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ON THE STATIC AND DYNAMIC POINTS OF VIEW FOR
CERTAIN RANDOM WALKS IN RANDOM ENVIRONMENT ∗

ERWIN BOLTHAUSEN† AND ALAIN-SOL SZNITMAN‡

Abstract. In this work we prove the equivalence between static and dynamic points of views
for certain ballistic random walks in random environment on ZZd, when d ≥ 4 and the disorder is
low. Our techniques also enable us to derive in the same setting a functional central limit theorem
for almost every realization of the environment. We also provide an example where the equivalence
between static and dynamic points of views breaks down.

0. Introduction. In many models of random motions in random media, the
“environment viewed from the particle” naturally defines a Markov chain. The ex-
istence of an invariant measure of this chain, which is absolutely continuous with
respect to the “static” distribution of the environment is an important property. It
is the starting point in the analysis of the “environment viewed from the particle”, a
technique which has been one of the key tools on the investigation of random motions
in random media, c.f. Kipnis-Varadhan [10], S.M. Kozlov [11], Molchanov [13], Olla
[14], Papanicolaou-Varadhan [15]. However this technique has had relatively little
impact for one of the basic examples of random motions in random media, namely
random walks in random environment. In particular, the question of the equivalence
between the “static” and “dynamic” distributions of the environment is poorly un-
derstood in this situation, with the few exceptions of dimension one, cf. Kesten [9],
Molchanov [13], p. 273-274, and of walks with null local drift, cf. Lawler [12], and
Papanicolaou-Varadhan [15] in the continuous setting.

The present work proves the equivalence between static and dynamic distributions
of the environment, for certain ballistic random walks in random environment, in
dimension d ≥ 4, when the disorder is low. The techniques we develop enable us to
derive a “quenched” central limit theorem, which complements the results of Sznitman
[18].

Let us now recall the model. The environment in which the walk evolves is
described by a collection of i.i.d. (2d)-dimensional vectors, which specify the transition
probability of the walk at each site of ZZd. We assume that for some κ ∈ [0, 1

2d ],

(0.1)

the common law µ of the vectors is supported by Pκ,
the set of (2d)-vectors
(p(e))|e|=1,e∈ZZd , with p(e) ∈ [κ, 1], for |e| = 1, and

∑
|e|=1

p(e) = 1 .

Our principal interest lies in the elliptic situation, when

(0.2) κ > 0 .

However, the discussion of what we nickname “directed walks”, will also be useful. It
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corresponds to the case

(0.3) κ = 0, and µ-a.s.,
d∑

i=1

p(ei) = 1 ,

with (ei)1≤i≤d, the canonical basis of lRd.

The random environment is an element ω = (ω(x, ·))x∈ZZd of Ω = PZZd

κ , which
is endowed with the product σ-algebra and the product measure lP = µ⊗ZZd

. The
random walk in the random environment ω is the canonical Markov chain (Xn)n≥0

on (ZZd)lN, with state space ZZd and law Px,ω starting from x ∈ ZZd, under which

(0.4)
Px,ω[Xn+1 = Xn + e |X0, . . . , Xn]

Px,ω-a.s.
= ω(Xn, e), n ≥ 0, |e| = 1,

Px,ω[X0 = x] = 1 .

One also introduces the laws defined by the semi-direct product of lP with Px,ω:

(0.5) Px = lP × Px,ω, on Ω × (ZZd)lN, for x ∈ ZZd .

The environment viewed from the particle is

(0.6) ωn = tXn
ω = ω(Xn + ·), n ≥ 0 ,

where tx, x ∈ ZZd, denotes the canonical shift on Ω. Under P0 (resp. P0,ω), (ωn)n≥0

is a Markov chain with state space Ω, initial distribution lP (resp. δω), and transition
kernel

(0.7) Rf(ω) =
∑

|e|=1

ω(x, e) f ◦ te(ω), ω ∈ Ω ,

for f : Ω → lR, bounded measurable.

We are interested in the question:

(0.8)
does there exist an R-invariant probability which is absolutely
continuous with respect to lP?

It is known that under (0.2) there is at most one such probability, further it is neces-
sarily equivalent to lP, and yields an ergodic invariant measure for R, cf. Kozlov [11],
p. 82, or Lecture 1 of [3]. Our main results concern the case of “non-nestling” walks
for which (0.2) holds and

(0.9) for some � ∈ Sd−1, η > 0, lP-a.s., d(x, ω) · � ≥ η, for all x ∈ ZZd ,

provided:

(0.10) d(x, ω) =
∑

|e|=1

ω(x, e) e, x ∈ ZZd, ω ∈ Ω ,

is the local drift at site x in the environment ω. It follows from Theorem 3.1 of
Sznitman-Zerner [20], that under (0.2), (0.9),

(0.11)
the law lPn of ωn under P0 converges weakly to a law Q on Ω,
which is R-invariant .
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In the above statement Ω is endowed with the canonical product topology, for which
it is a compact space. We show in Theorem 2.4 that

