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A LIOUVILLE TYPE THEOREM FOR MINIMIZING MAPS ∗

FENGBO HANG‡† AND FANGHUA LIN‡

Abstract. Here we establish a Liouville type theorem for minimizing maps from R
2 (or in

general, from R
m) into a compact Riemannian manifold N . As a consequence of this, we prove a local

gradient estimate for minimal solutions to a variational problem arise from planar ferromagnetism
and anti-ferromagnetism. The latter can be applied to study the asymptotic behavior of entire
solutions.

1. Introduction. In [HnL] we studied the following simplified mathematical
model for the planar ferromagnetism and anti-ferromagnetism. Let Ω ⊂ R

2 be a
bounded open connected smooth subset, S2 ⊂ R

3 be the standard 2-sphere, S1 be
the horizontal great circle on S2, and g : ∂Ω → S1 be a smooth map. For any ε > 0
and u ∈ H1

g (Ω, S
2), we define

(1.1) Iε(u) =
∫

Ω

1
2

[
|∇u|2 +

(u3)2

ε2

]
dx.

We analyzed the asymptotic behavior of the minimizers of Iε over H1
g (Ω, S

2) as ε →
0+. One of the crucial step in our proof is gradient estimates for minimizers (see
Theorem 1.3 in [HnL]), which was proved by combining a blow-up argument with some
Liouville type theorems. The main theme relies on the fact that minimizers of such
boundary value problems always lie in a half sphere. In order to study the asymptotic
behavior of minimizing solutions or to understand the behavior of general minimizers
of (1.1) (without the Dirichlet boundary condition), we lead to the following:

Theorem 1.1. Assume 1 < p < ∞, N is a connected compact Riemannian
manifold such that either 1 < p < 2 or p ≥ 2 but π1(N) is finite and πi(N) = 0 for
2 ≤ i ≤ [p] − 1. m ∈ N, u ∈W 1,p

loc (Rm, N) is a locally minimizing p-harmonic map.
• If 1 < p < m, then

∫
Br

|du|p ≤ c(m, p,N)rm−p for any r > 0.
• If m ≤ p <∞, then u must be a constant map.

From this Liouville type theorem we may deduce the following gradient estimates
for minimizing p harmonic maps.

Theorem 1.2. Let m, p and N be the same as in Theorem 1.1, Ω ⊂ R
m be an

open subset, u ∈W 1,p
loc (Ω, N) be a locally minimizing p-harmonic map.

• If 1 < p < m, then for any x ∈ Ω, 0 < r < d(x,Rm\Ω) we have∫
Br(x)

|du|p ≤ c(m, p,N)
rm−p

(1 − r
d(x,Rm\Ω) )

p−1
.

• If m ≤ p <∞, then u ∈ C1(Ω, N) and

|du(x)| ≤ c(m, p,N)
d(x,Rm\Ω)

for any x ∈ Ω.
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An interesting consequence of Theorem 1.2 is the compactness for p-energy min-
imizing maps.

Corollary 1.1. Let m, p,Ω and N be the same as in Theorem 1.2, ui ∈
W 1,p
loc (Ω, N) be a sequence of locally minimizing p-harmonic maps, then there exists a

subsequence ui′ and a locally minimizing p-harmonic map u ∈ W 1,p
loc (Ω, N) such that

ui′ → u in W 1,p
loc (Ω, N).

The main point in Corollary 1.1 is that, under the topological condition on N ,
one may drop the condition that the p-energy of the sequence of maps is uniformly
bounded as in the Luckhaus compactness theorem for minimizing p-harmonic maps
(see [Lu1] and [Lu2]). This fact has already been observed in [HKL] in a special case.
We also have the following

Theorem 1.3. Let m, p and N be the same as in Theorem 1.1, H0 = {x\x ∈
R
m, xm > 0} be the upper half space, and u ∈ W 1,p

loc (H0, N) be a locally minimizing
p-harmonic map such that u|∂H0 is a constant map, then u is a constant map.

When p = 2, the topological condition on the target stated in Theorem 1.1 simply
says the fundamental group is finite, or equivalently, the universal covering space is
compact. Typical examples of Riemannian manifolds with finite fundamental group
are compact Riemannian manifolds with strictly positive Ricci curvature. When the
fundamental group of the target manifold is infinite, we may have nonconstant min-
imizing harmonic maps with arbitrary growth rates for the energy. Indeed a lifting
argument tells us if N is a complete Riemannian manifold with non-positive sectional
curvature, then for m ≥ 2, any harmonic map from R

m to N is minimizing. A typical
example is the case N = Tn = S1 × · · · × S1 (n factors). A map u : R

m → Tn

is a harmonic map if and only if u = (eih1 , · · · , eihn) and h1, · · · , hn are harmonic
functions on R

m. This shows Theorem 1.1, Theorem 1.2 and Theorem 1.3 can not be
true if we drop the topological condition.

We also would like to point out a few known facts related to our results. It
was proved in [SU] that for n ≥ 3, every stable harmonic map from R

2 to Sn is a
constant map (see Theorem 2.9 in [SU]). Note that in Theorem 1.1 one could have
N = S2 or N = Sn, n ≥ 2 but with arbitrary smooth Riemannian metric. It is
well-known that holomorphic or anti-holomorphic maps from R

2 to S2 are stable. In
fact, a theorem of A. Lichnerowicz says every holomorphic or anti-holomorphic map
from a compact Kähler manifold to another Kähler manifold is energy minimizing in
its homotopy class (see Theorem 4.2 in [Xi]). If one looks at the proof closely, one
can easily show that without the compactness condition on the domain manifold, any
holomorphic or anti-holomorphic map is energy minimizing in its homotopy class if
only those homotopies supported in compact subsets are considered. In particular, it
shows holomorphic or anti-holomorphic maps between Kähler manifolds are always
stable harmonic maps. We also note that it was proved in Corollary 6 of [So] that
any minimizing harmonic map from R

2 to S2 which misses a nonempty open subset
of S2 is a constant map. On the other hand, for m ≥ 7, there exists a nonconstant
smooth harmonic map u : R

m → Sm with image lying in open upper half sphere (see
Example 2.2 in [SU]), and hence it is a minimizing harmonic map by Lemma 2.1 in
[SU]. For general p-harmonic maps, we note that if m− 1 ≤ p < m or 1 ≤ p ≤ m− 1
but p ∈ Z, then x/|x| : R

m → Sm−1 is a minimizing p-harmonic map. See [AL], [CG],
[HLW] and the references therein.

The key concept related to Theorem 1.1, Theorem 1.2 and Theorem 1.3 is the
so called p-extension property for 1 < p < ∞ (see Definition 2.1). Based on an
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important lemma and some techniques from [HrL] (see Section 6 of [HrL]), we may
show that a compact Riemannian manifold satisfies p-extension property if and only
if it is ([p] − 1)-simply connected (see Theorem 2.1).

