficulties
when viscosity is neglected and the modeling uses a conservation law like the shallow water or Euler
equations. In this paper we study the differentiated equations of some systems of conservation laws
and show that Calculus of Variation can be applied in a formal and rigorous manner provided that
principal values are defined at shocks and equations written in the sense of distribution theory.
Numerical illustrations are given for the control of shocks for Burgers’ equation and for the shallow
water equations in one space dimension.
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1. Introduction. Data Assimilation is important in meteorology, oceanography
and climatology because it is a way to improve the models with newly measured
data, statically or dynamically. The problem is well known in control and system
theory and a large number of methods applied to environmental sciences are issued
from Kalman filters, and system control. Yet data assimilation by least squares and
optimal control is the most popular method, known in meteorology as 4d-var methods
[26], [17], [28], [7] and [9]. Optimal control could be greatly simplified and the number
of parameters could be greatly reduced if there was an explicit analysis of the mete-
orological fronts as unknowns (controls); but control theory assumes differentiability
with respect to the control and there are new mathematical difficulties here in the
absence of viscosity: if gradient methods are to be used computationally, one needs to
establish that derivatives exists in some sense and that descent methods can use them.

To illustrate our point consider a system of conservation laws in IRn like

∂tu + ∇ · F (u) = 0 u(0) = u0. (1)

Data assimilation consists in finding u0 in a set U so as to fit as best as possible
observations ud made at time T in a subset D ⊂ IRn. The problem can be cast into
the minimization of a functional

min
u0∈U

E(u0) =
1

2

∫

D

|u(T ) − ud|2 : subject to (1). (2)
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As for all optimal control problems one would like to use the Calculus of Variations,
and write

δE =

∫

IRn

(u(T ) − ud)δu(T ) , (3)

∂tδu + ∇ · (F ′
uδu) = o(|δu|) (4)

and then introduce an adjoint state u∗ solution of

∂tu
∗ + F ′

u
T∇ · u∗ = 0, u∗(T ) = ID(u − ud) (5)

(where ID is the indicator function of D) and show by an integration by parts that

δE =

∫

IRn

u∗(0) · δu(0) + o(‖δu(0)‖). (6)

The validity of this calculus is usually taken for granted in engineering but it so
happens that in the presence of shocks it is not correct.
Indeed take the simple case where U is the set of x → u0(x, a) which is an indicator
function of a ball of center x(a) function of a parameter a ∈ IR. Then δu = u′

aδa
but u being discontinuous u′ has a Dirac singularity if the shock position depends
on a (see below). So right from the beginning the calculus above is wrong because
(u(T )− ud)δu(T ), for instance, is the product of a discontinuous function by a Dirac
measure.

It was already noticed in [1] that (4) made sense even at the shock when un-
derstood as a distribution, namely

∫

IRn×IR×IR

(∂tu
′ + ∇ · (F̃ ′

uu′))w(x, t; a)dxdtda = 0 ∀w ∈ D(IRn × IR × IR).

An integration by parts in x, t, a puts all the derivatives on w and there is no problem
for the definition of the integrals; however, because of the discontinuities, line integrals
appear at the shocks involving jumps of F ′

u so the pointwise value of F ′
u at the shock

must be defined, hence the notation F̃ ′ above. When F is quadratic, F ′ is linear and
if F̃ ′ is the principal value of F ′, the identity above is true.

In this paper we wish to extend the formalism to systems and to apply it to
optimal control and show that the hand-waving calculus of variation above is in fact
correct for a class of flux functions F . This obviously required the proof of the
differentiability of the solution in some suitable sense, then the construction of the
linearized system, the construction of its adjoint and the proof of some duality formula.
Formal differentiation of these conservation laws involves only differentiation in the
sense of distributions and uses of the Rankine Hugoniot relation. On the other hand
it is at the level of the linearized operator that the entropy condition plays a role,in
particular in relation to the stability of the linearized system.

Perturbation of non linear hyperbolic problems raises several mathematical issues
well explored in the major contributions of Majda [24] and [25].

First a small perturbation of a solution with one shock may in some cases generate
solutions with several shocks. To avoid this phenomena it is assumed that the initial
perturbation remains in the class of data u + δu for which one has at time t = 0 the
Rankine Hugoniot condition or more precisely, the existence of a scalar function σ
defined on the shock curve such that (68) holds.
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Second since the problem is non linear global in time estimates in most case are
not available.

Keeping in mind earlier interesting results concerning the stability of a shock near
the solution of a Riemann problem obtained by Li Da-quian and Yu Wen-ci [22] and
[23] for local in time solutions of one dimensional systems of conservation laws, to
the best of our knowledge, the result the most adapted to our purpose remains [24]
Theorem 1 page 8 which provides the existence of multidimensional shock fronts for
a finite time (0 < t < T ).

Global in time stability results do exist but they are confined either to scalar
equations (cf [6]) were no differentiability property is proven or to system in one
space variable (cf. for instance [4] and [5]) where a much weaker notion of derivative
than in [24] is proved.

The mathematical study of “adjoints” for this type of problem seems to appear
for the first time in [5]. In the some specific cases (one dimensional conservation laws,
2× 2 systems in one space variables etc...) some complementary results are available
for “large time” (see [2], [3] and [19, 20, 8]).

In the present contribution we try to provide an intrinsic definition of this adjoint
(avoiding the explicit use of Riemann invariants). We also try to underline the dif-
ference between what is a consequence of the notion of weak solution (differentiation
of the Rankine Hugoniot relations for instance ) and what comes from the entropy
relation. This is the reason why we treat explicitly some examples, being aware that
they are contained in the general theorems of [24].

The paper is organized as follows. We begin by a systematic analysis of the
differentiation of piecewise continuous functions and conservation laws, recalling the
formalism developed in [1]. Proofs of the validity of the variational calculus rely on
Majda’s results [24] [25] as explained in Section 3.5. To obtain more explicit formulas
and to underline the role of the entropy condition we describe the treatment of two
elementary but basic examples in the section 3.6. This illustration continues with the
analytic and numerical computation for the Burgers equation. The following sections
are devoted to the compressible Euler equation (one of the goal of the present contri-
bution). There we show both how to use the formal calculus and how to introduce for
numerical purpose an Hamilton-Jacobi formulation. We apply the results to a control
problem for the shallow water equations (also Euler equations of gas dynamics with
γ = 1 and adiabatic flows [31]) solved numerically with a descent method. Finally
in view of forecoming multi-dimensional control applications, we introduce a multi-
dimensional Hamilon Jacobi formulation, to general vector conservation laws and give
some numerical solutions in simple cases.

2. Preliminaries.

2.1. Derivative of piecewise smooth functions. In the context of the present
contribution solutions or functions are assumed to be piecewise smooth therefore as
observed in [1] a systematic calculus of derivative can be used even on the shock.

More precisely let Q be an open bounded set of Rd and A an interval of R.
Consider a vector valued function from Q to Rd function of a parameter a ∈ A:

(z, a) ∈ QA := Q × A → v(z, a) ∈ Rd. (7)

Let S be a smooth surface which cuts Q into two parts Q+, Q−. Assume that the
restrictions of v, v± to Q± are continuously differentiable. We denote by C1

S the space
of such functions.
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Fig. 1. A shock curve S in R2. In the case of Burgers equation for instance, the shock is in
the space time frame, so x1 = x, x2 = t. When the parameter a varies the shock describes a surface
Σ. The normals to S and Σ are also shown

Assume also that v is differentiable with respect to a everywhere except on S
and denote by v′a this pointwise derivative. We introduce the following notations (see
figure 1):

• z = z(s, a), s ∈ IS ⊂ Rd−1, a parametrization of S, z′ = ∂z/∂a.
• Σ = {(z, a) : z ∈ S, a ∈ A}, QA

± = {(z, a) : z ∈ Q±, a ∈ A}
• nS , nΣ: the normals to S and Σ pointing inside Q+ and QA

+ respectively.
• [v] := v+ − v− is the jump of any function v ∈ C1

S across S.
At some point a more specific local description of the shock will be needed with the
following parametrization:

x̃ = (x1, x2, . . . , xn−1), xn = φ(x̃, t, a) (8)

Σ = {(x̃, φ(x̃, t, a), t, a)}.

Proposition 1. Let v be a function in C1
S. The derivative of v with respect to

a, in the sense of distributions, v′, is

v′ = v′a − [v]z′ · nS δS (9)

where v′a is the pointwise derivative of v with respect to a and δS is the Dirac function
on S defined by

∫

Q
δSw =

∫

S
w ∀w ∈ D(Q); z′ · nS is the normal component of the

a-derivative of the position of the shock.