(0.12) when d ≥ 4, and the “disorder is low”, Q � lP ,

in particular this provides a class of examples where (0.8) has a positive answer. The
only other known instances where (0.8) has a positive answer correspond to the case
d = 1, when the walk has non-vanishing limiting velocity, cf. Kesten [9], Molchanov
[13], p. 273, or to the case d arbitrary with d(x, ω) ≡ 0, cf. Lawler [12]. At the heart
of (0.12) lies the fact that under (0.2), (0.9), when d ≥ 4 and

(0.13) α = sup
|e|=1

ess sup log
p(e)
p̃(e)

, (p(·), p̃(·) are independent µ-distributed) ,

is small enough, then

(0.14) E0 ⊗ E0

[
exp

{
α

∑
x∈ZZd

LX(x) ∧ LX̃(x)
}]

< ∞ ,

where

(0.15) LX(x) =
∑
n≥0

1{Xn = x} ,

and LX̃ is defined analogously with X̃, (an independent copy of X), cf. Theorem
2.4 and 2.6. Note that in (0.14), α appears in the exponential but influences the
P0-expectation as well.

In Section 1 we also provide an example in the directed situation (0.3) where
(0.11) holds but Q and lP are mutually singular, and (0.8) has a negative answer,
cf. Proposition 1.5. The directed situation is of course easier to investigate than the
elliptic case. It has a certain analogy with directed polymers in a random environment,
cf. Bolthausen [2], Carmona-Molchanov [4], Sinai [16].

As mentioned above, we also derive under similar assumptions as (0.12) a func-
tional central limit theorem under P0,ω for lP-typical ω. It is known from Sznitman-
Zerner [20], that under (0.2), (0.9),

(0.16) P0-a.s., Xn

n
→ v, where v is deterministic and v · � > 0,

and from Theorem 4.1 and 2.1 of Sznitman [18], that under P0,

(0.17)
the sequence of laws of Bn

. = 1√
n

(X[·n] − [·n]v) on the Skorohod

space D(lR+, lRd) converges weakly to the Wiener measure with a
non-degenerate covariance matrix A .

We show in Theorem 4.2, that when d ≥ 4 and α in (0.13) is small enough, one
can replace in the above statement P0 by P0,ω for lP-a.e. ω. We use a “concentration
argument”, and show that the variance of E0,ω[f(B̃n

. )] decays rapidly enough for
suitable functionals f and B̃n

. the polygonal interpolation of Bn
. .

Let us finally explain how this article is organized. Section 1 provides further
notations, recalls facts from [20], [3] and derives some preliminary results. It also
presents an example in the directed situation where (0.8) has a negative answer.
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Section 2 is principally devoted to the proof of Theorem 2.4, where (0.12) is
proven. As mentioned above, the heart of the matter is to control certain quantities
like in (0.14), measuring the intersections of two independent copies of Xn under P0.

Section 3 shows that the counterexample of Section 1 is in essence unstable, and
that the directed situation is somehow smoother than that of directed polymers in a
random environment.

Section 4 applies the controls of Section 2 to derive variance estimates and a
lP-almost sure central limit theorem for Bn

. .

Finally the Appendix collects certain quantitative estimates on transition proba-
bilities and Green functions of some the random walks which are used in Sections 2
and 4.

1. Some preliminaries and a counterexample. In this section we first in-
troduce further notations and recall certain results of [3] and [20]. We then provide
some useful description of the law Q alluded to in (0.11) and describe an example in
the directed situation (0.3), where (0.8) has a negative answer.

We begin with some notations. We respectively denote by | · | and ‖ · ‖ the
Euclidean and �1-distances on lRd. We write B(w, r) for the open Euclidean ball of
radius r centered at w ∈ lRd. For U a subset of ZZd, |U | stands for the cardinality of
U and ∂U for the boundary of U :

(1.1) ∂U = {x ∈ ZZd\U, ∃y ∈ U, |y − x| = 1} .

We denote by (θn)n≥0, the canonical shift on (ZZd)lN, and write (Fn)n≥0 for the
canonical filtration on (ZZd)lN attached to the canonical process (Xn)n≥0. For U ⊆ ZZd,
we let HU and TU respectively stand for the entrance time in U and exit time from
U :

(1.2) HU = inf{n ≥ 0, Xn ∈ U}, TU = inf{n ≥ 0, Xn /∈ U} .

When U = {y}, we tacitly write Hy in place of H{y}. For � ∈ Sd−1, u ∈ lR, we shall
often encounter

(1.3) T �
u = inf{n ≥ 0, Xn · � ≥ u}, T̃ �

u = inf{n ≥ 0, Xn · � ≤ u} ,

as well as the first backtracking time in the direction �:

(1.4) D� = inf{n ≥ 0, Xn · � < X0 · �} .

When A is an event, h a random variable and Q a probability, we sometimes use the
notations EQ[A, h] or Q(A, h) in place of

∫
A

hdQ. Further lE[·] always refer to the
lP-expectation.