Once we show every minimizing harmonic map from R
2 to S2 is a constant map,

we are able to classify blow-up limits of local minimizers of Iε, ε→ 0+. We have the
following

Theorem 1.4. Suppose u ∈ C∞(R2, S2) satisfies

(1.2) −�u =
(
|∇u|2 +

(
u3
)2)

u− u3e3

on R
2, also assume u locally minimizes I1, then the image of u lies in upper half

sphere or lower half sphere and it satisfies

|u3(x)| ≤ c(u)e−
|x|
16 , |∇u(x)| ≤ c(u)

|x| .

In addition, either u is a constant in S1 or the degree of (u1,u2)
|(u1,u2)| is +1 or −1. In the

latter case we have
∫

R2(u3)2 = π.

When the base points of blow-ups are somewhat close to the boundary, we get
blow-up limits defined on a half plane. Then we have the boundary version of Theorem
1.4, which in some sense corresponds to the fact that the vortices should “stay inside”
Ω in Theorem 1.2 of [HnL].

Theorem 1.5. Let H0 = {x\x ∈ R
2, x2 > 0} be the open upper half plane.

Assume u ∈ C∞(H0, S
2) satisfies (1.2) in H0 and locally minimizes I1 in H0, u|∂H0 ≡

e, e ∈ S1 is a constant, then u ≡ e in H0.

The ingredients in proving Theorem 1.4 and Theorem 1.5 are the gradient esti-
mate, which follows from a blowing up argument, and energy comparison maps from
[Sa2] and Section 6 of [HrL]. We have just learned from Sylvia Serfaty that in [AS]
and [Sa1], the authors made a similar investigation as our previous work [HnL]. How-
ever, [AS] seems to have missed this key gradient estimate (see page 677 of [AS]). It
is also necessary to have this gradient estimates to understand the fine properties of
minimizers. An interesting point in Theorem 1.4 and Theorem 1.5 is that we do not
have any growth condition on solutions to start with. It remains as an open problem if
after translation, rotation, reflection with respect to x1 axis on R

2 and reflection with
respect to the horizontal plane on S2, a minimizer in Theorem 1.4 is either a constant
or the degree 1 radial solution in Proposition 5.2 of [HnL]. For the Ginzburg-Landau
model case, the corresponding problem was solved in [Mi].

The paper is written as follows. In Section 2, we study the relation between
minimizing p-harmonic maps and the topology of the target manifolds and prove
Theorem 1.1, Theorem 1.2 and Theorem 1.3. In Section 3, we classify the blow-up
limits of minimizers of Iε as ε→ 0+ and prove Theorem 1.4 and Theorem 1.5.

Acknowledgment. The research of the first author is supported by a Dean’s
Dissertation Fellowship from New York University. The research of the second author
is supported by a NSF grant.

2. Minimizing p-harmonic maps. In this section we shall study the relations
between minimizing p-harmonic maps and the topology of the target manifolds. As
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mentioned in the introduction, the key concept related to Theorem 1.1 and Theorem
1.2 is the following

Definition 2.1 (p-Extension property). Assume 1 < p < ∞, N is a smooth
compact manifold. If for any Riemannian metric g on N , any m ∈ N and Ω ⊂ R

m

open, bounded and piecewisely smooth, there exists a constant c = c(p, g,Ω, N) such
that for any f ∈W 1− 1

p ,p(∂Ω, (N, g)), there exists a u ∈W 1,p(Ω, (N, g)) such that

(2.1) u|∂Ω = f and
∫

Ω

|du|p ≤ c(p, g,Ω, N) [f ]p
W

1− 1
p

,p
(∂Ω,(N,g))

,

then we say N satisfies the p-extension property.

It is easy to see that once there exists a Riemannian metric g0 on N such that
we may do extensions satisfying (2.1), then N has the p-extension property. We may
also define (m, p)-extension property by putting the dimension m in, but we don’t
need this here. The p-extension property is a topological property, in fact one has the
following

Theorem 2.1. If N is a smooth connected compact manifold, 1 < p < ∞, then
it has the p-extension property if and only if πi(N) = 0 for 1 ≤ i ≤ [p] − 1.

To prove this theorem, we need Lemma 6.1 in [HrL], which is stated below for
reader’s convenience.

Lemma 2.1 (Lemma 6.1 in [HrL]). Let Nn ⊂ R
k be a smooth connected compact

submanifold, l ∈ Z, l ≥ 0. If for any 1 ≤ i ≤ l, πi(N) = 0, then there exists a compact
(k− l−2)-dimensional Lipschitz polyhedron X ⊂ R

k and a locally Lipschitz retraction
P : R

k\X → N such that

(2.2)
∫
BR

|dP (x)|pdx <∞ for any 1 ≤ p < l + 2 and R > 0.

Moreover, P is smooth in an open neighborhood of N .

Proof of Theorem 2.1. If N satisfies p-extension property, then, for any 1 ≤ i ≤
[p] − 1, any smooth map f : Si = ∂Bi+1

1 → N , there exists a u ∈ W 1,p(Bi+1
1 , N)

such that u|∂B1 = f . If p is not an integer or p is an integer but i 
= [p] − 1, then by
Sobolev embedding theorem, u is continuous, hence f is homotopic to a constant. If
p is an integer and i = p− 1, then it follows from [BN] that f is still homotopic to a
constant. In any case, πi(N) = 0.

Let N be such that πi(N) = 0 for 1 ≤ i ≤ [p] − 1. First of all, we may assume
there is an embedding N ⊂ R

k for some k. From Lemma 2.1 we may find a compact
(k− [p]−1)-dimensional Lipschitz polyhedron X ⊂ R

k and a local Lipschitz retraction
P : R

k\X → N such that

(2.3)
∫
BR

|dP (x)|qdx <∞ for 1 ≤ q < [p] + 1 and R > 0.

Moreover, P is smooth in an open neighborhood of N . We may find a δ ∈ (0, 1) such
that for any a ∈ Bkδ , the map Pa : N → N , which is defined by Pa(y) = P (y − a), is
a diffeomorphism with |dP−1

a (y)| ≤ c(N). Now given any open bounded piecewisely
smooth subset Ω ⊂ R

m and any f ∈W 1− 1
p ,p(∂Ω, N), let v : Ω → R

k be the harmonic
extension of f , then if we denote R0 = supy∈N |y|, we have

(2.4) |v(x)| ≤ R0 and
∫

Ω

|dv|p ≤ c(p,Ω, N)[f ]p
W

1− 1
p

,p
(∂Ω)

.
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For any a ∈ Bkδ , denote va(x) = P (v(x) − a), then

(2.5)
∫
Bk

δ

da

∫
Ω

|dva(x)|pdx ≤
∫
Bδ

da

∫
Ω

|dP (v(x) − a)|p|dv(x)|pdx

≤
∫

Ω

dx

∫
BR0+1

|dP (y)|p|dv(x)|pdy ≤ c(p,Ω, N)[f ]p
W

1− 1
p

,p
(∂Ω)

.