Proof. For clarity we do the proof for d = 3 only. By definition of derivatives in
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the sense of distributions,

∀w ∈ D(QA) :

∫

QA

v′w = −
∫

QA

vw′ (10)

Since v± := v|Q± are smooth, one has:

∫

QA

vw′ =

∫

QA
−

v−w′ +

∫

QA
+

v+w′

= −
∫

QA
−

v−
′
w −

∫

QA
+

v+′
w +

∫

Σ

(v+ − v−)nΣd+1w. (11)

where nΣd+1 is the last component of the normal to Σ. It is easy to see (see [1] for
details) that

nΣ =
(nS ,−z′ · nS)T

√
1 + ż2

, dΣ =
√

1 + ż2dSda. (12)

Proposition 2. Let w ∈ (C0(S))d. Denote by ∇S ·wS the surface divergence on
S:

∇S · wS =

d−1
∑

i=1

∂si(w · si)

where {si}d
1 is an ortho-normal system of tangent vectors at the point where the deriv-

atives are considered. Assume that w · nS = 0. Then

∇ · (wδS) = δS∇S · wS . (13)

Proof.

∫

Q

wδS · ∇ŵ :=

∫

S

w · ∇ŵ =

d−1
∑

i=1

∫

S

1√
g
w · si∂siŵ

√
gds1...dsd

= −
d−1
∑

i=1

∫

S

∂si(w · si)ŵds1...dsd (14)

where g is the determinant of the Riemanian metric induced on the surface (g = 1
whenever {si}d

1 are ortho-normal).

Consequently from (9) we have the following property.

Corollary 1. Consider v ∈ (C1
S)d. If [v ·nS ] = 0 and the pointwise a-derivative,

v′a, has a trace left and right of S, then

∇ · v′ = ∇ · v′a + ([v′a] · n −∇S · ([v]z′ · nS)δS (15)

where ∇ · v′a is the pointwise value.

Proof. Using linearity and starting from the formula:

v′ = v′a − [v]z′ · nS δS (16)
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one has

∇ · v′ = ∇x · v′a −∇ · ([v]z′ · nS δS) (17)

and with the hypothesis [v ·nS ] = 0 the last term is computed according to Proposi-
tion 2.

Finally recall that for w ∈ C1
S ,

∇ · w = ∇x · w + [w] · nSδS (18)

where ∇x · w is the pointwise value; This applied to w = v′a gives

∇v′a = ∇x · v′a + [v′a] · nSδS

which, in turn, proves the result.

2.2. Rules for derivatives. Consider a smooth mapping u 7→ F (u) defined on
an open set D of IRp with values in IRp and u ∈ (CS)d a piecewise smooth function
with value in D. Then for any 1 ≤ i ≤ d the derivative ∂xi

F (u) is the sum of the
smooth function F ′

u∂xi
u away from the shock and of the density ni[F (u)]δS . With

the introduction of

G(u) =

∫ 1

0

F ′
u(σu+ + (1 − σ)u−)dσ (19)

which coincides with F ′
u away from the shock and which is a continuous density on

the shock one obtains the formula:

∂xi
F (u) = G(u)∂xi

u (20)

because ∂xi
is its pointwise value plus −[u]niδS and

G(u)[u] =

∫ 1

0

F ′
u(σu+ + (1 − σ)u−)[u]dσ =

∫ u+

u−

F ′
udu = [F (u)]. (21)

Definition 1. For any v ∈ C1
S one denotes by v the function which is equal to

v in Q± and which is equal to (v+ + v−)/2 on S

one has the following

Proposition 3. If f ∈ C1
S(IRn, IRp×q) and and g ∈ C1

S(IRn, IRq×r) are two
matrices valued functions one has:

(f · g)′ = f ′ · g + f · g′. (22)

Proof. The formula is true pointwise. At the shock the weight on the Dirac
mass of (f · g)′ is −[fg]x′ · nS and the right hand side has a Dirac mass of weight
−([f ]ḡ + [g]f̄)x′ · nS . Since

[fg] = [f ]
g+ + g−

2
+ [g]

f+ + f−

2
= [f ]ḡ + [g]f̄ (23)
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equation (23) holds in the sense of distributions.

Other extensions of this type of calculus are useful and can be obtained from
(23). For instance to compute (u3)′ one writes u3 = u · u2 and u2 = u · u; hence

(u3)′ = (u · u2)′ = u2u′ + (u2)′u = u2u′ + (u′ū + ūu′)u = (u2 + 2u2)u′. (24)

To compute m′ = ( 1
u
)′ one writes

0 = (um − 1)′ = mu′ + um′ or m′ = − 1

u
(
1

u
)u′ (25)

and so on. Essentially any rational fraction of implicit functions of powers of u can
be differentiated.

In the scalar case one should observe that G(u) is equal to the Volpert ratio :
[F (u)]/[u] on the shock.

The interest of the above calculus for our purpose comes not only from the fact
that piecewise smooth solutions are natural objects for hyperbolic systems but also
from the fact that state laws of fluid mechanic which are Galilean invariant turn out
to be rational in term of the conserved quantities (cf. [10]).

2.3. Derivative of quadratic Functionals. For Calculus of Variation, a na-
tural quantity is the least square distance to a desired state ud:

E(u)(a) =
1

2

∫

IRn

|u(x, a) − ud(x)|2dx (26)

and to minimize such a function the natural strategy is the computation of its gradient.

In fact it turns out with that Corollary 1 provides a direct way of computing
functionals and this is the object of the

Proposition 4. For each a ∈ A ⊂ IR assume that there is a shock S, i.e. a set

{x(s, a) : s ∈ Is(a) ⊂ IRn−1} ⊂ IRn; Σ = {x(s, a) : s ∈ Is(a), a ∈ A}

Assume that Σ is a C1 oriented manifold in the variable (x, a). Denote by x′(s, a) the
a−derivative of x(s, a) and by nS the oriented normal to S.

Let v ∈ C1
S and assume (just for simplicity) the existence of a finite number R

independent of a such that |x| > R ⇒ v(x, a) = 0.
Then with

F (a) =

∫

IRn

v(x, a)dx

one has:

F ′(a) =
d

da

(

∫

IRn

v(x, a)dx

)

=

∫

IRn

v′adx −
∫

S

[v]z′ · nSdS (27)

and the Taylor Formula:

|F (a + h) − F (a) − hF ′(a)| = o(h). (28)
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Proof. Introduce a smooth test function φ ∈ D(IRn) which is equal to 1 on the
support of v and with Proposition (1) write:

∂a

∫

IRn

v(x, a)dx = ∂a〈v, φ〉 = 〈v′, φ〉 = 〈v′a − [v]z′ · nSδS , φ〉

=

∫

IRn

v′adx −
∫

S

[v]x′ · nSdS. (29)

This proves (27). The Taylor formula follows from the fact that the function:

a 7→
∫

IRn

v′adx −
∫

S

[v]x′ · nSdS (30)

is continuous with respect to a.

Corollary 2. For each a ∈ A let u ∈ C1
S , defined as above. Let ud(x) ∈ C0

independent of a. Assume the existence of R independent of a such that u(x, a) and
ud(x) coincide for |x| > R then for

E(a) =
1

2

∫

|u(x, a) − ud(x)|2dx

one has

E′(a) =

∫

IRn

u′
a(u − ud)dx −

∫

S

[u](u − ud)x
′ · nSdS (31)

and the Taylor formula:

|E(a + h) − E(a) − hE′(a)| = o(h). (32)

Proof. Apply to the function

v(x, a) = |u(x, a) − ud(x)|2

the previous proposition and the rule of computation of derivatives of Proposition 3.

Remark 1. Observe that

µ = u′
a(u − ud) − [u](u − ud)x

′ · nSδS = (u − ud)u
′

is a bounded measure and that the formula (31) can be written

E′(a) =

∫

µ =

∫

IRn

(u − ud)u
′dx. (33)

Remark 2. When ud is discontinuous, say ud ∈ C1
S̃

and u ∈ C1
S then result is

still valid so long as S 6= S̃. Otherwise the result is false because u−ud /∈ C1
S at a = 0

if lima→0 S = S̃. In such cases Corollary 2 should be applied at a 6= 0 and then let
a → 0 in the result. This is seen in the following example.

Example. Let H(x) be the Heaviside function (H(x) = x+/x). Let u = 1 −
H(x − a) and ud = 1 − H(x). Then

E(a) =
1

2

∫

IR

(u − ud)
2dx =

|a|
2

⇒ E′(a) =
1

2
sign(a).
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On the other hand
∫

IR

u′
a(u − ud)dx − [u − ud](ū − ūd)x

′ = 0 (34)

because u′
a = 0, x′ = 1, [u] = [ud] = −1, ū = ūd = 1

2 at a = 0. But if (34) is applied
at a > 0 for instance then [ud] = 0, ūd = 0 and the following is correct:

E′ =

∫

IR

u′
a(u − ud)dx − [u](ū − ūd)x

′ =
1

2
. (35)

At a < 0, [ud] = 0, ūd = 1 and the above formula gives E′ = − 1
2 which is also

correct.