We now recall the construction of a renewal structure for random walks in random
environment transient in a given direction, following Sznitman-Zerner [20]. We assume
that (0.2) holds, � ∈ Sd−1 is such that

(1.5) P0[lim
n

Xn · � = ∞] = 1 ,

and a is a positive number restricted by

(1.6) 0 < a ≤ 10
√

d ,
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(although nothing special happens for a > 10
√

d, this restriction will be convenient
to remove the dependence on a of some constants). We introduce two sequences of
stopping times, Sk, k ≥ 0, and Rk, k ≥ 1, together with the sequence Mk, k ≥ 0, of
successive maxima of the walk in the direction �:

(1.7)

S0 = 0, M0 = X0 · � ,

and by induction, when k ≥ 0, we set

Sk+1 = TMk+a ≤ ∞, Rk+1 = D� ◦ θSk+1 + Sk+1 ≤ ∞ ,

Mk+1 = sup{Xn · �, 0 ≤ n ≤ Rk+1} .

Remark that Sk+1 < ∞, P0-a.s. on {Rk < ∞}. We thus have

0 = S0 ≤ S1 ≤ R1 ≤ S2 ≤ · · · ≤ ∞ ,

and these inequalities are strict if the left member is finite. We can now introduce:

(1.8) K = inf{k ≥ 1, Sk < ∞, Rk = ∞} .

As shown in Proposition 1.2 of Sznitman-Zerner [20], under (0.2), (1.5):

(1.9) P0[D� = ∞] > 0, and P0-a.s., K < ∞ .

The key renewal time is now defined via:

(1.10) τ1 = SK ,

and inductively for k ≥ 1,

(1.11) τk+1 = τ1(X) + τk(Xτ1+· − Xτ1), (τk+1 = ∞, when τk = ∞) .

It is shown in Theorem 1.4 of [20] that

P0-a.s., 0 < τ1 < τ2 < · · · < τk < . . . ,

and one has the renewal property:

(1.12)

under P0, ((Xτ1∧·), τ1), ((X(τ1+·)∧τ2 − Xτ1), τ2 − τ1), . . . , ((X(τk+·)∧τk+1 − Xτk
),

τk+1 − τk), . . . are independent variables and starting with the second
term of this sequence their distribution coincide with the distribution
of ((Xτ1∧·), τ1) under P0[· |D� = ∞] .

We still need some further notations. For k ≥ 1, y ∈ ZZd, we let Ak(y) denote the
event:

(1.13) Ak(y) = {D� > Hy, τk(X
y
) = Hy} ,

where X
y

. stands for an arbitrary path which coincides with X. up to time Hy and
such that X

y

m · � ≥ y · �, for m > Hy. Note that this unambiguously defines Ak(y).
We then consider for k ≥ 0, x, y ∈ ZZd:

(1.14)
qk(x, y, ω) = δx,y , when k = 0

Px,ω[Ak(y)], when k ≥ 1 ,



350 E. BOLTHAUSEN AND A.-S. SZNITMAN

of course qk(x, y, ω) vanishes if (y − x) · � < ka. The kernels qk(·, ·, ω) satisfy a
semigroup property:

Lemma 1.1.

(1.15) qk+n(x, y, ω) =
∑
z

qk(x, z, ω) qn(z, y, ω), for k, n ≥ 0, x, y ∈ ZZd, ω ∈ Ω .

Proof. Without loss of generality we assume k, n ≥ 1, so that in the notations of
(1.13)

qk+n(x, y, ω) = Px,ω[D� > Hy, τk+n(X
y
) = Hy]

=
∑
z

Px,ω[D� > Hy, Xτk(X
y
) = z, τk+n(X

y
) = Hy]

=
∑
z

Px,ω[{D� > Hz, τk(X
z
) = z} ∩ θ−1

Hz
(An(y))] =

∑
z

qk(x, z, ω) qn(z, y, ω) ,

using the strong Markov property in the last step.

We now further assume that

(1.16) E0[τ1 |D� = ∞] < ∞ ,

so that from Proposition 2.1 of [20], the law of large numbers, cf. (0.16), follows with

(1.17) v =
E0[Xτ1 |D� = ∞]
E0[τ1 |D� = ∞]

.

The assumptions (1.5), (1.16) hold for instance under (0.9), but also in many other
situations, cf. Sznitman-Zerner [20] and Sznitman [19]. We are now ready to intro-
duce in greater generality than mentioned in (0.11) a probability Q which plays an
important role in the sequel.

Proposition 1.2. (d ≥ 1, under (0.2), (1.5), (1.16))

There exists a probability Q0 on Ω, such that for N ≥ 1 and h bounded σ(ω(x, ·),
� · x ≥ −Na)-measurable,

(1.18) Q0(h) =
∑

x∈ZZd

lE
[
h qN (x, 0, ω)P0,ω[D� = ∞]

]
/P0[D� = ∞] .