Here we used (2.3) with q = p and (2.4). From (2.5) we may find an a ∈ Bδ such that∫
Ω

|dva(x)|pdx ≤ c(p,Ω, N)[f ]p
W

1− 1
p

,p
(∂Ω)

,

then u = P−1
a ◦ va is the needed extension. �

We note the extension problem without energy estimate was considered in [BD].
In fact, Theorem 5 in [BD] is in the same spirit as the necessary part of Theorem 2.1.
To prove Theorem 1.1 and 1.2 we need some technical lemmas.

Definition 2.2. Let X be a metric space, k ∈ Z, k ≥ 0, E ⊂ X. If there
exists a sequence of bounded subsets, namely Ai ⊂ R

k and a sequence of Lipschitz
maps, namely φi : Ai → X such that E = ∪∞

i=1φi(Ai), then we say E is countably k
rectifiable.

Lemma 2.2. Let X and Y be metric spaces, s ≥ 0, k ∈ Z, k ≥ 0. If A ⊂ X
satisfies Hs(A) = 0, B ⊂ Y is countably k rectifiable, then Hk+s(A×B) = 0.

Proof. We may assume k > 0, s > 0 and B = φ(E), where E ⊂ [0, 1]k and φ is a
map from E to X with Lip(φ) ≤ L. Given any 0 < ε < 1, we may find (Ai)∞i=1 such
that

A ⊂
∞⋃
i=1

Ai,
∞∑
i=1

d(Ai)s < ε.

Choose αi > d(Ai) such that
∑∞
i=1 α

s
i < ε, then 0 < αi < 1. Set li = [1/αi] + 1, then

[0, 1]k =
lki⋃
j=1

Cij , Eij = Cij ∩ E, E =
lki⋃
j=1

Eij ,

here Cij is a cube with side length 1/li. We have

A×B ⊂
∞⋃
i=1

Ai ×B =
∞⋃
i=1

lki⋃
j=1

Ai × φ(Eij),

d(Ai × φ(Eij)) ≤ d(Ai) + d(φ(Eij)) ≤ c(k, L)αi,

which shows

∞∑
i=1

lki∑
j=1

d(Ai × φ(Eij))k+s ≤
∞∑
i=1

c(k, s, L)lki α
k+s
i ≤ c(k, s, L)

∞∑
i=1

αsi ≤ c(k, s, L)ε.
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This implies Hk+s(A×B) = 0. �

Lemma 2.3. Assume m ≥ 3, F ⊂ R
m is a closed subset such that Hm−2(F ) = 0,

then R
m\F is simply connected.

Proof. First we want to show R
m\F is path connected. In fact, given any two

points x0, x1 in R
m\F , let γ(t) = (1− t)x0 + tx1 for 0 ≤ t ≤ 1. Since F is closed, we

may find a δ > 0 such that Bδ(xi) ⊂ R
m\F for i = 0, 1. From Lemma 2.2 we know

Hm−1(F−γ([0, 1])) = 0, hence we may find a point ξ ∈ Bmδ such that ξ /∈ F−γ([0, 1]).
Clearly for any 0 ≤ t ≤ 1, γ(t) + ξ /∈ F , this means x0 + ξ can be connected to x1 + ξ
in R

m\F . On the other hand, it is clear that xi can be connected to xi + ξ in R
m\F

by the line segment connecting them for i = 0, 1. Hence x0 can be connected to x1 in
R
m\F .

Since R
m\F is open and connected, to show it is simply connected, it suffices

to show for any Lipschitz map f : ∂B2
1 → R

m\F , there exists a Lipschitz map
f̄ : B2

1 → R
m\F such that f̄ |∂B2

1
= f . In fact for any f ∈ Lip(∂B2

1 ,R
m\F ), we may

find a δ > 0 such that for any x ∈ ∂B2
1 , Bmδ (f(x)) ⊂ R

m\F . On the other hand, we
may find a f̃ ∈ Lip(B2

1 ,R
m) such that f̃ is an extension of f . Indeed one may take

f̃(x) = |x|f(x/|x|) for any x ∈ B2
1 . Via Lemma 2.2 we know Hm(F − f̃(B2

1)) = 0.
Hence we may find a ξ ∈ Bmδ such that ξ /∈ F − f̃(B2

1). This implies f̃(x) + ξ /∈ F for
any x ∈ B2

1 . Define

f̄(x) =

{
f̃(2x) + ξ, for x ∈ B2

1/2;
f(x/|x|) + 2(1 − |x|)ξ, for x ∈ B2

1\B2
1/2.

Clearly f̄ ∈ Lip(B2
1 ,R

m\F ) is the needed extension of f . �
Proof of Theorem 1.1. Let us first consider the special case when πi(N) = 0 for

1 ≤ i ≤ [p] − 1. From Theorem 2.1 we know N satisfies the p-extension property,
hence for any f ∈W 1− 1

p ,p(∂Bm1 , N), there exists a v ∈W 1,p(Bm1 , N) such that

(2.6) v|∂B1 = f and
∫
B1

|dv|p ≤ c(m, p,N)[f ]p
W

1− 1
p

,p
(∂B1)

.

A scaling argument shows for any r > 0, any f ∈ W 1− 1
p ,p(∂Bmr , N), there exists a

v ∈W 1,p(Bmr , N) such that

(2.7) v|∂Br
= f and

∫
Br

|dv|p ≤ c(m, p,N)[f ]p
W

1− 1
p

,p
(∂Br)

.

The point here is that the constant c(m, p,N) doesn’t depend on r. Suppose u :
R
m → N is a minimizing p-harmonic map, for r ≥ 0, let φ(r) =

∫
Br

|du|p. For any
r > 0, let f = u|∂Br

in (2.7), from the minimality of u and (2.7) we have

(2.8) φ(r) =
∫
Br

|du|p ≤ c(m, p,N) [u|∂Br
]p
W

1− 1
p

,p
(∂Br)

≤ c(m, p,N)
(∫

∂Br

|u|pdHm−1

) 1
p
(∫

∂Br

|d (u|∂Br
) |pdHm−1

)1− 1
p
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≤ c(m, p,N)r
m−1

p

(∫
∂Br

|du|pdHm−1

)1− 1
p

= c(m, p,N)r
m−1

p φ′(r)1−
1
p .

Assume for some R > 0, we have φ(R) > 0, then for any r ≥ R,

(2.9)
1

c(m, p,N)r
m−1
p−1

≤ φ′(r)

φ(r)
p

p−1
.

If p > m, then integrating (2.9), we obtain

(2.10)
1

c(m, p,N)
((R′)

p−m
p−1 −R

p−m
p−1 ) ≤ 1

φ(R)
1

p−1
− 1

φ(R′)
1

p−1
≤ 1

φ(R)
1

p−1
,

for any R′ ≥ R. Let R′ → ∞ in (2.10), we lead to a contradiction. Hence φ ≡ 0, that
is u must be a constant map.