3. Application to Conservation Laws..

3.1. Intrinsic computations. Consider a conservation law characterized by a
flux function F = (F1, F2, . . . , Fn) : IRp → IRn×p:

∂tu + ∇ · F (u) = 0 in Q u(x, 0) = u0(x, a) ∀x ∈ IRn. (36)

Let S be the shock surface for a given parameter a. From Proposition 1, assuming
that the family of solutions (x, t) → u(x, t, a) are in (C1

S)p for all a, then at each x, t, a
the derivative with respect to a, V ′ of the vector V = (u, F (u)) is

V ′ = (u′, F (u)′) = (u′
a − [u]x′ · nSδS , F ′

uu′
a − [F (u)]x′ · nSδS) (37)

or with the notation (19)

V ′ = (u′, G(u)u′) = (u′
a, F ′

u) − ([u], G(u)[u])x′ · nSδS . (38)

Equation (36) is also the divergence with respect to t, x of V , therefore the derivative
(with respect to the parameter a and in the sense of distributions) of (36) is

∇t,xV ′ = 0 (39)

i.e.

∂tu
′ + ∇ · (G(u)u′) = 0. (40)

We know now that the Rankine Hugoniot condition

nt[u] + nx · [F (u)] = 0 (41)

differentiated are contained in (40). Corollary 1 can be used for (40) giving the
relation:

∂tu
′
a +∇· (G(u)u′

a)+

(

nt[u
′
a]+nx · [F ′

u(u)u′
a]−∇S · ([(u, F (u))]x′ ·nS)

)

δS = 0 (42)

which is equivalent to:

away from the shock: ∂tu
′
a + ∇ · F ′(u)u′

a = 0
on the shock: nt[u

′
a] + nx · [F ′

u(u)u′
a] −∇S · ([(u, F (u))]x′ · nS) = 0. (43)
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3.2. Adjoint Equation. So far we have established (33) and (40). In order to
express E′ in terms of u′

0 only we need an adjoint equation. To obtain an adjoint
equation, one introduces smooth test functions w∗ with compact support in IRn×]0, T [
and then observe that the relation (40) is by definition:

0 = 〈∂tu
′+∇·(G(u)u′), w∗〉 = −〈u′, ∂tw

∗+G(u)T∇w∗〉 ∀w∗ ∈ D(IRn×(0, T )). (44)

This leads to the following adjoint problem

∂tu
∗ + GT∇u∗ = 0. (45)

The solutions of the adjoint problem have a finite speed of propagation therefore
one can assume that their spatial support is bounded. So one starts with a “smooth”
solution of with bounded spatial support and then applies Formula (44) to the function
w∗(x, t) = θ(t)u∗(x, t), θ ∈ D(0, T ) to obtain:

0 = 〈∂tu
′ + ∇ · (G(u)u′), w∗〉

= −
∫ T

0

(θ〈u(., t), (∂t + GT∇)u∗(., t)〉 + θ′ < u u∗ > dt

= −
∫ T

0

θ′ < u u∗ > dt. (46)

Equation (40) implies that t 7→ u(., t) is a continuous function from ]0, T [ with value
in D′(IRn), therefore with θ(t) converging to

I(t1, t2) = 1 for 0 < t1 < t2 < T and 0 elsewhere

one deduces from (46) the relation:

〈u(., t1) u∗(., t1)〉 = 〈u(., t2) u∗(., t2)〉. (47)

3.3. Differentiation of Flux with Shocks. As said in Section 2.2 the intro-
duction of the notation u (see Definition 1) leads to convenient rules of computation
for the derivative of the flux functions with respect to an extra parameter a.

For the p-system

∂tv − ∂xu = 0

∂tu + ∂x

1

v
= 0

one has:

G =

(

0 −1

− 1
v
( 1

v
) 0

)

. (48)

For the derivative of solutions (ρ, u) the isentropic Euler equation ( the Eulerian
version of the p system and also the shallow water equations [31])

∂tu + ∂x(
u2

2
+ ρ) , ∂tρ + ∂x(ρu) = 0 (49)

one has

∂tu
′ + ∂x(ūu′ + ρ′) , ∂tρ

′ + ∂x(ρ̄u′ + ūρ′) = 0. (50)
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Finally for the “full” Euler system:

∂tρ + ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0

∂te + ∂x(u(γe − (γ − 1)
ρu2

2
)) = 0

p = (γ − 1)(e − ρu2

2
) (51)

we use the variables u , w := u2 and follow the rules of Section 2.2 to decompose all
products into binary products

v = ρu ⇒ v′ = u′ρ̄ + ūρ′ ⇒ u′ =
v′

ρ̄
− ū

ρ̄
ρ′ ⇒ w′ = 2ūu′ = 2

ū

ρ̄
v′ − 2

ū2

ρ̄
ρ′ (52)

and obtain

∂tρ
′ + ∂xv′ = 0 ,

∂tv
′ + ∂x(−3 − γ

2

ūv̄

ρ̄
ρ′ +

3 − γ

2
(ū +

v̄

ρ̄
)v′ + (γ − 1)e′) = 0 ,

∂te
′ + ∂x((−γ

ūē

ρ̄
+ (γ − 1)

ū2v̄

ρ̄
)ρ′ + (γ

ē

ρ̄
− γ − 1

2
(u2 + 2

v̄ū

ρ̄
))v′ + γūe′) = 0. (53)

Once again on can observe that this complex system reduces to the classical form
outside the shock and contains the differentiated Rankine-Hugoniot conditions at the
shock.

3.4. Explicit Computation of the “Jump Conditions” in the Linearized

and Adjoint Problems. For explicit computation one uses the local parametriza-
tion (8)

xn = φ(x̃, t, a). (54)

The normal to S is therefore the vector

1
√

|∇φ|2 + 1
(−∂tφ,−∇x̃φ, 1).

The Rankine Hugoniot condition on u for (36) is

0 = [V ] · nS := nt[u] + nx · [F (u)] = [u]∂tφ +
∑

1≤i≤n−1

∂xi
φ[Fi(u)] − [Fn(u)] (55)

and the relation
(

(nt[u
′
a] + nx · [F ′

u(u)u′
a]) −∇S · ([(u, F (u))]x′ · nS)

)

δS = 0 (56)

is

∂t(φ
′
a[u]) +

∑

1≤i≤n−1

∂xi
([Fi(u)]φ′

a)

= −(∂tφ[u′
a] +

∑

1≤i≤n−1

[∂uFi(u)u′
a]∂xi

φ − [∂uFn(u)u′
a]). (57)
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Observe that (57) can also be obtained by differentiating (55) with respect to a.
Using the fact that u∗ is smooth (in particular near the shock) and multiplying

∂tu
∗ + GT∇u∗ = 0

by [u] one obtains on S:

[u]∂tu
∗ + [F (u)]∇u∗ = 0. (58)

From the Rankine Hugoniot condition we know that the vector field ([u], [F (u)])
is tangent to S and therefore (58) is a first order pde on this surface. With the
parametrization (8) it is

[u]∂tu
∗(x̃, φ(x̃, a), t) +

∑

1≤i≤n

[Fi(u)]∂xi
u∗(x̃, φ(x̃, a), t) = 0. (59)

In particular in one space with ξ(t, a) = x′(t, a) this formula is

d

dt

(

ξ(t, a)[u]

)

= −(ẋ(t, a)[u′
a] − [F ′(u)u′

a]) (60)

and since [F (u)] = ẋ(t)[u], it is

[u]
du∗

dt
(x(t), t) = 0. (61)

Summarizing, with the parametrization (8) the linearized system and its adjoint
are characterized by the equations:

away from the shock: ∂tu
′
a + ∇ · (∂uF (u)u′

a) = 0 , (62)

on the shock: ∂t(φ
′
a[u]) +

∑

1≤i≤n−1

∂xi
([Fi(u)]φ′

a) (63)

= −(∂tφ[u′
a] +

∑

1≤i≤n−1

[∂uFi(u)u′
a]∂xi

φ − [∂uFn(u)u′
a]) (64)

and

away from the shock: ∂tu
∗ + (∂uF (u)T∇u∗ = 0 , (65)

on the shock: [u]∂tu
∗(x̃, φ(x̃, a), t) +

∑

1≤i≤n

[Fi(u)]∂xi
u∗(x̃, φ(x̃, a), t) = 0 (66)

Finally under suitable hypotheses (u ∈ C1
S , u∗ smooth on the shock) one has for any

0 < t1 < t2 < T the relation (cf. 47) :

∫

IRn

u′
a(x, t1)u

∗(x, t)dx −
∫

Rn−1

(φ′
a[u] · u∗)(x̃, t1, a)dx̃

=

∫

IRn

u′
a(x, t2)u

∗(x, t)dx −
∫

Rn−1

(φ′
a[u] · u∗)(x̃, t2, a)dx̃. (67)

Remark 3. This formula corresponds to Formula (1.10) in Majda ([24]). To the
best of our knowledge the formula (66) has been only written in [5] for the 1d case
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and in terms of Riemann invariants. In the same reference one can find (always in
term of Riemann invariants ) a 1d version of the formula (66).