Then Q0-a.s., P0,ω[D� = ∞] > 0, and one can define a probability Q on Ω such that
for h bounded measurable

Q(h) =
∑
u≥0

∫
E0,ω[u < τ1, h(tXu

ω) |D� = ∞] dQ0(ω)/E0[τ1 |D� = ∞] .(1.19)

If h is bounded and satisfies the same measurability assumption as in (1.18),

Q(h) =
∑
u≥0

E0[τN ≤ u < τN+1, h(tXu
ω) |D� = ∞]/E0[τ1 |D� = ∞] .(1.20)

Further in the notations of (0.7),

(1.21) Q is R-invariant and the laws of ωn under P0 converge weakly towards Q .
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(In particular Q does not depend on the specific choice of � and a for which (1.5),
(1.16) hold).

Proof. Denote by BN,h the righthand side of (1.18). Then for N ≥ 1, k ≥ 1, h as
in (1.18),

(1.22) BN+k,h P0[D� = ∞]
(1.15)
=

∑
x,z

lE
[
qk(x, z, ω)h qN (z, 0, ω)P0,ω[D� = ∞]

]
and non-vanishing summands require that x · � < z · � ≤ −Na. Note that qk(x, z, ω)
is σ(ω(y, ·), y · � < z · �)-measurable, whereas h qN (z, 0, ω)P0,ω[D� = ∞] is σ(ω(y, ·),
y · � ≥ z · �)-measurable. Hence using independence under lP,

(1.23)

BN+k,h P0[D� = ∞] =
∑
x,z

lE[qk(x, z, ω)] lE
[
hqN (z, 0, ω)P0,ω[D� = ∞]

]
translation
invariance= BN,h P0[D� = ∞]

∑
y

lE[qk(0, y, ω)]

and by a similar reasoning as above

= BN,h

∑
y

lE
[
qk(0, y, ω) Py,ω[D� = ∞]

]
(1.13)−(1.14)

= BN,h

∑
y

E0[D� = ∞, Xτk
= y] = BN,h P0[D� = ∞] .

A similar calculation shows that for N ≥ 1,

(1.24) BN,1 =
∑
x

lE
[
qN (x, 0, ω)P0,ω[D� = ∞]

]
/P0[D� = ∞] = 1 .

The claim (1.18) now follows from Kolmogorov’s extension theorem. Note that choos-
ing h = 1{P0,ω[D� = ∞] = 0}, we find

(1.25) Q0-a.s., P0,ω[D� = ∞] > 0 .

Note that as a consequence of the spatial ergodicity of lP, (0.2), and (1.9), the Markov
property shows that

(1.26) lP-a.s., for all x ∈ ZZd, Px,ω[D� = ∞] > 0 .

The formula (1.19) is well defined, and using the fact that E0,ω[u < τ1 |D� = ∞]
is σ(ω(y, ·), y · � ≥ 0)-measurable and (1.18), one readily checks as above that Q

is a probability. Let us prove (1.20). For h as in (1.20), u ≥ 0, E0,ω[h(tXu
ω),

u < τ1 |D� = ∞] is bounded σ(ω(y, ·), y · � ≥ −Na)-measurable, and by (1.18),
(1.19),

(1.27)

Q(h)E0[τ1, D� = ∞] =
∑

u≥0,x

lE
[
qN (x, 0, ω)E0,ω[h(tXu

ω), D� = ∞, u < τ1]
]

translation
invariance=

∑
u≥0,z

lE
[
qN (0, z, ω)Ez,ω[h(tXu

ω), D� = ∞, u < τ1]
]

using now the Markov property together with (1.13), (1.14),

=
∑

u≥0,z

lE
[
E0,ω[D� = ∞, XτN

= z, u < τN+1 − τN , h(tXu+τN
ω)]

]
=

∑
s≥0

E0[τN ≤ s < τN+1, D� = ∞, h(tXs
ω)] ,
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which proves (1.20).
We now turn to the proof of (1.21). We first show that the laws of ωn under P0

converge weakly in Cesaro sense to Q. The argument is essentially a repetition of the
proof of Theorem 3.1 of Sznitman-Zerner [20], (see below (3.6)). The only variation
(cf. below (3.7) of [20]), is that one uses here that for u ≥ 0,

(1.28)
1
M

M−1∑
n=0

P0[n − u = τk, for some k ≥ 1] −→ 1/E0[τ1 |D� = ∞], as M → ∞ ,

as easily follows from the renewal property (1.12).

We hence see that (1.19) defines a unique probability Q regardless of the specific
choice of � and a for which (1.5), (1.16) hold. Observe that if we choose a′ ∈ (0, a],
such that

a′ < inf{� · e; � · e > 0, |e| = 1} ,

then P0-a.s. the corresponding variable τ ′
1 will be smaller than τ1 corresponding to a,

and (1.16) will hold for τ ′
1 as well. In other words we can assume that a < inf{� · e;

� · e > 0, |e| = 1}, and now the proof of Theorem 3.1 of [20] applies and shows that
the laws of ωn under P0 converge weakly to Q. Since R preserves the set of bounded
continuous functions on ω, the R-invariance of Q follows immediately as in the proof
of Theorem 3.1 of [20]. This finishes the proof of Proposition 1.2.