If p = m, then integrating (2.9) one gets

(2.11)
1

c(m,N)
log

R′

R
≤ 1

φ(R)
1

m−1
− 1

φ(R′)
1

m−1
≤ 1

φ(R)
1

m−1
,

for any R′ ≥ R. Let R′ → ∞ in (2.11), we obtain again a contradiction. Hence u is a
constant.

If 1 < p < m, then integrating (2.9),one has

(2.12)
1

c(m, p,N)
(R−m−p

p−1 − (R′)−
m−p
p−1 ) ≤ 1

φ(R)
1

p−1
− 1

φ(R′)
1

p−1
≤ 1

φ(R)
1

p−1
,

for any R′ ≥ R. Let R′ → ∞ in (2.12), we thus conclude

(2.13) φ(R) ≤ c(m, p,N)Rm−p whenever φ(R) > 0.

Now let us prove Theorem 1.1 in its full generality. If 1 < p < 2, this has been
proved above because [p] − 1 = 0. If p ≥ 2, then since π1(N) is a finite group,
the universal covering space of N , namely Ñ , is compact. Denote π as the natural
projection map from Ñ to N , and let Ñ be endowed with the induced Riemannian
metric π∗gN . Note that Ñ satisfies πi(Ñ) = 0 for 1 ≤ i ≤ [p] − 1.

Claim 2.1. If p ≥ 2, then there exists a minimizing p-harmonic map ũ ∈
W 1,p
loc (Rm, Ñ) such that π ◦ ũ = u.

Proof of Claim 2.1. If p ≥ m, then from Corollary 2.6 of [HrL] we know u ∈
C(Rm, N). Since R

m is simply connected, we may find a ũ ∈ C(Rm, Ñ) such that
π ◦ ũ = u. It is clear that ũ ∈W 1,p

loc (Rm, Ñ).
If 2 ≤ p < m, then from Corollary 2.6 of [HrL] we may find a closed subset Su ⊂

R
m such that u|Rm\Su

is locally Hölder continuous and Hm−p(Su) = 0. From Lemma
2.3 we know R

m\Su is simply connected, hence we may find a ũ ∈ C(Rm\Su, Ñ) such
that π ◦ ũ = u. It is then clear that ũ ∈W 1,p

loc (Rm, Ñ).
For any r > 0, any ṽ ∈ W 1,p(Bmr , Ñ) such that ṽ|∂Br

= ũ|∂Br
, then v = π ◦ ṽ ∈

W 1,p(Br, N) and v|∂Br
= u|∂Br

. From the minimality of u and the fact π is a local
isometry we know∫

Br

|dũ|p =
∫
Br

|d(π ◦ ũ)|p =
∫
Br

|du|p ≤
∫
Br

|dv|p =
∫
Br

|dṽ|p.
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Hence ũ is also a minimizing p-harmonic map. This proves Claim 2.1.
This reduces the general case to the special case we have treated, and hence

completes the proof of Theorem 1.1. �
Proof of Theorem 1.2. We consider first the case 1 < p < m.

Claim 2.2. If Ω = Bm1 , then
∫
Br

|du|p ≤ c(m,p,N)rm−p

(1−r)p−1 for 0 < r < 1.

Proof of Claim 2.2. First look at the case πi(N) = 0 for 1 ≤ i ≤ [p] − 1. Denote
φ(r) =

∫
Br

|du|p for 0 < r < 1, then the arguments in the proof of Theorem 1.1 gives
us (see (2.12)) that, if φ(r) > 0, then for any r < s < 1, we have

1
c(m, p,N)

(r−
m−p
p−1 − s−

m−p
p−1 ) ≤ 1

φ(r)
1

p−1
,

Let s→ 1−, we get

φ(r) ≤ c(m, p,N)
rm−p

(1 − r
m−p
p−1 )p−1

≤ c(m, p,N)rm−p

(1 − r)p−1
.

Hence Claim 2.2 is true under the assumption that the target is [p] − 1 simply con-
nected. The general case can be proved by the lifting argument presented above.

When Ω is an arbitrary open subset, the conclusion in Theorem 1.2 follows from
Claim 2.2 by a simple scaling.

Next let us look at the case m ≤ p < ∞. In this case it follows from Corollary
2.6 of [HrL] that u ∈ C1(Ω, N). Again by scalings, to prove the gradient estimate, it
suffices to show the following

Claim 2.3. If u ∈ C1(Bm1 , N) is a minimizing p-harmonic map, then |du(x)| ≤
c(m,p,N)

1−|x| for any x ∈ Bm1 .

Proof of Claim 2.3. If the conclusion of Claim 2.3 were false, then we would find
a sequence ui ∈ C(Bm1 , N) such that ui is a minimizing p-harmonic map and

Ki = max
x∈B1

(1 − |x|)|dui(x)| → ∞ as i→ ∞.

Let xi ∈ B1 be such that Ki = (1 − |xi|)|dui(xi)|. Denote σi = 1 − |xi|. Define
vi(x) = ui(xi + σi

Ki
x) for x ∈ BKi

, then vi is a minimizing p-harmonic map with
|dvi(x)| ≤ 1

1−|x|/Ki
and |dvi(0)| = 1. It follows from Theorem 3.1 of [HrL] that for

any r > 0, |vi|C1,α(Br) ≤ c(m, p, r,N) for i large enough, here α = α(m, p,N) ∈ (0, 1).
Hence after passing to a subsequence, we may find a v ∈ C1,α

loc (Rm, N) such that
vi → v in C

1,α/2
loc (Rm). It is clear that v is still a locally minimizing p-harmonic

map. By Theorem 1.1, v is a constant map. On the other hand, |dv(0)| = 1 because
|dvi(0)| = 1 for any i. This gives us a contradiction. We finish the proof of Claim 2.3
and hence also the Theorem 1.2. �

Proof of Theorem 1.3. Again we consider first the case πi(N) = 0 for 1 ≤ i ≤
[p] − 1. For any r ≥ 0, we denote the open upper half ball as B+

r = Br ∩H0, and let
φ+(r) =

∫
B+

r
|du|p. Replacing Br in the proof of Theorem 1.1 by B+

r and we observe
that

(2.14)
∫
∂B+

r

|d(u|∂B+
r
)|pdHm−1 =

∫
∂Br∩H0

|d(u|∂B+
r
)|pdHm−1
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≤
∫
∂Br∩H0

|du|pdHm−1 = φ′+(r) for r > 0.

(2.9) remains true if we replace φ by φ+. When m ≤ p < ∞, we prove in the same
way as before that φ+ ≡ 0, that is u is a constant map. If 1 < p < m, via the proof
of Theorem 1.1 we get

(2.15)
∫
B+

r

|du|p ≤ c(m, p,N)rm−p for r > 0.

