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VARIATIONAL PRINCIPLE BASED COMPUTATION OF

KPP AVERAGE FRONT SPEEDS IN RANDOM SHEAR FLOWS∗

JAMES NOLEN† AND JACK XIN‡

Abstract. Variational principle of Kolmogorov-Petrovsky-Piskunov (KPP) minimal front speeds
provides a fast and accurate way for speed calculations. A variational principle based computation
is carried out on a large ensemble of KPP random speeds through spatial, mean zero, stationary,
Gaussian random shear flows inside two dimensional channel domains. In the regime of small root
mean square (rms) shear amplitude, the enhancement of the ensemble averaged KPP front speed
obeys the quadratic law. In the large rms amplitude regime, the enhancement follows the linear
law. An asymptotic ensemble averaged speed formula is derived and agrees well with the numerics.
Related theoretical results are presented with a brief outline of the ideas in the proofs. The ensem-
ble averaged speed is found to increase sublinearly with enlarging channel widths, while the speed
variance decreases. Direct simulations in the small rms regime suggest quadratic speed enhancement
law for non-KPP nonlinearities.
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1. Introduction. Front propagation in heterogeneous fluid flows has been an
active research area (see [8], [15], [12], [23], [24], [25], [27] and references therein). A
fascinating phenomenon is that the large time (large scale) front speed can be en-
hanced due to multiple scales in fluid flows. Speed characterizations and enhance-
ment laws have been studied mathematically for various flow patterns by analy-
sis of the proto-type models, i.e. the reaction-diffusion-advection equations (see
[5, 9, 11, 13, 15, 16, 17, 18, 22, 24, 25, 26] and references therein). The enhance-
ment obeys quadratic laws in the small amplitude flow regime, known as the Clavin-
Williams relation [8], which is proved to be true for deterministic shear flows [22], [11],
[19], [18]. However, enhancement exponent 4/3 was proposed based on numerical sim-
ulation of random Hamilton-Jacobi models (so called G-equation or KPZ model) on
fronts in weak randomly stirred array of vortices [12].

In this work, we consider the reaction-diffusion front speeds through random shear
flows in a two dimensional channel domain. We shall address the enhancement laws
of the ensemble averaged front speeds. The model equation is:

ut = ∆x,yu − B · ∇x,yu + f(u), (1.1)

∆x,y the two-dimensional Laplacian, (x, y) ∈ R × [0, L], t ∈ R+. The nonlinearity
f = u(1 − u), so called Kolmogorov-Petrovsky-Piskunov (KPP) reaction. Other
nonlinearities [25] will be discussed later. The vector field B = (b(y, ω), 0) where
b(y, ω) is a stationary Gaussian process in y, its ensemble mean equal to zero.

Neumann boundary conditions are imposed along the sides of the cylinder: ∂u
∂y

= 0
for y = 0 or y = L. For nonnegative initial data approaching zero and one at x
infinities rapidly enough, the KPP solutions propagate as fronts with speed c∗ given
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by the variational principle [7, 25, 5]:

c∗ = c∗(ω) = inf
λ>0

µ(λ, ω)

λ
, (1.2)

where µ(λ, ω) is the principal eigenvalue with corresponding eigenfunction φ > 0 of
the problem:

L̄λ φ = φyy + [λ2 + λ b(y, ω) + f ′(0)] φ = µ(λ, ω)φ, y ∈ (0, L), (1.3)

∂φ

∂y
= 0, y = 0, L. (1.4)

The KPP variational speed formula (1.2) offers an efficient and accurate way to
compute a large ensemble of random front speeds. Directly solving the original time
dependent equation (1.1) to reach steady propagating states can be both slow and
less accurate. Numerical difficulties abound for direct simulations due to at least
three large parameters. A large ensemble of random fronts requires a large enough
truncated domain (x, y) ∈ [−xl, xr] × [0, L] to contain the front over large times.
Due to occasional random excursions in b, the domain size in x has also to be made
adaptively large. This can be prohibitively expensive in the regime of large root mean
square (rms) shears.

The variational formula (1.2) allows us to compute fast and accurately the ensem-
ble averaged speeds in both small and large shear rms regimes. An interesting differ-
ence from the deterministic case is that the integral average of b(y, ω) in y ∈ [0, L], i.e.

b̄ = b̄(ω) = L−1
∫ L

0 b(y, ω) dy, is a random constant not equal to zero. This quantity
can be of either sign, and influence greatly the numerical approximation of E[c∗] in
the small rms regime, even though it does not contribute to the exact E[c∗]. To assess
the speed enhancement accurately, we subtract this random constant from each c∗(ω)
before evaluating the expectation numerically. This way, we are able to minimize the
errors in approximating E[c∗] in a finite ensemble. In our computation, b is a discrete
Ornstein-Uhlenbeck (O-U) process.