The next lemma will be helpful in the next section.

Lemma 1.3. (d ≥ 1, under (0.2), (1.5), (1.16))

(1.29) Q � lP if and only if Q0 � lP .

Proof. Inspecting the term corresponding to u = 0 in (1.19), we see that Q0 ≤
lE0[τ1 |D� = ∞] Q, and hence if Q � lP, Q0 � lP follows. Conversely if Q0 � lP,
from (1.19) for any measurable subset A of Ω,

E0[τ1 |D� = ∞] Q(A) =
∑

u≥0,y

∫
1A ◦ ty P0,ω[u < τ1, Xu = y |D� = ∞]d Q0(ω) ,

and hence if lP(A) = 0, Q(A) = 0 follows. As a result Q � lP.

For later use we introduce the notation

(1.30) fN (ω) =
∑
x

qN (x, 0, ω), for N ≥ 1, ω ∈ Ω ,

in particular in view of (1.18), for N ≥ 1,

(1.31) on σ(ω(x, ·), � · x ≥ −Na), Q0 coincides with fN
P0,ω[D� = ∞]
P0[D� = ∞]

lP .

We now turn to the directed situation and assume (0.3) for the remainder of this
section. We shall in particular describe an example where (0.8) has a negative answer.
It is convenient to introduce the following compact subset of Ω which has full lP-
measure:

(1.32) Ωdir =
{
ω ∈ PZZd

0 = Ω, for all x ∈ ZZd,
d∑

i=1

ω(x, ei) = 1
}

.
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By analogy with (1.14), (1.30), we introduce

pk(x, y, ω) = Px,ω[Xk = y], x, y ∈ ZZd, k ≥ 0, ω ∈ Ωdir ,(1.33)

gN (ω) =
∑
x

pN (x, 0, ω), N ≥ 0, ω ∈ Ωdir .(1.34)

We also introduce on Ωdir the filtration:

(1.35) HN = σ(ω(x, ·), x1 + · · · + xd ≥ −N), N ≥ 0 .

Proposition 1.4.

gN is an HN -martingale under lP .(1.36)

There is a unique probability Q on Ωdir such that for N ≥ 0,(1.37)
the restriction of Q to HN coincides with gN lP .

The law of ωN under P0 is gN lP and it converges weakly to Q(1.38)
which is R-invariant .

Proof. The claim (1.37) is an immediate consequence of (1.36) and the fact that
g0 = 1. Let us prove (1.36). For ω ∈ Ωdir, a summand in (1.34) vanishes when
x1 + · · · + xd �= −N . The fact that gN is HN -measurable easily follows. Further, for
N ≥ 0, using the Markov property,

lE[gN+1|HN ] =
∑
x,y

pN (x, 0, ω) lE[p1(y, x, ω) |HN ](1.39)

=
∑
x

pN (x, 0, ω)
d∑

i=1

lE[p1(−ei + x, x, ω) |HN ]

using independence and translation invariance, we find

=
∑
x

pN (x, 0, ω)
d∑

i=1

lE[p1(0, ei, ω)] = gN ,

which finishes the proof of (1.36).

Let us prove (1.38). For bounded measurable h

E0[h(ωN )] =
∑
y

lE
[
h ◦ ty P0,ω[XN = y]

]
(1.40)

using translation invariance and the notation (1.33),

=
∑
y

lE[h pN (−y, 0, ω)] = lE[h gN ] .

From (1.36), we immediately conclude that the laws of ωN under P0 converge weakly
to Q. The R-invariance of Q follows as in the proof of Proposition 1.2.

We shall now see that the martingale gN need not be uniformly integrable and
this will lead to a law Q which is not absolutely continuous with respect to lP. We
now specify the law of the environment at one site via:

(1.41) lP[ω(0, ei) = 1] = 1

d
, i = 1, . . . , d .



354 E. BOLTHAUSEN AND A.-S. SZNITMAN

In other words, the environment is obtained by picking at each site in an i.i.d. and
uniform fashion, one of the vectors of the canonical basis of lRd. Once the environment
is chosen the walk moves deterministically, following at each step the direction chosen
at the site where it stands.

Proposition 1.5. (d ≥ 2, under (1.41))

(1.42) Q ⊥ lP

(1.43) There is no R-invariant probability absolutely continuous with respect to lP .

Proof. We first prove (1.42). From (1.34), (1.41) we know that gN is a martingale
with values in lN. It converges lP-a.s. to the lN-valued variable g∞. We shall now
prove that:

(1.44) lP-a.s., g∞ = 0 .

The claim (1.42) will follow at once since from (1.44)

(1.45) lP
[ ⋂

N≥0

{gN ≥ 1}
]

= 0, whereas Q

( ⋂
N≥0

{gN ≥ 1}
)

= 1 .