Remark 4. To use equations (65, 66) to evaluate φ′
a(x̃, T ) (which describes the

infinitesimal variation of the shock) at time T ) the quantity

ξ∗(x̃, T ) = ([u].u∗)(x̃, T )

has to be given with no relation with the value of u∗(x, T ) on the shock surface (in fact
u∗(x, T ) may be chosen not continuous across this surface) provided it is continuous
for 0 < t < T . In this situation Equation (66) introduces a new constraint on the
solution of the adjoint problem. However for such solutions the expression

〈u′(., T ), u∗(., T )〉

makes no sense because u′(., T ) contains a δ-function at points where u∗(., T ) may be
discontinuous and this observation appears again in the next section.

3.5. Towards a Proof of the Taylor and Duality formulas. The validity
of the Taylor formula (32) is reduced to the differentiability with respect to a of the
solution u away from the shock and in the direction nS , the normal to the shock surface
in the (x, a) variables. To fully justify this calculus we use the results contained in
[24] and [25].
The first remark is that a small perturbation of a solution with one shock may in some
cases generate solutions with other shocks (may be of small amplitude); to avoid this
phenomena it is assumed that the initial perturbation remains in the class of data
u + δu for which one has at time t = 0 the existence of a scalar function σ defined on
the shock curve such that

−σ[u] + nS · [F (u)] = 0 (68)

The second remark is that the problem being non linear global in time estimates are
not available in general.

Strangely enough, up to now the existence of a convex entropy and the decay
of this entropy has not been used. Yet it turns out to be essential in the following
steps which is the object of Theorem 1 page 8 of [25]; this theorem provides the
existence of multidimensional shock fronts for a finite time (0 < t < T ). With minor
changes one can formulate it as follows.

Theorem 1. Assume that the system is symmetrizable or in practice that it
admits a convex entropy (cf. [11]) Assume that a reference solution u(x, t) exhibits
a unique shock S which is not a characteristic (cf Majda [25] hypothesis 4, p10) and
is smooth enough away from the shock (in Hs(IRn×]0, T [\S), s ≥ 2E(n

2 ) + 7) with a
stable entropy condition (in the sense of (1.14) in [24], where E denotes the integer
part).

For the initial perturbation of u(x, 0, a) and its discontinuity point x(0, a) assume
that they are small enough (u(x, 0, a) − u(x, 0) small in Hs away from the shock and
satisfies on the shock the compatibility condition (68)).
Then there exists a finite time T (depending on the norm of the perturbation in Hs)
such that with the initial data u(a, x, 0) and for 0 < t < T the system

∂tu + ∇ · F (u) = 0 (69)
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has a unique entropic solution with a shock surface x(t, a) close to x(t, 0). Further
more both u(x, t) (away from the shock) and S are C1 functions of a.

As a consequence the above theorem gives some sufficient conditions (essentially
T not too large with respect to the perturbation) which ensures the validity of the
formula (32) and (33). In fact the proof uses the linearized problem

∂tu
′ + ∇ · (G(u)u′) = 0 (70)

for which

u′(x, t) = u′
a(x, t) − [u]x(t),tx

′(t) · nSδS (71)

provides the elements for an “ internal boundary condition ”.
To use the adjoint method to compute E′ one starts from the relation (using for
clarity’s sake the parametrization (8))

E′(a) =

∫

IRn

u′
a(u − ud)dx −

∫

IRn−1

[u](u − ud)(x̃, φ(x̃, t, a))φ′
adx̃. (72)

Now it has been observed that if u′
a is a solution of the direct problem (62) (64) and

u∗ a smooth solution of the adjoint (65) (66) one has for 0 < t1 < t2 < T
∫

IRn

u′
a(x, t1)u

∗(x, t1)dx −
∫

Rn−1

(φ′
a[u] · u∗)(x̃, t1, a)dx̃

=

∫

IRn

u′
a(x, t2)u

∗(x, t2)dx −
∫

Rn−1

(φ′
a[u] · u∗)(x̃, t2, a)dx̃. (73)

By density and continuity the above formula would extend to any “strong” solutions
(cf. [24]) for the definition of such object) of the adjoint problem. Eventually these
solutions have to satisfy:

∫

IRn

u′
a(x, 0)u∗(x, 0)dx −

∫

Rn−1

(φ′
a[u] · u∗)(x̃, 0, a)dx̃ =

∫

IRn

u′
a(x, T )(u(x, T ) − ud(x))dx −

∫

Rn−1

φ′
a[u] · (u − ud)(x̃, T, a)dx̃. (74)

Two steps have to be considered.

• Step 1 Prove for 0 < t1 < t2 the formula (73) for solutions (u′
a, φ′

a) and u∗

of the direct and adjoint problem for which this makes sense. This last statement
requires that

u′
a ∈ C0(]0, T [; L2(IRn)\S), φ′

a, [u]u∗|S ∈ C0(]0, T [; L2(S)). (75)

• Step 2 Prove that formula (74) can be deduced from formula (73) by letting t1 → 0
and t2 → T and assume that the solution of the adjoint problems satisfies:

lim
t→T

u∗(x, t) = (u(x, T ) − ud(x)) in L2(IRn) (76)

lim
t→T

[u] · u∗(x, t) = [u] · (u − ud)(x̃, T, a) in L2(IRn−1
x̃ ). (77)

It has been shown by Majda [24] that in classical physical situations and due to
the entropy condition (Theorem 1 page 21 and so on) the direct linearized problem
has for any initial data

(u(., 0), φ′
a(., 0)) ∈ L2(IRn) × L2(IRn−1)
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a unique strong solution. Furthermore for initial data

(u(., 0), φ′
a(., 0)) ∈ Hs(IRn\IRn−1) × Hs(IRn−1) , s ≥ 1

satisfying compatibility condition the solution is in Hs(IRn × [0, T ]\IRn−1) × Hs(S).
The proof assumes that the original system can be symmetrized (it has a convex
entropy) and uses the standard theory of Lax Friedrichs and Kreiss. As remarked
in Majda [25] (page 10) similar proof works mutatis mutandis for the adjoint system
keeping in mind that the behavior of [u]u∗ is a non standard extra data determined
by ξ∗ given at time T . Since both solutions are strong formula (73) is valid. These
statements contain the ingredients to prove Step 1 and Step 2.

For sake of clarity and to underline the importance of the entropy condition
and to show that explicit formulas can be obtained for direct and adjoint problems,
two basic examples are given in the next section : the scalar case and the p system
are analyzed in depth.

3.6. Examples of Existence and Uniqueness for the Linearized System

and its Adjoint.

3.6.1. The scalar case. One considers the following problem

∂tu + ∂xf(u) = 0. (78)

In (78) f is assumed to be convex and it is also assumed that the solution u has a
unique shock (satisfying the entropy condition) in the domain IRx×]0, T [ on the curve
S = {(x(t), t)}. As before Q± denotes the two domains left and right of the shock.
In this section u′

a is denoted by U . It is solution of the problem:

∂tU + ∂x(f ′(u)U) = 0 (79)

and one has:

d

dt
([u]x(t),tx

′(t)) = [f ′(u)U ] − ẋ(t)[U ]. (80)

For the scalar problem equations (79) and (80) are uncoupled therefore one has the
following easy result:

Theorem 2. For any initial data U0 ∈ L2(IR) and ξ0 ∈ IR there exists a unique
solution of (79) and (80). In particular the traces of U± belong to L2(S) and ξ(t) =
x′(t) is a continuous function. Finally for any (s, t) ∈ [0, T ]2 one has

lim
s→t

∫

IR

U2(x, s)dx =

∫

IR

U2(x, t)dx. (81)

Proof. With the entropy condition satisfied, the characteristics enter the shock
both from Q− and Q+ As a consequence the problems (78,79) are well posed and one
has the estimates:

∫ ∞

x(T )

U2
+(x, T )dx +

∫ T

0

(ẋ(t) − f(u+))U2
+(x(t), t)dt ≤ C

∫ ∞

x(0)

U2
+(x, 0)dx , (82)

∫ x(T )

−∞
U2
−(x, T )dx +

∫ T

0

(f(u−) − ẋ(t))U2
−(x(t), t)dt ≤ C

∫ x(0)

−∞
U2
−(x, 0)dx. (83)
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In the above the essential point is the positivity on the shock curve of the quantities
(ẋ(t)−f(u+)) and (f(u−)−ẋ(t)). The constant C comes from the use of the Gronwall
lemma which involves the expressions

∫ ∞

x(t)

1

2

∂f(u)

∂x
U2

+(x, t)dx. (84)

Formula (81) is proven by applying Green’s formula both to Q± ∩ (IRx × [s, t]); it
implies in particular the strong L2 continuity of U(x, t).