The main finding of this article is that the ensemble averaged speed obeys the
quadratic law in the small rms regime and linear law in the large rms regime. With-
out the b̄ subtraction technique, the computed average speed enhancement in the
small rms regime can give inaccurate scaling exponents significantly below two. The
same technique and direct simulations for other nonlinearities (combustion, bistable)
suggest quadratic speed enhancement in the small rms regime. We note in passing
[26] that if L → ∞ and b is white in time, then the KPP speed enhancement obeys
quadratic (linear) law in the small (large) rms regime; and that the KPP speed loga-
rithmically diverges in time if b is only spatially Gaussian. Our numerical results on
channels with enlarging widths are qualitatively consistent, and show that the average
speed increases sublinearly while the speed variance decreases.

The rest of this article is organized as follows. In section 2, we discuss properties
of the random process b(y, ω), theorems on ensemble averaged speed enhancement
laws, and an asymptotic enhancement formula. In section 3, we describe a numerical
method for computing with the variational formula (1.2); show various numerical
results, and comparison with the asymptotic formula. The concluding remarks are
in section 4. More analytical and numerical findings can be found in the companion
paper [20].
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2. Speed Formula in Random Setting. Consider scaling the shear amplitude
b(y, ω) 7→ δb(y, ω), and denote by c∗(δ) the minimal KPP speed corresponding to the
shear δb, so c∗0 = c∗(0) is the minimal speed in the case of zero advection. For a

deterministic shear, if the shear integral average 〈b〉 = 1
L

∫ L

0
b(y, ω) dy = 0, then

c∗(δ) = c∗0 + O(δ2) as δ ≪ 1. In the large δ regime, limδ→∞ c∗(δ)/δ exists [4]. In case
of a stationary Gaussian shear, we have an ensemble of KPP front speeds c∗(δ, ω)
in an infinite cylinder R × Ω, Ω a simply connected bounded domain with smooth
boundary in Rn−1 (n ≥ 2). Though 〈b〉 may not be zero, similar enhancement laws
holds for the ensemble averaged speeds.

Theorem 2.1 (Quadratic Law). Let b(y, ω) be a stationary random process in
Rn−1 (n ≥ 2) so that sample paths are almost surely continuous; and that

E[‖b‖6
∞] < +∞. (2.5)

Then for δ small, the expectation E[c∗(δ, ω)] has the expansion

E[c∗(δ, ω)] = c∗0 + δE[〈b〉] +
c0δ

2

2|Ω|

∫

Ω

E[|∇χ|2] dy + O(δ3), (2.6)

where b(y, ω) = 〈b〉(ω) + b1(y, ω); and χ = χ(y, ω) solves ∆yχ = −b1, y ∈ Ω, subject
to zero Neumann boundary condition.

In the large rms amplitude regime, linear growth of the ensemble averaged speed
holds with weaker moment conditions on b:

Theorem 2.2 (Linear Law). If the stationary shear process b(y, ω) has al-
most surely continuous sample paths and satisfies E[‖b‖∞] < ∞, then the am-
plified shear field δ b(y, ω) generates the average front speed E[|c∗(δ, ω)|] such that
limδ→∞ E[|c∗(δ, ω)|]/δ exists.

The above are stochastic analogues of known enhancement laws in deterministic
shear flows with the bistable and combustion type nonlinearities. The authors of [11]
proved a min-max variational formula for the wave speed in the case of bistable and
combustion type nonlinearity, and they used the formula to derive an enhancement law
for small shear amplitudes similar to (2.6) (see Theorem 4.2 in [11]). In [10], Hamel
proved that the same min-max variational formula holds for c∗ in the case of the KPP
nonlinearity, but it is not clear that this formula will yield the result of Theorem 4.2
in [11] for the KPP case. The difference lies in the fact that the linearized operator
for the traveling wave equation in the KPP case (unlike the bistable and combustion
cases) has continuous spectrum with positive real part. As a result, the estimates used
to prove Theorem 4.2 of [11] do not extend to the KPP case. Indeed, the estimates
needed to prove Theorem 4.2 of [11] are a delicate matter and the technique of [11]
must be modified in order to prove the stochastic analogue of (2.6) for the bistable
and combustion cases. See [21] for more discussion of this point and an extension of
(2.6) to the bistable and combustion cases.

To handle the KPP case and prove (2.6), our strategy is to estimate c∗(δ, ω)
by analyzing the associated eigenvalues µ(λ, ω) and applying (1.2). To estimate the
eigenvalues µ(λ, ω), we construct a class of test functions suggested by formal asymp-
totic expansion of the eigenvalues, and we insert the test functions into well-known
variational formulas for the principal eigenvalue of an elliptic operator. For each re-
alization this method yields a speed asymptotic expansion similar to Theorem 4.2 in
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[11]. Then combining this with probabilistic estimates on the remainder of the expan-
sion yield the result for the ensemble mean. The linear growth of E[c∗(δ, ω)] follows
from the dominated convergence theorem and the deterministic result [4]. Details are
referred to [20].