To prove (1.44) observe that when U is a finite non-empty subset of {x : x1+· · ·+xd =
−N}, one can find y ∈ U with y+e2−e1 /∈ U . Hence y−e1+e1 ∈ U , but y−e1+e2 /∈ U .
Further the set

⋃d
i=1(U − ei) ⊆ {x : x1 + · · ·+ xd = −N − 1} has at most cardinality

d|U |, and we thus see that for N ≥ 0, lP-a.s. on {U = {x ∈ ZZd, pN (x, 0, ω) = 1}} ∈
HN , lP[gN+1 �= gN |HN ] ≥ ( 1

d )d|U |.
Therefore for n ≥ 0, K ≥ 1, lP-a.s. on {gN = K},

lP[gN+1 �= gN |HN ] ≥ d−dK .

It then follows from Borel-Cantelli’s lemma, cf. Durrett [6], p. 207-208, that lP-a.s.
on the event lim inf{gN = K}, gN+1 �= gN for infinitely many N . Since lP-a.s., gN

converges to the integer-valued g∞, we see that (1.44) holds.
We now turn to the proof of (1.43). Let Q̃ � lP be an R-invariant probability,

then for N ≥ 1:

(1.46)
∫

1{gN ≥ 1} dQ̃ =
∫

RN 1{gN ≥ 1} dQ̃ .

Observe that lP-a.s.,

RN 1{gN ≥ 1} =
∑
y

pN (0, y, ω) 1
{ ∑

x
pN (x, 0, ty ω) ≥ 1

}
=

∑
y

pN (0, y, ω) 1
{ ∑

x
pN (x, y, ω) ≥ 1

}
= 1 .

As a result, for N ≥ 1,

1 = Q̃(gN ≥ 1) = Q̃

( ⋂
N≥1

{gN ≥ 1}
)

,

and in view of the first equality of (1.45), this implies Q̃ ⊥ lP, a contradiction.

It is natural to wonder whether the above example of negative answer to (0.8)
persists when one considers directed walks which jump according to small random
perturbations of a direction prescribed at each site by the environment. We shall
return to this question in Section 3.
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2. Static and dynamic points of views for non-nestling walks. Through-
out this section, we assume (0.2). The main object is to prove that in the non-nestling
case, when d ≥ 4 and the disorder is low (i.e. α in (0.13) is small), the R-invariant
measure Q of Proposition 1.2 is absolutely continuous with respect to lP, and hence
(0.8) has a positive answer.

Our strategy is to show that supN lE[f2
N ] < ∞, to deduce that Q0 � lP, cf. (1.30),

and conclude that Q � lP with the help of Lemma 1.3. For the time being we assume
(0.2) and � ∈ Sd−1 is such that (1.5) holds, that is:

(2.1) P0[lim Xn · � = ∞] = 1 .

We choose some a ∈ (0, 10
√

d], and consider the variables τk, k ≥ 1, of (1.10), (1.11).
It is convenient to introduce the set I of increasing integer-valued functions on lN,
with value 0 at 0, as well as the product space

∑
= I × (ZZd)lN, which is endowed

with the canonical product σ-algebra and the canonical processes (si)i≥0, (Yn)n≥0.
We consider the law Q on

∑
under which:

(2.2)
(si, Ysi

)i≥0 is a random walk on lN × ZZd starting in (0, 0), with jump
distribution Q(s1 = s, Ys1 = y) = P0[Xτ1 = −y, τ1 = s|D� = ∞] =
Py[Xτ1 = 0, τ1 = s|D� = ∞] ,

and conditionally on (si, Ysi
)i≥0, the law of Y. under Q is obtained by gluing together

independent bridges which interpolate between positions Ysi
at times si and position

Ysi+1 at times si+1 and are modelled on PYsi+1
[Xτ1+si−· ∈ · |D� = ∞, Xτ1 = Ysi

,
τ1 = si+1 − si]:

(2.3)
Q

(
(Ysi+·∧(si+1−si))i≥0 ∈ · | (si, Ysi

)i≥0

)
=

⊗
i≥0

PYsi+1

[
X(τ1−·)+ ∈ · |D� = ∞, Xτ1 = Ysi

, τ1 = si+1 − si

]
.

For y ∈ ZZd, we denote by Qy the law on
∑

of (si), (y+Yn). Further for y, ỹ ∈ ZZd, Qy,ỹ

stands for the product measure Qy ⊗ Qỹ on
∑×∑

. Also in what follows processes
referring to the second component of the product space are denoted with a superscript
∼, such as for instance (s̃i) or (Ỹ.). We now provide a more tractable upper bound
on lE[f2

N ], where the coefficient α of (0.13) and expressions similar to (0.14) come into
play.

Lemma 2.1. (under (0.2), (1.5), (1.6))

(2.4) lE[f2
N ] ≤ Q0,0

[
exp

{
α

∑
x

LN (x) ∧ L̃N (x)
}]

, for N ≥ 1,

where for N ≥ 1, x ∈ ZZd:

(2.5) LN (x) =
∑

0<n≤sN

1{Yn = x} .