The adjoint problem is

∂tU
∗ + f ′(u)∂xU∗ = 0 in Q− and Q+ (85)

with the condition:

[u]
dU∗

dt
(x(t), t) = 0. (86)

Since (86) is a scalar equation, it implies the relation:

U∗(x(t), t) = ξ∗. (87)

Then in Q± the equations are solved as above. In particular they have traces on S in
L2(S) which coincide with the constant ξ∗.
Once again one can observe the following facts. U∗ is defined both on Q+ and Q− with
the same boundary condition (on the shock curve the solution has the same L2 trace
on both side of the shock curve for 0 ≤ t < T and the expression < u′(., t) U∗(., t) >
has a well defined meaning. This remark is valid even if U∗(x, T ) is discontinuous at
T, x(T ). It provides with the relation:

< u′(., 0) U∗(., 0) >=

∫

IR

U(x, T )U∗(x, T )dx − [u]x′(T )U∗(T ) (88)

the relevant information on the variation of the shock in spite of the fact that <
u′

a(., T )U∗(., T ) > is not well defined, in particular for a discontinuous data U∗(x, T ).

3.6.2. The p system. The p system:

∂tv − ∂xu = 0 ∂tu + ∂x

1

v
= 0 (89)

corresponds to the Lagrangian formulation of the isentropic Euler equation and also of
the shallow water equations (see. [27]). The linearized equations for (U, V ) := (u′

a, V ′
a)

and the adjoint system are

∂tV − ∂xU = 0 , ∂tU − ∂x

1

v2
V = 0

∂tV
∗ − 1

v2
∂xU∗ = 0 , ∂tU

∗ − ∂xV ∗ = 0. (90)

The function

η(v, u) = − log v +
u2

2
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is a convex entropy for this system (with flux u
v
) and one has

η”(v, u) =

(

1
v2 0
0 1

)

(91)

which diagonalizes (according to Lax and Friedrichs ) the linearized system. This is the
reason why the introduction of the new variables (W := V/v, U) and (W ∗ = vV ∗, U∗)
reduce both systems to the following symmetric ones:

∂tW − 1

v
∂xU + (

1

v
∂xu)W = 0 , ∂tU − 1

v
∂xW + (

1

v2
∂xv)W = 0

∂tV
∗ − 1

v2
∂xU∗ = 0 , ∂tU

∗ − ∂xV ∗ = 0 (92)

preserving for smooth functions (with no shock) the duality relation:

∫

IR

(V V ∗ + UU∗)(x, t)dx =

∫

IR

(WW ∗ + UU∗)(x, t)dx. (93)

As in the scalar case we assume that the underlying solution (u, v) is entropic
with only one downwind shock. We assume that the origin of the downwind shock is
x(0) = 0. Denote by Q± the (x, t)-open sets left and right of the shock; then we have
the

Theorem 3. For square integrable initial data P0 = (W0, U0)× ξ0 ∈ (L2(IR))2 ×
IR, there exists a unique solution P = (W, U, ξ) ∈ L2(Q− ∪ Q+) × C(0, T ) of (92).

The traces of (W, U) on the right and left side shock curve are well defined in
L2(S) and satisfy

[W ] +

√
v+v−

v++v−

2

[U ] + ξ(t)

(

[
1

v

∂v

∂x
] +

√
v+v−

v++v−

2

[
∂u

∂x
]

)

= 0 , (94)

dξ

dt
+

ξ
√

v+v−

1

2

(

1

v+

∂v+

∂x
+

1

v−

∂v−
∂x

)

= − 1
√

v+v−

W+ + W−
2

. (95)

Remark 5. Observe that ((94) , (95)) is equivalent to the general condition (60)
which is a system of 2 linear equations. To obtain (94) and (95) one combines linearly
the two scalar equations of (60) to obtain one with dξ

dt
and one without it and then

perform the change of variables.

Proof of the Theorem. It is done in two steps.
First the problem is considered with ξ(t) given and then a fixed point argument is
applied. One can introduce the function

P̃ = e−λtP (t) = e−λt(W (., t), U(., t), ξ(., t)) = (W̃ (., t), Ũ(., t), ξ̃(., t))
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and the systems becomes (with the omission of the tildes)

λW + ∂tW − 1

v
∂xU + (

1

v
∂xu)W = 0 , (96)

λU + ∂tU − 1

v
∂xW + (

1

v2
∂xv)W = 0 , (97)

λξ +
dξ

dt
+

1
√

v+v−

W+ + W−
2

+
ξ

√
v+v−

(

1
v+

∂v+

∂x
+ 1

v−

∂v−

∂x

)

2
= 0 , (98)

[W ] +

√
v+v−

v++v−

2

[U ] + ξ(t)

(

[
1

v

∂v

∂x
] +

√
v+v−

v++v−

2

[
∂u

∂x
]

)

= 0. (99)

Next one observes that in Q+ the system (96) and (97) is symmetric positive (λ has
been taken large enough) and that on S the boundary matrix is definite positive:

[

W
U

]

(ntI−
nx

v+

(

0, 1,
1, 0

)[

W
U

]

) =

(

W 2 + U2

√
v+v−

− 2

v+
UW

)

1
√

1 + ẋ(t)2
≥ c1(W

2 +U2).

(100)

This is due to the entropy condition which implies that v+ > v−. This corresponds
also to the fact that the linearized Riemann invariants, “leave” the boundary and
finally it is a simple example of the condition (1.14) given by Majda [24]. As a
consequence any pair of data (W0, U0) ∈ L2(IR+) defines a solution of (96) and (97)
in Q+ with a trace (W+, W−) ∈ L2(S) which (with λ given but large enough) satisfies
for any 0 < t ≤ T the estimate:

∫ ∞

x(t)

1

2
(W (x, t)2 + U(x, t)2)dx + c1

∫

S

1

2
(W (x(s), s)2 + U(x(s), s)2)ds

≤
∫ ∞

0

1

2
(W (x, 0)2 + U(x, 0)2)dx. (101)

For the proof one should first check that the above estimate is valid for smooth
solution and then proceed by regularization as in the standard Lax-Phillips theory.
Next observe that on the − side of S the boundary matrix is no more positive definite
it corresponds to the quadratic form:

[

W
U

]

(n−
t I − n−

x

v−

(

0, 1,
1, 0

)[

W
U

]

) =

(

− W 2 + U2

√
v+v−

+
2

v−
UW

)

1
√

1 + ẋ(t)2
(102)

and a direct computation shows that the relations:

W− +

√
v+v−

v++v−

2

U− = 0 (103)

defines a maximal positive subspace for this matrix.
More precisely or more explicitly the relation (103) and the entropy condition

v− < v+ imply (with c > 0) the inequality:

(

− W 2 + U2

√
v+v−

+
2

v−
UW

)

≥ v+v−
v++v−

2

(2
v+

v−
− 1 − v+v−

v−
v++v−

2

)U2 ≥ cU2. (104)
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Consequently the problem is well posed in Q− with data on IR−
x × (−∞, 0) and

boundary condition (103) on S. With regularization and superposition one obtains
the same result with the following boundary condition,

W− +

√
v+v−

v++v−

2

U− = g (105)

provided g ∈ L2(S) and with suitable constants (for all 0 < t < T ) the following
estimate is valid:

∫ x(t)

−∞

1

2
(W (x, t)2 + U(x, t)2)dx + c1

∫

S

(W−(x(s), s)2 + U−(x(s), s)2)dS

+c−2 (λ)

∫ x(t)

∞

1

2
(W (x, s)2 + U(x, s)2)dxdt

≤
∫ 0

−∞

1

2
(W (x, 0)2 + U(x, 0)2)dx +

∫

S

|g(x(s), s)|2dS. (106)

In particular to construct a fixed point argument, for ξ(t) ∈ L2(S) given, we choose

gξ = W+ +

√
v+v−

v++v−

2

U+ − ξ(t)

(

[
1

v

∂v

∂x
] +

√
v+v−

v++v−

2

[
∂u

∂x
]

)

(107)

to enforce the condition (94). Then for the corresponding solution denoted (W ξ
−, U ξ)

one has:

∫ x(T )

−∞

1

2
(W ξ

−(x, T )2 + U ξ
−(x, T )2)dx + c1

∫

S

1

2
(W ξ

−(x(s), s)2 + U ξ
−(x(s), s)2)dS

+c−2 (λ)

∫

Q−

1

2
(W ξ

−(x, t)2 + U ξ
−(x, t)2)dxdt ≤

∫ 0

−∞

1

2
(W (x, 0)2 + U(x, 0)2)dx

+c3

∫

S

|ξ(s)|2dS + c4

∫

S

1

2
(W+(x(s), s)2 + U+(x(s), s)2)dS. (108)

Then one determines the function h(ξ) by the formula

λh(ξ)+
dh(ξ)

dt
+

W ξ
+ + W p

−
2
√

v+v−
+

h(ξ)

2
√

v+v−

(

∂ log v+

∂x
+

∂ log v−
∂x

)

= 0 , h(ξ)(0) = ξ(0).