The moment conditions for both theorems are satisfied by the Ornstein-Uhlenbeck
process restricted to the interval [0, L] as a consequence of Doob’s inequality [20].
The expectation integral of the O(δ2) term in (2.6) can be calculated in terms of the
covariance function E[b(s)b(y)] = f(|s − y|) [20]. In case of O-U process, E[b] = 0,
f(|s − y|) = ρ exp(−a|s − y|), ρ = r2/(2a), for positive constants r and a. Then by
(2.6) with Ω = [0, L], we have the averaged speed formula [20] for δ small:

E[c∗(δ, ω)] = c∗0 +
c∗0δ

2

2|Ω|E[〈|χx|2〉] + O(δ3), (2.7)

where:

E[〈|χx|2〉] =
r2

2a

(

e−aL

(

4

L2a4
− 1

3a2

)

+
L

3a
− 4

L2a4
− 5

3a2
+

4

La3

)

. (2.8)

We shall see that the average speed formula (2.7)-(2.8) agrees rather well with
numerics.

3. Numerical Method and Results.

3.1. Numerical Method. For a given λ > 0, we compute the principal eigen-
value µ(λ) by solving (1.3)-(1.4) with a standard second order finite-difference method
and a second order discretization of the Neumann boundary conditions. The compu-
tation is done realization by realization, and we shall omit writing the ω dependence.
The problem reduces to finding the principal eigenvalues of symmetric tridiagonal
random matrices, easily accomplished with double precision LAPACK routines [2].

Then we compute points on the curve µ(λ)
λ

, and minimize over λ using a Newton’s
method with line search. This way, our approximation converges quadratically in the

region near the infimum and decreases with each iteration. The curves µ(λ)
λ

may not
be convex, but there is always a unique minimum [20].

We generate realizations of the shear process b(y, ω) by applying the Milstein
scheme [14] on the stochastic differential equation satisfied by the O-U process. Al-
though the scheme is first order, we select a discrete spacing h̄ ≤ h2, where h is the
discrete grid spacing for the eigenvalue problem. So the method is still second order
accurate in the parameter h. Fig. 1 and Fig. 2 show an O-U sample path, numer-
ical and exact covariance functions. The O-U parameters ρ = 2, a = 4, and 5000
realizations of O-U process are used for calculating the covariance function in Fig. 2.

To approximate the expectation E[c∗(δ)], we generate N realizations (indexed by
i = 1, . . . , N) of the shear and compute the corresponding minimal speeds {c∗i } for
each δ. Then we compute the average

E[c∗(δ)] ≈ Ē(δ) = c∗0 +
1

N

N
∑

i=1

Mi(δ), j = 1, . . . , N (3.1)

where Mi(δ) = c∗i (δ)−c∗0−δb̄i. That is, we subtract the linear part due to the integral
average of the shear being nonzero, as in (2.7).

Once we have the averages Ē(δ) for each δ, we compute the scaling exponents p
using the least square method to fit a line to a log-log plot of averaged speed versus
amplitude.
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Fig. 1. One sample path of the Ornstein-Uhlenbeck process b(y, ω).
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Fig. 2. Numerical and exact covariance functions of the Ornstein-Uhlenbeck process b(y, ω).

3.2. Numerical Results. Figure 3 and Figure 4 show the results using N = 105

shear realizations for small rms amplitudes and large rms amplitudes, respectively.
The covariance function of the process is E[b(y)b(s)] = e−4|y−s|. In each plot, we
show multiple curves, corresponding to various domain widths. In Figure 3 in the
small δ regime, the solid curves are the numerically computed values; the dashed
curves are calculated by formula (2.7). The agreement between the formula and
numerics is excellent, especially at small δ ∈ (0, 0.2), or smaller domain width L = 1, 2.
The enhancement of the minimal speed is found to scale quadratically for small rms
amplitudes and linearly for large rms amplitudes. The computed scaling exponents
are shown in Table 1.

Using the direct second order upwind finite difference method described in [18],
we observe similar results for small rms amplitudes in case of generalized KPP
(f(u) = u2(1 − u)), combustion [18], or bistable [18] front speeds, as shown in Ta-
ble 2. The numerical domain in the direct simulation is (x, y) ∈ (0, 30) × (0, 4π).
For front containment in this domain during its evolution, the diffusion coefficient in
front of ∆x,yu is 0.025 (instead of one), so to have sharper fronts moving at slower
velocities. The initial front is located near x = 0. The number of realizations for
the average speeds to stabilize is on the order of 103. The range of computed δ is
[0.01, 0.05]. Due to the long time required for direct simulation, we have not pursued
direct computation of the scaling exponents for large rms shear amplitudes.
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Table 1
Scaling exponents p in E[c∗(δ)] = c∗0 + O(δp), with KPP nonlinearity, computed by variational

formula for various L.