To show u is a constant map, we need the monotonicity formula.
Claim 2.4 (Monotonicity identity). For almost every r > 0, we have

(2.16)
d

dr

(
rp−m

∫
B+

r

|du|pdHm

)
= prp−m

∫
∂Br∩H0

|∂ru|2|du|p−2dHm−1.

Proof of Claim 2.4. See Lemma 4.1 in [HrL].
Define a function ρu by ρu(r) = rp−m

∫
B+

r
|du|p for r > 0. From Claim 2.4 and

(2.15) we know ρu is a bounded increasing function. Hence there is a limit ρu(∞) ∈ R.
For any λ > 0, we denote uλ(x) = u(x/λ) for x ∈ H0. Then ρuλ

(r) = ρu(r/λ). From
the proof of Corollary 2.8 and Theorem 6.4 in [HrL] or [Lu1], [Lu2] we know there
exists a v ∈W 1,p

loc (H0, N) and a sequence of positive numbers λi → 0 such that uλi
→ v

in W 1,p
loc (H0, N) and v is a minimizing p-harmonic map. By the strong convergence,

one has ρv(r) ≡ ρu(∞), and hence by (2.16) we get ∂rv = 0. Since v is a constant
map on ∂H0, it follows from Theorem 5.7 of [HrL] that v itself is a constant map.
The latter implies ρu(∞) ≡ ρv(r) = 0, and therefore u is a constant map.

Theorem 1.3 in its full generality can be proved by the same lifting argument as
that in the proof of Theorem 1.1. �

Proof of Corollary 1.1. This follows from Theorem 1.2 and the Luckhaus Com-
pactness Theorem (see [Lu1] and [Lu2]). �

3. Minimal solutions of a simplified Landau-Lifschitz equation. The aim
of this section is to classify all blow-up limits of minimizers of Iε (see (1.1)). That is
we want to study minimal solutions of the simplified Landau-Lifschitz equation

(3.1) −�u =
(
|∇u|2 +

(
u3
)2)

u− u3e3

for a S2 valued u defined on the entire plane.
To proceed, we need the following gradient estimate.

Proposition 3.1. Suppose u ∈ C∞(B1, S
2) satisfies (3.1) in B1. If u minimizes

I1 on B1, then |∇u(x)| ≤ c
1−|x| on B1, here c is an absolute constant.

Proof. Otherwise, we would find a sequence uj ∈ C∞(B1, S
2), minimizing I1 on

B1 and

Kj = sup
x∈B1

(1 − |x|)|∇uj(x)| → ∞.

Choose xj ∈ B1 such that (1 − |xj |)|∇uj(xj)| = Kj , put σj = 1 − |xj |, and define
vj(x) = uj(xj + σj

Kj
x) for x ∈ BKj

. Then

−�vj =

(
|∇vj |2 +

σ2
j

(
v3
j

)2
K2
j

)
vj−

σ2
j v

3
j

K2
j

e3 on BKj
, |∇vj(x)| ≤ 1

1 − |x|
Kj

, |∇vj(0)| = 1,
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and vj minimizes IKj
σj

. Hence |vj |C1,α(Br) ≤ c(α, r). After passing to a subsequence

we may assume vj → v in C∞(R2), then v ∈ C∞(R2, S2) and

−�v = |∇v|2v on R
2, |∇v(0)| = 1, |∇v(x)| ≤ 1.

Moreover, v is a locally minimizing harmonic map. It follows from Theorem 1.1 that
v is a constant, we obtain a contradiction. �

We also need the following edition of Theorem 2.1. The key point here is that
the constant doesn’t depend on domain Ω.

Lemma 3.1. Let Ω ⊂ R
m be a bounded open subset with Lipschitz boundary,

n ≥ 2, u ∈ H1(Ω,Rn+1) such that u|∂Ω ∈ Sn, then there exists a ũ ∈ H1(Ω, Sn) such
that

(3.2) ũ|∂Ω = u|∂Ω and
∫

Ω

|∇ũ|2 ≤ c(n)
∫

Ω

|∇u|2.

Proof. For any a ∈ Bn+1
1
2

, let ua(x) = u(x)−a
|u(x)−a| . Since

|∇u|2 = |∇|u− a||2 + |u− a|2|∇ua|2,

we have |∇ua|2 ≤ |∇u|2
|u−a|2 . Integrating both a and x, we get∫
B 1

2

da

∫
Ω

|∇ua(x)|2dx ≤
∫
B 1

2

da

∫
Ω

|∇u|2
|u− a|2 dx

=
∫

Ω

dx

∫
B 1

2

|∇u(x)|2
|u− a|2 da ≤ c(n)

∫
Ω

|∇u(x)|2dx.

Hence we may find a b ∈ B 1
2

such that
∫
Ω
|∇ub(x)|2dx ≤ c(n)

∫
Ω
|∇u(x)|2dx. For any

a ∈ B 1
2
, define Pa : Sn → Sn by Pa(y) = y−a

|y−a| , then Pa is a diffeomorphism with
|∇SnP−1

a (y)| + |∇SnPa(y)| ≤ c(n) for y ∈ Sn. Let ũ(x) = P−1
b (ub(x)), then ũ is the

needed map. �
We note the method above was introduced in Section 6 of [HrL]. Now we may

turn to Theorem 1.4.
Proof of Theorem 1.4. From Proposition 3.1 we deduce

(3.3) |∇u(x)| ≤ c for x ∈ R
2.

Next we will combine Lemma 3.1 together with the comparison method in [Sa2] to
show u has nice decay properties.

Claim 3.1. I1(u,BR) ≤ cR for R ≥ 0.

Proof of Claim 3.1. We may assume R ≥ 2, define

uR(x) =
{

(R− |x|)e1 + (|x| −R+ 1)u(x), if R− 1 ≤ |x| ≤ R,
e1, if |x| ≤ R− 1,

here e1 = (1, 0, 0). From (3.3) we know |∇uR(x)| ≤ c. Hence
∫
BR\BR−1

|∇uR|2 ≤ cR.
By Lemma 3.1 we may find a ũR ∈ H1(BR\BR1 , S

2) such that ũR|∂BR∪∂BR−1 =
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uR|∂BR∪∂BR−1 and
∫
BR\BR−1

|∇ũR|2 ≤ cR. Let ũR = e1 in BR−1, then I1(u,BR) ≤
I1(ũR, BR) ≤ cR. This proves Claim 3.1.

In the next step we want to show indeed the growth of I1(u,BR) is sublinear in
R.

Claim 3.2. I1(u,BR) ≤ cR
3
4 for R ≥ 0.

Proof of Claim 3.2. We may assume R ≥ 4. Via Claim 3.1 we have
I1(u,B2R\BR) ≤ cR. Hence we may find R1 ∈ [R, 2R] such that

(3.4)
∫
∂BR1

(|∇u|2 + (u3)2
)
ds ≤ c.