The above estimate show that for λ large enough the mapping ξ 7→ h(ξ) is a
contraction in L2(S). Therefore there is a unique ξ ∈ L2(S) for which one has
ξ = h(ξ) and with the standard tools of symmetric systems this completes the proof.

Away from the shock curve the equations for the adjoint problem are:

∂tV
∗ − 1

v2
∂xU∗ = 0 , ∂tU

∗ − ∂xV ∗ = 0 (109)

and the “interior boundary condition” on the shock curve is

[v]
dV ∗

dt
+ [u]

dU∗

dt
= 0. (110)
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Theorem 4. For any set of “final ” data (V ∗
T (x), U∗

T (x)) ∈ (L2(IR))2 and for
ξ∗(T ) ∈ IR given there exists for 0 < t ≤ T a unique solution (V ∗(x, t), U∗(x, t), ξ∗(t))
function ξ∗(t) and there exists a unique solution of the adjoint problem:

∂tV
∗ − 1

v2
∂xU∗ = 0 , ∂tU

∗ − ∂xV ∗ = 0 (111)

with “final data” (V ∗(x, T ), U∗(x, T )) = (V ∗
T (x), U∗

T (x)) and with interior boundary
data:

[v]V ∗ + [u]U∗ = ξ∗(t) = ξ∗(T ) −
∫ T

t

(
d[v]

dt
V ∗ +

d[u]

dt
U∗)(x(s), s)dS. (112)

Proof. As for the linearized problem the proof is done in several steps.
First the unknown will be eλ(T−t)(V ∗, U∗) (keeping the same notation) and W ∗ = vV ∗

is introduced and the problem is transformed in the following one.

−λW ∗ + ∂tW
∗ − 1

v
∂xU∗ − ∂v

∂x

W ∗

v
= 0 (113)

−λU∗ + ∂tU
∗ − 1

v
∂xW ∗ − 2

v2
∂xvW ∗ = 0 (114)

with data at time t = T and “internal boundary condition”

[v]V ∗ + [u]U∗ = e−λ(T−t)ξ∗(T ) −
∫ T

t

e−λ(s−t)(
d[v]

dt
V ∗ +

d[u]

dt
U∗)(x(s), s)ds. (115)

Next the problem is considered with the internal boundary condition:

[v]V ∗ + [u]U∗ = g given. (116)

It is first solved in Q− because on the shock curve one backward characteristic leaves
the domain and with the relation (116) the problem is well posed. In fact on the
lateral boundary of Q− (116) is equivalent to:

(v+ − v−)

v−
W ∗ + (u+ − u−)U∗ = g (117)

and for this time reverse problem the boundary quadratic form is:

nt((W
∗)2 + (U∗)2) − nx

v−
W ∗U∗

=
−1

√

1 + (ẋ(t))2
(

1
√

v−v+
((W ∗)2 + (U∗)2) +

1

v−
W ∗U∗). (118)

For this form the relation

(v+ − v−)

v−
W ∗ + (u+ − u−)U∗ = 0 (119)

implies the estimates:

((W ∗)2 + (U∗)2) +
1

v−
W ∗U∗) ≥ c((W ∗)2 + (U∗)2). (120)
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Consequently (114), has data at T in (L2(−∞, x(T )))2 and for boundary condition

(v+ − v−)

v−
W ∗ + (u+ − u−)U∗ = g ∈ L2(S)

a unique solution in Q− with trace (W ∗, U∗) ∈ L2(S). This provides values for
(V ∗

− = W∗

v−
, U∗

−). Now to ensure the continuity of (V ∗, U∗) one considers in Q+ the

problem (114), with data at T in (L2(x(T ),∞))2 and (W ∗, U∗) given on the boundary
by the formula:

W ∗
+ = v+V ∗

+ = v+V ∗
− =

v+

v−
W ∗

− , U∗
+ = U∗

−. (121)

Since the two characteristics go into Q+ at this point of the boundary the problem is
as above well posed.
From the above construction one sees that both (W ∗

−, U∗
−) and (W ∗

+, U∗
+) have a trace

on S in L2(S) and that the trace of (V ∗, U∗) on both side of S coincide.
Therefore as in the differentiated problem one can construct an a continuous maps
g 7→ h∗(g) in L2(S) as follows.
First solve with g given in L2(S) the problem

−λW ∗
g + ∂tW

∗
g − 1

v
∂xU∗

g − ∂v

∂x

W ∗
g

v
= 0 (122)

−λU∗
g + ∂tU

∗
p − 1

v
∂xW ∗

g − 2

v2
∂xvW ∗

g = 0 (123)

with the “internal boundary” condition:

[v]V ∗
g + [u]U∗

g = g. (124)

As observed this is a well posed problem and the trace (V ∗
g , U∗

g ) is well defined in
L2(S) Then define h∗(g) as the solution of:

−λh∗(g)(t)+
dh∗(g)

dt
+(

d[v]

dt
V ∗

g +
d[u]

dt
U∗

g )(x(s), s)ds = 0 , h∗(T )(g) = ξ∗(T ). (125)

With λ large enough the mapping h∗(g) turns out to be a contraction in L2(S) and
the existence of the solution follows.
The construction shows that both (v′a, u′

a) and (V ∗, U∗) are strong solutions (in the
sense of [18]) therefore by density one has for 0 ≤ t1 < t2 < T the duality formula:

∫

(v′aV ∗ + u′
aU∗)(x, t2)dx − ([v]V ∗ + [u]U∗)x′(x(t2), t2)

=

∫

(v′aV ∗ + u′
aU

∗)(x, t1)dx − ([v]V ∗ + [u]U∗)x′(x(t1), t1) (126)

which with t1 taken equal to 0 and t2 converging to T gives:
∫

(v′aV ∗ + u′
aU∗)(x, 0)dx − ([v]V ∗ + [u]U∗)x′(x(0), 0)

=

∫

(v′aV ∗ + u′
aU∗)(x, T )dx − ξ∗x′(x(T ), T ). (127)

Remark 6. Observe that if [v] and [u] are constant on the shock one has

[v]V ∗ + [u]U∗ = ξ∗(t) = ξ∗(T ).
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4. Data Assimilation with Burgers’ Equation. Consider solutions of the
Burgers’ equation with a parameter a in the initial condition

∂tu + ∂x

u2

2
= 0, in IR × (0, T ) , u(x, 0) = u0(a) (128)

and assume that there is only one shock (which satisfies the entropy condition t →
x(t; a)) and u− ≥ u+ ≥ 0 with the convention that − means upwind (left when u ≥ 0)
and + downwind (right)
Given b < c and x → ud(x) piecewise continuous with left and right values at points
of discontinuities and bounded, we wish to find a solution of

min
a

E(a) :=
1

2

∫ c

b

(u(T ) − ud)
2dx. (129)

According to (33)

E′(a) =

∫ c

b

u′(ū − ūd)dx

=

∫ c

b

u′
a(x, T )(u(x, T ) − ud(x))dx − ([u](ū − ūd))x(T ),T x′(T ). (130)

Then u′ = ∂u
∂a

is a distribution which satisfies

∂tu
′ + ∂x(uu′) = 0, in IR × (0, T ) u′(x, 0) = u′

0(a). (131)

To compute the right hand side of (130) one introduces adjoint state solution of

∂tu
∗ + u∂xu∗ = 0, in IR × (0, T ) u∗(x, T ) = ū(x, T ) − ūd(x). (132)

It was shown above that this equation is understood in the strong sense on the shock,
hence the presence of ū. Written at (x(t), t) it is an autonomous equation, so (132) is
in fact

away from the shock ∂tu
∗ + u∂xu∗ = 0 (133)

on the shock
du∗

dt
= 0. (134)

The last one can be integrated because [u] 6= 0:

u∗(x(t), t) = ū(x(T ), T ) − ūd(x(T )). (135)

The quantity 〈u′ u∗〉 is independent of t, i.e.