L = 1.0 L = 2.0 L = 3.0 L = 4.0
δ ≪ 1 2.00 1.98 1.96 1.93
δ ≫ 1 1.09 1.05 1.04 1.03

Table 2
Scaling exponents p in E[c∗(δ)] = c∗0 + O(δp), computed by direct simulation for various non-

linearities.

KPP Combustion Bistable Generalized KPP
δ ≪ 1 1.98 2.00 1.99 1.99

We also observed that as we increase the width L of the channel, with δ fixed, the
expectation E[c∗(δ)] grows sublinearly and the variance V ar[c∗(δ)] decreases. Figure
5 illustrates the variation of the distribution of c∗(δ) as L = 4, 16, 30. For this figure
(and later Fig. 6 and Fig. 7), δ = 50, and the diffusion constant equals 0.01 (set to 1
in equation (1.1)). Also, the covariance of the shear process has been modified from
Fig. 3 and Fig. 4 to give optimal enhancement for the larger amplitude and larger
domain widths (see [20] for more details about enhancement versus covariance of b).
The distribution curves get narrower and shifted to the right with increasing L. A
theoretical explanation is as follows. The average speed obeys the upper bound

E[c∗(δ)] ≤ c∗0 + δE[ sup
y∈[0,L]

b(y)]. (3.2)

From the theory of extremal distributions for stationary Gaussian fields with covari-
ance function being Hölder continuous near the origin ([1], Chapter 6), we have as
L → ∞:

E[ sup
y∈[0,L]

b(y)] ≡ A(L) ∼ O(
√

log(L)),

Var [ sup
y∈[0,L]

b(y)] ≡ B(L) ∼ O(
1

√

log(L)
),

Prob (B−1(L)( sup
y∈[0,L]

b(y) − A(L)) < u) → exp{− exp{−u}}. (3.3)

The O-U process satisfies (3.3), its covariance is Lipschitz near the origin. In view
of (3.2), we see that the growth of E[c∗(δ)] with respect to L could be no more
than O(

√
log L). It is known [3, 6] that for deterministic shear flows, if the diffusion

coefficient (instead of being one in (1.1)) is small enough, the ratio c∗(δ)/δ is close
to supy∈[0,L] b(y) as δ ≫ 1. We observed that at δ = 50, diffusion constant = 0.01,
the mean and variance of c∗(δ)/δ mimic the mean and variance of supy∈[0,L] b(y) as
L ≫ 1. In Fig. 6 and Fig. 7, we compare E[c∗(δ)] with E[g1(L)] and V ar[c∗(δ)] with
V ar[g1(L)], where

g1(L) = c∗0 + δ sup
y∈[0,L]

b(y).

The figures show a close correlation between the speed and the global maximum
of the shear on [0, L], but the curves are clearly not identical. While they suggest
that asymptotic convergence may hold for the speed distribution function up to a
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Fig. 3. Enhancement of ensemble averaged KPP minimal speeds in the small rms shear am-
plitude regime and varying domain widths. Solid curves are the numerically computed values; the
dashed curves are calculated by asymptotic formula (2.7).

normalization similar to (3.3), they do not suggest that the E[c∗(δ)/δ]/E[sup b] →
1. Because of the very slow convergence of these quantities as L → ∞, additional
computation of these curves as L → ∞ does not yield more insight into the subtle
behavior of c∗(δ) in the limit.

4. Concluding Remarks. Variational principle of KPP front speeds allows us
to perform an accurate computation of a large ensemble of speeds through random
shears inside two dimensional channel domains. In the regime of small rms shear
amplitude, the enhancement of the ensemble averaged speed obeys the quadratic law.
In the large rms regime, the enhancement follows the linear law. An asymptotic
averaged speed formula is found to agree well with the numerics. Enlarging the
channel width increased the averaged front speed, and decreased the speed variance.
The correlation between the KPP speed and the shear maximum was observed in
the large rms regime of the shear. A mean shear subtraction technique helps to
numerically approximate the average front speeds accurately in the small rms regime.
The technique and direct simulations suggest quadratic enhancement law for non-KPP
nonlinearities.
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Fig. 4. Enhancement of ensemble averaged KPP minimal speeds in the large rms shear ampli-
tude regime with varying domain widths.
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Fig. 5. Distribution of KPP minimal speeds in the large rms shear amplitude regime with
varying domain widths, δ = 50.
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