Let B = {x\x ∈ ∂BR1 , |u3(x)| ≥ 1
2}. By estimates (3.3) and (3.4), and by a covering

argument we may find a finite number of unit length arcs on ∂BR1 , namely I1, · · · , Im
such that ∪mj=1Ij ⊃ B and m ≤ c. Denote Ĩ = ∂BR1\ ∪j Ij . Let v = Γ−1 ◦ u on Ĩ, Γ
is the stereographic projection, that is

(3.5) Γ : R
2 → S2\{(0, 0,−1)}, Γ(y1, y2) =

(
2y1

1 + |y|2 ,
2y2

1 + |y|2 ,
1 − |y|2
1 + |y|2

)
.

From co-area formula we have

(3.6)
∫
S1

#

((
v

|v|
)−1

({ξ})
)
dH1(ξ) =

∫
Ĩ

|∂τ
(
v

|v|
)
|dH1 ≤ c

∫
Ĩ

|∂τv|dH1

≤ c
√
R

(∫
∂BR1

|∇v|2dH1

) 1
2

≤ c
√
R

(∫
∂BR1

|∇u|2dH1

) 1
2

≤ c
√
R.

Hence we may find a ξ0 ∈ S1 such that

(3.7) #

((
v

|v|
)−1

({ξ0})
)

≤ c
√
R.

For simplicity we assume ξ0 = −1, then let J1, · · · , Jn be those unit length arcs
centered at points in ( v

|v| )
−1({−1}). Let G = ∂BR1\((∪jIj) ∪ (∪kJk)). On G we

write v(x) = ρ(x)eiα(x) with |α| < π. Fix a δ ∈ (0, R2 ) to be determined later, let
V = {x\x ∈ BR1\BR1−δ,

R1x
|x| ∈ G}, then for x ∈ V , we set

vR(x) =
(
R1 − |x|

δ
+

|x| −R1 + δ

δ
ρ

(
R1x

|x|
))

ei
|x|−R1+δ

δ α(R1x

|x| ).

Let uR(x) = Γ(vR(x)) for x ∈ V , uR(x) = u(x) for x ∈ ∂BR1 and uR(x) = e1 for
x ∈ BR1−δ. Then we check that

Lip(uR, V ∪ ∂BR1 ∪ ∂BR1−δ) ≤ c.

Hence we may extend uR to BR1\BR1−δ such that

(3.8) Lip(uR, BR1\BR1−δ) ≤ c.
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A computation using the polar coordinates and the stereographic coordinates yields

(3.9)
∫
V

|∇uR|2 + (u3
R)2 ≤ c

R

δ
.

By (3.7) and (3.8) we get ∫
(BR1\BR1−δ)\V

|∇uR|2 ≤ c
√
Rδ.

From Lemma 3.1 we may find a ũR ∈ H1((BR1\BR1−δ)\V, S2) such that∫
(BR1\BR1−δ)\V

|∇ũR|2 ≤ c
√
Rδ and ũR|∂((BR1\BR1−δ)\V ) = uR|∂((BR1\BR1−δ)\V ).

Let ũR be equal to uR on BR1−δ ∪ V , then

(3.10) I1(u,BR) ≤ I1(u,BR1) ≤ I1(ũR, BR1) ≤ c(
R

δ
+
√
Rδ).

By taking δ = R
1
4 in (3.10), we obtain the Claim 3.2.

Now we proceed to show the growth of I1(u,BR) is at most of order logR. That
is

Claim 3.3. For R large enough, I1(u,BR) ≤ c logR, here c is an absolute
constant.

Proof of Claim 3.3. Denote φ(R) = I1(u,BR). Given R > 0, choose R1 ∈ [R, 2R]
such that

(3.11) φ′(R1) = min
R≤r≤2R

φ′(r).

From Claim 3.2 we know ∫ 2R

R

φ′(r)dr ≤ φ(2R) ≤ cR
3
4 .

This and (3.11) imply that

(3.12)
∫
∂BR1

(|∇u|2 + (u3)2
)
ds = 2φ′(R1) ≤ c

R
1
4
.

Combining(3.12) and (3.3), one has |u3| ≤ 1
2 on ∂BR1 when R is large enough. Let

vR(x) = Γ−1(u(x)) for x ∈ ∂BR1 . For each x ∈ BR1\BR1−1, set

vR(x) = (R1 − |x|)
vR

(
R1x
|x|
)

|vR
(
R1x
|x|
)
|
+ (|x| −R1 + 1)vR

(
R1x

|x|
)
.

We have
(3.13)∫

∂BR1−1

|∂τvR|ds ≤ c
√
R

(∫
∂BR1−1

|∂τvR|2ds
) 1

2

≤ c(Rφ′(R1))
1
2 ≤ c(Rφ′(R))

1
2 .
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Define a continuous function α : [0, 2π] → R such that vR((R1 − 1)eiθ) = eiα(θ)

for 0 ≤ θ ≤ 2π. Let θ0 = 0, choose θ1 ∈ [0, 2π] be such that eiα(θ1) = eiα(0),
|α(θ1) − α(0)| = 2π and |α(θ) − α(0)| < 2π for any 0 ≤ θ < θ1. Starting from θ1, we
may inductively define θ2, θ3, · · · , θn, until we come back to θ = 2π. From (3.13) we
get a rough bound n ≤ c(Rφ′(R))

1
2 . (R1 − 1)eiθ0 , · · · , (R1 − 1)eiθn breaks ∂BR1−1

into arcs. First we assume there are some arcs on which the degree of vR is +1 or
−1, then after combining neighbored arcs, we may assume on each arc (which could
be a union of several original arcs) vR has degree +1 or −1. For every such resulting
arc Ij , we let Jj be the circular arc (with the circle’s center at the intersection of two
tangent lines at ∂Ij) lie inside the ∂BR1−1 and orthogonal to Ij at ∂Ij . Ij and Jj
together encloses a domain called Ωj . Set vR|BR1−1\∪jΩj

= eiα(0). Choose aj ∈ Ωj
such that B2r0(aj) ⊂ Ωj for some r0 > 0, an absolute constant. Suppose the degree
of vR on Ij is +1, then let

vR|∂Ωj
=

x− aj
|x− aj |e

iϕj(x).

Set ϕj in Ωj as the harmonic extension of the boundary function. Let

vR|Ωj\Br0 (aj) =
x− aj
|x− aj |e

iϕj(x),

and vR|Br0 (aj) be the harmonic extension of vR|∂Br0 (aj). We may proceed similarly
for the degree −1 case. If no arc has nonzero degree, then we have vR|∂BR1−1 = eiϕ.
Then using the harmonic extension to define ϕ inside BR1−1, and let vR|BR1−1 = eiϕ.
Let uR = Γ ◦ vR, by a careful computation as in [Sa2], we have

(3.14) φ(R) ≤ φ(R1) = I1(u,BR1) ≤ I1(uR, BR1)

≤ c(Rφ′(R))
1
2 logR+ c logR for R large enough,

If we put φ̃(R) = φ(R) + logR, then (3.14) implies

(3.15) φ̃(R) ≤ c(Rφ̃′(R))
1
2 logR.