∫

u′
a(x, t)u∗(x, t)dx − x(t)[u]u∗(x(t), t) = constant and one has (136)

E′ =

∫

IR

u′
a(x, 0)u∗(x, 0)dx − x′(0)([u]u∗)x(0),0. (137)
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4.1. An Analytical Example. We choose u0(x, a) = 1−H(x− a) where H is
the Heaviside function. The solution of Burgers’ equation is u = 1 − H(x − (a + t

2 )
so u′ = δ(x − (a + t

2 )). Take ud = 0, b = −1, c = +∞. Then

E =
1

2

∫ 1

−1

u2dx ⇒ E′ =
1

2

d

da

∫ a+ T

2

−1

=
1

2
. (138)

On the other hand u∗ solution of the adjoint equation

∂tu
∗ + u∂xu∗ = 0 (139)

is determined as a classical solution away from the shock and on the shock curve the
boundary condition

du∗

dt
(x(t), t) = 0 (140)

with the boundary condition

away from the shock u∗(x, T ) ≡ 0 and on the shock lim
t→0

u∗(x(t), t) =
1

2
. (141)

Therefore one checks that E′ is indeed given by

〈u′(x, 0) u∗(x(0, 0))〉 =
1

2
. (142)

4.2. A Computational Example. The computation of Dirac functions with
a numerical scheme can be attempted (see [14]) but it is not possible with simple
finite difference schemes like the Lax-Wendroff method for (131); indeed it finds the
correct position of the Dirac masses but does not give the right weight.

A simple computational trick is to compute a primitive of u′ because it has
no Dirac singularities, only shocks, and it satisfies

U ′(x, 0) =

∫ x

−∞
u′(x, 0)dx

∂tU
′ + ū∂xU ′ = 0, in IR × (0, T ). (143)

The Lax-characteristic scheme

U ′
i
m+1

= U ′
j(i)

m
with j(i) the nearest index to i − δt

2δx
(um

i+1 + um
i−1) (144)

gives the result shown on figure 2. Notice that the two characteristics left and right
of (x(T ), T ) define a “shaded” region in which there are no characteristics going from
t to 0. It is the extra condition (87) (or in this section (140)) which fixes the value of
u∗ in this region.
To compute the adjoint is quite difficult because unless a mesh point falls exactly on
x(T ), the shaded region will not be computed correctly; this is a major numerical
difficulty which renders the use of adjoint impractical until this problem is solved.
Here we propose to “thickened” the discontinuity to spread the value of u∗ at x(T ) on
several grid points. The shock line needs also to be “thickened” because u∗(T ) uses
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Fig. 2. On the left side U ′ is the curve with ’+’. The other curve is in fact made of 2 curves
almost on top of each other which show u for two close values of a. Substracting these two curves
and dividing by δa gives an approximation of u, but it is much less precise than dU ′/dx. On the
right the adjoint u∗ is shown, as computed by (143). It is equal to 1 on the left, 0.5 in the ”shaded
triangle” and 0 on the right. The other curve is the velocity used in (143), i.e. −u.

values of u at x(T ) which will not be correctly computed otherwise. More precisely
the adjoint problem solved is (132) with

u∗(T ) = uǫ(T ) where uǫ is given by (131) with
u(0) = ū0(0) on (−ǫ, +ǫ), u(0) = u0 elsewhere. (145)

The same Lax-characteristic scheme is applied to (132). The results are shown on
figure 2.
Notice that artificial viscosity replaces shocks by smooth curves so it is not a good
idea because it will assign to u∗(x(T ), T ) some value between u−−u−

d and u+−u+ but
not necessarily ū− ūd. This is not to be confused with a regular calculus of variation
on the problem regularized by artificial viscosity, which on the other had works, but
nevertheless will be sensitive to the viscosity coefficient (see [12]).

5. Hamilton-Jacobi Formulation. As we proved in the section 3.1 the lin-
earized system for the full Euler equation is

∂tρ
′ + ∂xv′ = 0

∂tv
′ + ∂x(−3 − γ

2

ūv̄

ρ̄
ρ′ +

3 − γ

2
(ū +

v̄

ρ̄
)v′ + (γ − 1)e′) = 0 (146)

∂te
′ + ∂x((−γ

ūē

ρ̄
+ (γ − 1)

ū2v̄

ρ̄
)ρ′ + (γ

ē

ρ̄
− γ − 1

2
(u2 + 2

v̄ū

ρ̄
))v′ + γūe′) = 0.

For numerical purpose, just as for Burgers’ equation, we need to use primitive
variables so as to transform the Dirac masses into shocks. Let

R′(x, t) =

∫ x

−∞
ρ′(y, t)dy, V ′(x, t) =

∫ x

−∞
v′(y, t)dy, P ′(x, t) =

∫ x

−∞
p′(y, t)dy (147)

In matrix form after integration in x the linearized Euler system is

∂t





R′

V ′

E′



 =







0 1 0

− 3−γ
2

ūv̄
ρ̄

3−γ
2 (ū + v̄

ρ̄
) γ − 1

−γ ūē
ρ̄

+ (γ − 1) ū2v̄
ρ̄

γ ē
ρ̄
− γ−1

2 (u2 + 2 v̄ū
ρ̄

) γū






∂x





R′

V ′

E′



 .
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Notice that a standard linearization would have given the matrix:

G =





0 1 0

− 3−γ
2 u2 (3 − γ)u γ − 1

−γ ue
ρ

+ (γ − 1)u3 γ e
ρ
− 3

2 (γ − 1)u2 γu



 (148)

however both matrices are equal outside the shock (where the over-lines can be re-
moved). Matrix (148) has for eigenvalues λ = u, u+c, u−c with c2 = u2γ(γ−1)( e

ρu2 −
1
2 ) and eigenvectors, for instance,

[1 , λ ,
3 − γ

γ − 1
(
u2

2
− (u − λ

3 − γ
)λ)].

A numerical scheme is easy to build with this information.
The Shallow water equations. To illustrate our purpose we take the simpler case

of Saint-Venant’s equations (corresponding approximately to γ = 1 in Euler equations
after replacing the energy equation by an entropy equation); flows of rivers of depth
ρ and velocity u satisfy these equations:

∂tu + ∂x(
u2

2
+ ρ) = 0 , ∂tρ + ∂x(ρu) = 0. (149)

We choose for initial conditions

ρ(0) = (0.5 + a)Ix<0 + 0.5, u(0) = 0.

The differentiated system with respect to a is

∂tu
′ + ∂x(ūu′ + ρ′) ∂tρ

′ + ∂x(ρ̄u′ + ūρ′) = 0 (150)

and after integration in x,

∂tU
′ + ū∂xU ′ + ∂xR′ = 0 ∂tR

′ + ū∂xR′ + ρ̄∂xU ′ = 0.

Numerical Scheme. The system is rewritten as

∂tW + G∂xW = 0 with W =

(

R′

U ′

)

and G =

(

ū ρ̄
1 ū

)

. (151)

It can be diagonalized

∂tS + Λ∂xS + Q−1(∂tQ + G∂xQ)S = 0 with S = Q−1W, Λ = Q−1GQ (152)

and with,

Λ =

(

ū +
√

ρ̄ 0
0 ū −√

ρ̄

)

Q =

(√
ρ̄ −√

ρ̄
1 1

)

. (153)

Notice also that

Q−1 =

(

1
2
√

ρ̄
1
2

− 1
2
√

ρ̄
1
2

)

, W =

(√
ρ̄(S1 − S2)
S1 + S2

)

, S =

(

W1

2ρ̄
+ W2

2

−W1

2ρ̄
+ W2

2

)

(154)
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Fig. 3. On the left two results are shown (u in blue and magenta, ρ in red and green) at T = 0.3.
The difference is due to a change δa = 0.1 of value in a at t = 0, the shock moves by 0.012 with a
shock strength of 0.25. On the right is shown R′ (in green) and U ′ (in red). It is seen that [R′] = 0.03
giving, with δa = 0.1, a change in shock position equal 0.012, as expected.

so that

Q−1(∂tQ + G∂xQ)S =
S1 − S2

4
∂x

(

−ū + 2
√

ρ̄
ū + 2

√
ρ̄

)

. (155)

Then the upwinding is applied to the system written in S. Results are shown on
Figure 3 which displays two computations, one for a = 0 and one for a = 0.1. The
x-primitive R of ρ′ of the a-derivative of ρ is shown on the right of the figure and
compared with its a-finite difference approximation (only the values around the shock
count).

Control of the Shock Position. To test the methodology on a control problem we
set the following case:

• Define

ρ0
d =

1

2
(Ix<0 + 1), u0

d = 0

• Computed ρd(x) = ρ(x, T ), ud(x) := u(x, T ) by solving (149) with initial
conditions equal to ρd, ud.

• Solve by a descent method the problem

min
a,b,c

E(ρ, u) =

∫

IR

(|ρ(T ) − ρd|2 + |u − ud|2)dx (156)

where ρ, u are computed from (49) with initial conditions

ρ0 = 1 + b − 1

2
Ix>a, u0 = c.

As before, when the number of unknown is small (3 in our case) it is better not to
use the adjoint state because it is numerically too difficult to compute. We have used
R′, U ′ directly to compute the derivative of E and a descent method with fixed step
size (not the best of course but the easiest to validate the method). The results are
shown on figure 4.
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Fig. 4. Top left: Initial (u0 in red and ρ0 in green) and target (u0
d

in blue and ρ0
d

in magenta)
velocities and densities. Top right: Computed (in red and green) and target (in blue and magenta)
velocities and densities; this shows that the problem has been solved with very good precision.
Bottom left : Solution (u, ρ, U, R) at time T=0.3. Bottom right: Convergence: Gradients (in red,
green and blue) and parameters (in magenta, light blue and yellow) with respect to a, b, c versus
iteration number (all use log scales).