Proof. For N ≥ 1, we consider the collection of finite length nearest neighbor
paths on ZZd:

PN =
{
(σ(n))n∈[0,m] : m ≥ N, σ(n) ∈ ZZd, σ(n) · � ≥ σ(0) · �, for 0 ≤ n ≤ m ,

|σ(n + 1) − σ(n)| = 1 for 0 ≤ n < m, σ(m) = 0, and τN (σ(·) 0) = m
}

,
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where just as below (1.13) σ(·) 0 stands for an arbitrary path coinciding with σ(·) up
to its entrance time in 0, which afterward remains in {z : z · � ≥ 0}. For σ ∈ PN , we
denote by {X � σ} the event {Xn = σ(n), 0 ≤ n ≤ m}, with m the terminal time of
σ. From (1.30), (1.13), (1.14), we find for N ≥ 1,

(2.6)

fN =
∑
x

Px,ω[D� > H0, τN (X
0
) = H0] =

∑
σ∈PN

Pσ(0),ω[X � σ]

=
∑

σ∈PN

m−1∏
n=0

ω(σ(n), σ(n + 1) − σ(n)) =
∑

σ∈PN

∏
x∈ZZd

ω(x, e)Lσ(x,e) ,

where for σ ∈ PN , x ∈ ZZd, |e| = 1,

(2.7) Lσ(x, e) =
m−1∑
n=0

1{σ(n) = x, σ(n + 1) = x + e}, Lσ(x) =
∑

|e|=1

Lσ(x, e) .

Hence with hopefully obvious notations, for N ≥ 1:

(2.8)

lE[f2
N ] =

∑
σ,σ̃∈PN

lE
[ ∏

x∈ZZd

|e|=1

ω(x, e)Lσ(x,e)+Lσ̃(x,e)
]

independence
=

∑
σ,σ̃∈PN

∏
x∈ZZd

lE
[ ∏
|e|=1

ω(x, e)Lσ(x,e)+Lσ̃(x,e)
]
.

Note that for any n(e), ñ(e) ≥ 0, |e| = 1, and n =
∑

e n(e), ñ =
∑

e ñ(e),

lE
[ ∏
|e|=1

ω(0, e)n(e)+ñ(e)]
(0.13)

≤ lE
[ ∏
|e|=1

ω(0, e)n(e)
]

lE
[ ∏
|e|=1

ω(0, e)ñ(e)
]
eα ñ

and using symmetry:

lE
[ ∏
|e|=1

ω(0, e)n(e)+ñ(e)] ≤ eα(n∧ñ) lE
[ ∏
|e|=1

ω(0, e)n(e)
]

lE
[ ∏
|e|=1

ω(0, e)ñ(e)
]
.(2.9)

Inserting this estimate in the last expression of (2.8), we find

(2.10)

lE[f2
N ] ≤ ∑

σ,σ̃∈PN

∏
x∈ZZd

eαLσ(x)∧Lσ̃(x)

lE
[ ∏
|e|=1

ω(x, e)Lσ(x,e)
]
lE

[ ∏
|e|=1

ω(x, e)Lσ̃(x,e)
]

=
∑

σ,σ̃∈PN

eα
∑

x Lσ(x)∧Lσ̃(x) Pσ(0)[X � σ]Pσ̃(0)[X � σ̃] .

Note that Lσ(x) ∧ Lσ̃(x) = 0, whenever x · � ≥ 0, in view of the last condition in the
definition of PN and (2.7). Proceeding as in (2.6) we find in the notation of (1.13)

=
∑
x,x̃

Ex⊗Ex̃

[
AN (0), ÃN (0), exp

{
α

∑
z·�<0

( H0−1∑
n=0

1{Xn = z}
)
∧

( H̃0−1∑
n=0

1{X̃n = z}
)}]

.

Further observe that for an event E ∈ FH0 ,∑
x

Px[AN (0), E] =
∑
x

Px[D� > H0, τN (X
0
) = H0, E]
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but for any x, Px,ω[D� > H0, τN (X
0
) = H0, E] is σ(ω(y, ·), � · y < 0)-measurable, so

that multiplying and dividing the above by P0[D� = ∞], using independence, we find:

=
∑
x

Px[XτN
= 0, E |D� = ∞] .

As a result of this calculation and of the renewal property (1.12), we see that

(2.11)
under the probability

∑
x Px[AN (0), ·], (H0, (X(H0−·)+))

has the same law as (sN , Y·∧sN
) under Q0(= Q) .

Taking the above into account in the last line of (2.10), we find:

(2.12) lE[f2
N ] ≤ Q0,0

[
exp

{
α

∑
z

LN (z) ∧ L̃N (z)
}]

,

which proves (2.4).

Remark 2.2. 1) The above lemma makes no claim about the finiteness of the
expression in the right hand side of (2.4).