In other words

(3.16)
1

cR log2R
≤ φ̃′(R)

φ̃(R)

2

.

By integrating on both sides we get for any R̃ > R,

(3.17)
1

φ̃(R)
≥ 1
φ̃(R)

− 1

φ̃(R̃)
≥ 1
c

(
1

logR
− 1

log R̃

)
.

Let R̃ → ∞, we get φ̃(R) ≤ c logR for R large. This implies I1(u,BR) ≤ c logR and
Claim 3.3 is proved.

Claim 3.3 along with the Pohozaev’s identity (which follows from multiplying
(3.1) by xj∂ju and integrating by parts, one may see Lemma 4.4 in [HnL])

(3.18)
∫
Br

(u3)2 +
r

2

∫
∂Br

|∂νu|2ds =
r

2

∫
∂Br

|∂τu|2ds+
r

2

∫
∂Br

(u3)2ds,
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yields
∫

R2(u3)2dx <∞. Combining the last fact with (3.3), we get u3 → 0 as |x| → ∞.
Further estimates of u3 and |∇u| follow from Proposition 6.1 in [HnL]. To obtain the
degree of the map at ∞, we assume for |x| ≥ R0, |u3(x)| ≤ 1

2 , then Γ−1◦u = ρei(dθ+ψ),

Γ is the stereographic projection defined in (3.5), d is the degree of (u1,u2)
|(u1,u2)| at ∞. For

R ≥ 2R0, from the Annulus Lemma (see [BMR] or Lemma 4.1 in [HnL]) we have

(3.19)
1
2

∫
BR\BR0

|∇u|2 ≥ πd2 log
R

R0
− c(u).

On the other hand, if we set ṽ(x) = ρ̃ei(dθ+ψ̃) on BR\BR
2
, where

ρ̃(x) = 1 +
|x| − R

2
R
2

(ρ(x) − 1), ψ̃(x) = ψR +
|x| − R

2
R
2

(ψ − ψR), ψR = −
∫
BR\BR

2

ψ,

and ũ = Γ ◦ ṽ, then

(3.20)
1
2

∫
BR\BR

2

|∇ũ|2 + (ũ3)2 =
∫
BR\BR

2

2(|∇ṽ|2 + (1−|ṽ|2)2
4 )

(1 + |ṽ|2)2 ≤ c(u).

By the fact that |ρ − 1|, |∇ρ| decay exponentially at ∞, one has via Poincare’s
inequality that |∇ψ(x)| = O(|x|−2) (see Proposition 6.1 in [HnL]). We note that
ũ(x) = ei(dθ+ψR) on ∂BR

2
, from Lemma 4.3 in [HnL] we may choose ũ on BR

2
such

that

(3.21)
1
2

∫
BR

2

|∇ũ|2 + (ũ3)2 ≤ π|d| logR+ c,

where c is an absolute constant. Combining (3.20) and (3.21), and energy minimizing
property of u, we conclude

(3.22)
1
2

∫
BR

|∇u|2 + (u3)2 ≤ π|d| logR+ c(u).

Applying (3.19) and (3.22), and letting R → ∞, we get d2 ≤ |d|. Hence d = 0, +1
or −1. If d = 0, from Proposition 6.1 in [HnL] we know u3 ≡ 0. An estimate for
harmonic function and |∇u(x)| ≤ c(u)

|x| tells us u ≡ const..

Claim 3.4. ũ = (u1, u2, |u3|) is locally minimizing I1.

Proof of Claim 3.4. For R ≥ R0, define

wR(x) = Π(u(x) + (R+ 1 − |x|)(ũ(x) − u(x))) for x ∈ BR+1\BR.
Here Π(ξ) = ξ

|ξ| for ξ ∈ R
3\{0}. From the estimates for u, one easily verifies

I1(wR, BR+1\BR) = o(1), I1(u,BR+1\BR) = o(1) as R→ ∞.

For any v ∈ H1(BR1 , S
2), v|∂BR1

= ũ|∂BR1
, R1 ≥ R0, pick up a R > R1, extend v to

BR+1 by setting v|BR\BR1
= ũ, v|BR+1\BR

= wR. Via minimizing property of u we
know I1(v,BR+1) ≥ I1(u,BR+1). But

I1(v,BR+1)−I1(u,BR+1) = I1(v,BR1)−I1(u,BR1)+I1(wR, BR+1\BR)−I1(u,BR+1\BR)
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= I1(v,BR1) − I1(ũ, BR1) + o(1).

Let R→ ∞, we get I1(v,BR1) ≥ I1(ũ, BR1), hence Claim 3.4 is proved.
From Claim 3.4 we know ũ is smooth and satisfies (3.1). Since ũ3 ≥ 0, from the

equation of third component we know either ũ3 > 0 or ũ3 ≡ 0. The first case implies
u3 > 0 or u3 < 0. The second case implies u ≡ const. �

Remark 3.1. For any c ∈ R, |c| ≤ 1, u(x) = (
√

1 − c2 cosx1,
√

1 − c2 sinx1, c) is
a solution to (3.1). Clearly these are not local minimizers.

Remark 3.2. It is of interest to prove that under translation, rotation, and
reflection with respect to the x1 axis and the horizontal plane, the degree 1 radial
solution in Proposition 5.2 in [HnL] is the unique nonconstant local minimizer. In the
Ginzburg-Landau model case, the corresponding problem was solved in [Mi].

To prove Theorem 1.5, we need the following boundary version of Proposition
3.1.

Proposition 3.2. Denote B+
1 = B1 ∩H0, L1 = B1 ∩ ∂H0, where H0 is the open

upper half plane. Suppose u ∈ C∞(B+
1 , S

2) satisfies (3.1) and it locally minimizes I1
in B+

1 , u|L1 ≡ const, then |∇u(x)| ≤ c
1−|x| , here c is an absolute constant.

Proof. The proof goes almost the same as the one for Proposition 3.1, except in
case we get half plane in the blow-up limit, we use Theorem 1.3 to find a contradiction.
One may refer to the proofs of Theorem 3.1 and Proposition 6.3 in [HnL]. �

Proof of Theorem 1.5. Without losing of generality we may assume e = e1 =
(1, 0, 0). From Proposition 3.1 and Proposition 3.2 we get

(3.23) |∇u(x)| ≤ c for any x ∈ H0.

Here c is an absolute constant. Denote B+
R = BR ∩H0, we may show as for Theorem

1.4 that, for R large enough,

(3.24) I1(u,B+
R) ≤ c logR

for some absolute constant c.
By Pohozaev’s identity (see Lemma 4.4 in [HnL]) we have

(3.25)
∫
B+

R

(u3)2 +
R

2

∫
∂BR∩H0

|∂νu|2ds =
R

2

∫
∂BR∩H0

(|∂τu|2 + (u3)2)ds.