6. A General Hamilton-Jacobi Formulation. For numerical applications it
is difficult to device an efficient scheme for the linearized system because of the Dirac
measures. In one dimension of space the trick was to integrate all equations in x. Let
us give a similar trick for the general case. We begin with the 2D case.

6.1. A Constructive Argument in 2D. Consider a system of conservation
laws for W (x, t) ∈ IRp:

∂tW + ∂xF1(W ) + ∂yF2(W ) = 0 W (0) = W0. (157)

We assume that the system admits a convex entropy and that there exists one and
only solution which satisfies the corresponding entropy condition.

Then obviously it is also

∇t,x,y ·





WT

F1(W )T

F2(W )T



 = 0 (158)

so, there exist a, b, c ∈ IRp functions of x, t such that

(

W F1(W ) F2(W )
)

=
(

∂xc − ∂yb ∂ya − ∂tc ∂tb − ∂xa
)

(159)

The last two equations spell out as

∂tc + F1(∂xc − ∂yb) − ∂ya = 0,
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∂tb − F2(∂xc − ∂yb) − ∂xa = 0. (160)

Now to remove a we notice that the change of variable c → c−∂y

∫ t
a, b → b−∂x

∫ t
a,

leaves ∂xc−∂yb unchanged; hence with V = (c,−b) ∈ IRp×p and F = (F1, F2) : IRp →
IRp×p the system is

∂tV + F(∇ · V ) = 0 V (0) = V0 wı́th ∇ · V0 = W0. (161)

One way to construct V0 is to set

V0 = ∇Φ wı́th − ∆Φ = −W0. (162)

The shallow water equations in 2D . The shallow water equations

∂tρ + ∇ · v = 0 , ∂tv + ∇ · (v ⊗ v

ρ
+

ρ2

2
) = 0 (163)

lead to the formulas:

∇ · V = W =





ρ
v1

v2



 F(W ) =







W2 W3
W 2

2

W1
+

W 2
1

2
W2W3

W1

W2W3

W1

W 2
3

W1
+

W 2
1

2






. (164)

The linearized equation is

∂tV
′ + F ′(W )∇ · V ′ = 0 (165)

with ∇ · V ′ = W ′ = (ρ′, v′1, v′2) and

F ′(W )W ′ =

∣

∣

∣

∣

∣

∣

0BBB� 0 1 0

W1 − (
W2
W1

)2 2
W2
W1

0

−
W2W3

W2
1

W3
W1

W2
W1

1CCCA0B�W
′
1

W
′
2

W
′
3

1CA 0BBBBB� 0 0 1

−
W2W3

W2
1

W3
W1

W2
W1

W1 −
W

2
3

W2
1

0 2
W3
W1

1CCCCCA0B�W
′
1

W
′
2

W
′
3

1CA∣∣∣∣
∣

∣

. (166)

6.2. The General Case. In more than two dimensions of space (n > 2) the
same trick works but the proof is not constructive. Consider a system of conservation
laws in IRn for W (x, t) ∈ IRp with flux W 7→ F(W ) ∈ IRn×p:

∂tW + ∇ · F(W ) = 0 W (0) = W0. (167)

Let V ∈ IRp×n be a solution of

∂tV + F(∇ · V ) = 0
V (0) = V0 chosen such that ∇ · V0 = W0

( for instance: V0 = ∇Φ wı́th − ∆Φ = −W0). (168)

We have the following facts:
1. W = ∇ · V satisfies (167). Indeed just take the div of (168) to obtain (167).
2. There is at least one solution of (168). Indeed if W is a solution of (167) then

the following is a solution

V (x, t) = V0(x) +

∫ t

0

F(W (x, τ), τ)dτ (169)
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3. If (167) has a unique solution then two distinct solutions V1, V2 of (168) have
∇ · V1 = ∇ · V2.

Remark 7. Since the solutions are not continuous they have to satisfy an entropy
condition, at least, for uniqueness and stability. For the Hamilton Jacobi system this
condition has to be written in term of ∇V . However the numerical computation (see
(166)) will involve the matrix F ′(W ) and it is in the construction of upwind scheme
for this matrix that the entropy condition will be enforced. Even with entropy condition
uniqueness is an open problem.

Comparison with Standard Hamiltonian formulation. If the above is applied to
a system which has a classical Hamilton-Jacobi equation, what is the connection the
vector H-J formulation given above?

Consider the following example

∂tu1 +
1

2
∂x(u2

1 + u2
2) = 0 , ∂tu2 +

1

2
∂y(u2

1 + u2
2) = 0. (170)

This system preserves for any solution the property of being a gradient. Therefore with
initial data (u1, (x, 0), u2(x, 0)) = ∇φ it has the scalar Hamilton-Jacobi formulation

∂tφ +
1

2
(∂xφ2 + ∂yφ2) = 0. (171)

Written in vector form with u = ∇φ it is

∂t~u + ∇ · F(~u) = 0 with F(~u) =
1

2

(

|u|2 0
0 |u|2

)

. (172)

Accordingly V satisfies

∂tV + F(∇ · V ) = 0, i.e. with u = ∂xV11 + ∂yV12, v = ∂xV21 + ∂yV22

∂tV11 +
1

2
(u2 + v2), ∂tV12 = 0 ,

∂tV21 = 0, ∂tV22 +
1

2
(u2 + v2) = 0. (173)

So with the initial conditions

V11 = V22 = φ(0), V12 = V21 = 0

equation (171) is recovered. However notice that it is written twice instead of one
time.

6.3. Numerical Examples.

Example 1: linear convection. For given velocity field u in an open set Ω denote
by n the exterior normal to ∂Ω , let Σ = {x, t) : u(x, t) ·n < 0, x ∈ ∂Ω} and consider

∂tρ + ∇ · (ρu) = 0, ρ(0) = ρ0, ρ = ρΣ on Σ. (174)

Then the equations for V are

∂t
~V + F(ρ) = 0, ∇ · ~V = ρ, F(ρ) = ρ~u. (175)

To construct a numerical scheme we rely on the fact that the Jacobian matrix is the
same as the one for W . So the same principles for the construction of numerical
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Fig. 5. Convection of a passive scalar entering from the lower right boundary (left) when the
convection velocity is aligned with the grid and (right) when it is not. The result is obtained by
integrating (175) using (176).

approximations will apply: upwinding via characteristics, numerical flux etc. In this
case the problem is linear and an upwind finite difference explicit scheme could be

~V m+1
i,j = ~V m

i,j − δt

h
((V m

1 i,j − V m
1 i−1,j + V m

2 i,j+1 − V m
2 i,j+1)~ui,j . (176)

Results are shown on figure 5.

Example 2: Shallow Water. Equations (164) are solved with initial conditions
corresponding to a stone thrown into a lake at rest. The scheme we have used is
similar to (176) but rotated and applied to the diagonalized form of the equations (see
(166)). Results are shown on figure 6 for an initial condition which is ρ = 0 everywhere
except in a disk at the center where ρ = 1 and case a) u = (0, 0) everywhere and case
b) u = (1, 0) in the disk.

Conclusion. In this paper we have studied the differentiability of entropy weak
solutions of conservation laws in the presence of shocks. In general differentiability is
not in the usual sense because of Dirac singularities due to changes in the shock posi-
tions. We have proposed to use distribution theory to extend the notion of derivative
and shown that most of the known results can be reinterpreted with this tool.
We have proposed also a notation which extends the classical calculus of variations.
With it, adjoint equations are unambiguously defined when the shock is simple. In-
tegration by part between the adjoint variable and the derivative of the state system
is also justified for piecewise smooth solutions with a single shock at all times.
We have shown on simple examples that the results can be used for control; how-
ever the adjoint equation is rather difficult to integrate numerically and this is still
a limitation of the method. When adjoints are not used (i.e. there are only a few
parameters in the optimization problem) then the equation for the derivative can
be replaced by its Hamilton-Jacobi primitive which contains shocks instead of Dirac
masses. Alternatively Ulbrich proposes in [29, 30] the notion of shift differentiability
and it will be compared in a fore coming article.
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Fig. 6. Top and bottom left: Flow at 3 instants of time (including t=0, left) due to a stone
falling in a lake and obtained by integrating the Hamilton-Jacobi formulation of the Shallow Water
equations. Bottom right: same but the stone has an initial horizontal velocity, thus creating shock
propagation.
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