From (3.24) one may find a sequence Rj → ∞ such that

(3.26) Rj

∫
∂BRj

∩H0

(|∇u|2 + (u3)2
)
ds ≤ c.

(3.25) and (3.26) together imply

(3.27)
∫
H0

(u3)2 ≤ c,

here c is an absolute constant. Next, using (3.23), one has u3 → 0 as |x| → ∞.
Choose R0 > 0 such that |u3(x)| ≤ 1

2 for x ∈ H0\B+
R0

, then u′ = u1 + iu2 = ρeiϕ with
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ρ = |u′| ≥
√

3
2 , ϕ = 2dθ + ψ. d is the degree of u′

|u′| on ∂B+
R , ψ(x1, 0) ≡ 0. A simple

computation shows div(ρ2∇ϕ) = 0.

Claim 3.5.

∫
H0\B+

R0
|∇ψ|2 <∞.

Proof of Claim 3.5. Denote A+
R = B+

R\B+
R0

, then∫
A+

R

ρ2(2d∇θ + ∇ψ) · ∇ψ =
∫
A+

R

div(ψρ2∇ϕ)

= (
∫
∂BR∩H0

−
∫
∂BR0∩H0

)ρ2 ∂ϕ

∂ν
ψds =

∫
∂BR∩H0

ρ2 ∂ψ

∂ν
ψds− c(u).

Since
∫
∂Br∩H0

∇θ · ∇ψds = 0, we have∫
A+

R

ρ2|∇ψ|2 ≤
∫
∂BR∩H0

|∂ψ
∂ν

||ψ|ds+
∫
A+

R

(1 − ρ2)
2|d|
r

|∇ψ| + c(u).

By the Poincare and Holder inequalities, we have∫
∂BR∩H0

|∂ψ
∂ν

||ψ|ds ≤ R

2

∫
∂BR∩H0

|∇ψ|2ds,

and ∫
A+

R

(1 − ρ2)
2|d|
r

|∇ψ| ≤ c(u)
∫
A+

R

(u3)2dx ≤ c(u) <∞.

Here we use the fact |∇ψ| ≤ c, which follows from (3.23), also we use (3.27). We,
therefore, obtain ∫

A+
R

|∇ψ|2 ≤ cR

∫
H0∩∂BR

|∇ψ|2ds+ c(u).

Since
∫
A+

R
|∇ψ|2 ≤ c(u) logR, by choosing a sequence of generic radius Rj → ∞, the

right hand side with R = Rj remains bounded, we get
∫
H0\B+

R0
|∇ψ|2 ≤ c(u) < ∞.

This proves Claim 3.5.
Multiplying the third component’s equation by u3 and integrating by parts we

get∫
A+

R

|∇u3|2+(u3)2 =
∫
A+

R

(u3)2(|∇u|2+(u3)2)+
∫
∂BR∩H0

u3 ∂u
3

∂ν
ds−

∫
∂BR0∩H0

u3 ∂u
3

∂ν
ds.

Combining (3.23) with (3.27) we have∫
A+

R

|∇u3|2 ≤ c(u) + c(R
∫
∂BR∩H0

|∇u3|2ds) 1
2 .

By choosing Rj → ∞ such that Rj
∫
∂BRj

∩H0
|∇u3|2ds ≤ c, we obtain

(3.28)
∫
H0

|∇u3|2 ≤ c(u) <∞.
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For ρ we have

(3.29)
∫
H0\B+

R0

|∇ρ|2 =
∫
H0\B+

R0

(u3)2|∇u3|2
1 − (u3)2

≤ c

∫
H0

(u3)2 <∞.

Using (3.25) one has ∫
B+

R

(u3)2 = 2πd2 + R,

where

|R| ≤ c(u)
(
R

∫
∂BR∩H0

(|∇ρ|2 + |∇ψ|2 + |∇u3|2 + (u3)2)ds+ (R
∫
∂BR∩H0

|∇ψ|2ds) 1
2

)
.

Since
∫
H0\B+

R0
|∇ρ|2 + |∇ψ|2 + |∇u3|2 + (u3)2 <∞, we may find Rj → ∞ such that

Rj

∫
∂BRj

∩H0

(|∇ρ|2 + |∇ψ|2 + |∇u3|2 + (u3)2)ds→ 0.

Hence

(3.30)
∫
H0

(u3)2 = 2πd2.

Next we want to derive a lower bound for the energy. We have

(3.31)
1
2

∫
B+

R\B+
R0

|∇u|2 ≥ 1
2

∫
B+

R\B+
R0

|∇u′|2 ≥ 1
2

∫
B+

R\B+
R0

ρ2|∇ϕ|2

≥ 1
2

∫
B+

R\B+
R0

|∇ϕ|2−c(u) ≥ 2πd2 log
R

R0
+2d

∫
B+

R\B+
R0

∂θψ−c(u) = 2πd2 log
R

R0
−c(u).

Let Γ be the stereographic projection defined in (3.5), we may write Γ−1 ◦ u =
ρ1e

i(2dθ+ψ), ρ1 = ρ
1+u3 . Set ṽ = ρ̃ei(2dθ+ψ̃) on B+

R\B+
R
2
, where

ρ̃(x) = 1 +
|x| − R

2
R
2

(ρ1(x) − 1), ψ̃(x) =
|x| − R

2
R
2

ψ(x),

and ũ = Γ ◦ ṽ, then

(3.32)
1
2

∫
B+

R\B+
R
2

|∇ũ|2 + (ũ3)2 =
∫
B+

R\B+
R
2

2
(
|∇ṽ|2 + (1−|ṽ|2)2

4

)
(1 + |ṽ|2)2 ≤ c(u).

Here one uses the fact that
∫
H0\B+

R
|∇ρ1|2 < ∞,

∫
H0\B+

R0
(ρ1 − 1)2 < ∞ and∫

H0
|∇ψ|2 < ∞. Note that we have ũ(x) = e2idθ on ∂B+

R
2
∩ H0, from Lemma 4.3

in [HnL] we may choose ũ on B+
R
2

such that

(3.33)
1
2

∫
B+

R
2

|∇ũ|2 + (ũ3)2 ≤ π|d| logR+ c(d).
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Via (3.32) and (3.33), we get

(3.34)
1
2

∫
B+

R

|∇u|2 + (u3)2 ≤ 1
2

∫
B+

R

|∇ũ|2 + (ũ3)2 ≤ π|d| logR+ c(u).

Combining (3.31) and (3.34) and letting R → ∞, we see 2d2 ≤ |d|. Hence d = 0
and by (3.30), u3 ≡ 0. Thus u(x) = (eiϕ(x), 0), ϕ is a harmonic function on H0 with
ϕ|∂H0 ≡ 0. Since |∇ϕ| ≤ c, we have ϕ(x) = c2x

2 for some c2 ∈ R. Now it follows
from (3.24) that c2 = 0, hence u ≡ (1, 0, 0). �
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