2) For certain single site distributions µ, which for instance are finite sums of Dirac
masses one can find β > 0, such that for n(e), ñ(e) ≥ 0,

(2.13) lE
[ ∏
|e|=1

ω(0, e)n(e)+ñ(e)
] ≤ eβ lE

[ ∏
|e|=1

ω(0, e)n(e)
]
lE

[ ∏
|e|=1

ω(0, e)ñ(e)
]
.

This variation of (2.9) then leads to a bound

(2.14) lE[f2
N ] ≤ Q0,0

[
exp

{
β |Y[1,sN ] ∩ Ỹ[1,s̃N ]|

}]
, for N ≥ 1 ,

in place of (2.4), ( |Y[1,sN ] ∩ Ỹ[1,s̃N ]| denotes the number of sites common to Yn, 1 ≤
n ≤ sN , and Ỹn, 1 ≤ n ≤ s̃N ). This could possibly lead to results in the spirit of
the remainder of this section concerning certain examples of nestling walks (for which
(0.9) breaks down).

We now introduce some more notations. The function

(2.15) G(z) =
∑

i,j≥0

Q0,0(Ỹs̃j
− Ysi

= z), z ∈ ZZd ,

plays an important role in what follows. We also need

(2.16) ν(n) = P0[τ2 = n |D� = ∞], n ≥ 0 ,

the law of τ2 under P0[· |D� = ∞]. We shall now express in terms of G(·) and ν(·)
sufficient conditions which enable us to bound uniformly some exponential moments
of

∑
x LN (x)∧ L̃N (x). We use the “obvious notation” L∞(x) in the next proposition.

Proposition 2.3. (under (0.2), (1.5), 1 ≤ a ≤ 10
√

d)

If ρ > 0 and R > 0 are such that∑
z̃,n

G(z̃ − z) 1{|z̃| ≤ n} e2ρnν(n) ≤ 1

2
, for |z| ≥ R, and(2.17)

( ∑
n

e2ρnν(n)
)2R+1

≤ 3

2
, then(2.18)

Qz,z̃

[
exp

{
ρ

∑
x

L∞(x) ∧ L̃∞(x)
}] ≤ 6, for z, z̃ ∈ ZZd .(2.19)
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Proof. We pick N ≥ 1, and first bound
∑

x LN (x) ∧ L̃N (x). Observe that from
the definition of Qz, see above (2.3), for any z ∈ ZZd

(2.20) Qz-a.s., for n, i ≥ 0, Ysi+1 · � ≤ Yn · � < Ysi
· �, when si < n ≤ si+1 .

Hence Qz-a.s., for any x ∈ ZZd:

(2.21)
LN (x) > 0 implies that for a unique i ∈ [0, N − 1],
LN (x) =

∑
si<n≤si+1

1{Yn = x} .

Therefore, for any z, z̃ ∈ ZZd, Qz,z̃-a.s.:

(2.22)

∑
x

LN (x) ∧ L̃N (x) =
∑
x

∑
0≤i,j<N

( ∑
si<n≤si+1

1{Yn = x}) ∧( ∑
s̃j<m≤s̃j+1

1{Ỹm = x}) .

Let us then denote by Ii,j the event that the piece of trajectory Y(si,si+1] intersects
the piece of trajectory Ỹ(s̃j ,s̃j+1]:

(2.23) Ii,j = {for some n ∈ (si, si+1], m ∈ (s̃j , s̃j+1], Yn = Ỹm} .

In view of (2.22), we find that Qz,z̃-a.s.,
(2.24)

∑
x

LN (x) ∧ L̃N (x) ≤∑
0≤i,j<N

∑
x

1Ii,j∩{Ysi
·�≥Ỹs̃j

·�}
( ∑

si<n≤si+1

1{Yn = x}) ∧ ( ∑
s̃j<m≤s̃j+1

1{Ỹm = x}) +

∑
0≤i,j<N

∑
x

1Ii,j∩{Ỹs̃j
·�≥Ysi

·�}
( ∑

si<n≤si+1

1{Yn = x}) ∧ ( ∑
s̃j<m≤s̃j+1

1{Ỹm = x}) ≤
∑

0≤i<N

(si+1 − si) 1⋃N−1
j=0 (Ii,j∩{Ysi

·�≥Ỹs̃j
·�}) +

∑
0≤j<N

(s̃j+1 − s̃j) 1⋃N−1
j=0 (Ii,j∩{Ỹs̃j

·�≥Ysi
·�}) .

Using Cauchy-Schwarz’s inequality and symmetry, we find

(2.25)
sup
z,z̃

Qz,z̃

[
exp

{
ρ

∑
x

LN (x) ∧ L̃N (x)
}] ≤

sup
z,z̃

Qz,z̃

[
exp

{
2ρ

∑
0≤i<N

(si+1 − si) 1⋃N−1
j=0 (Ii,j∩{Ysi

·�≥Ỹs̃j
·�})

}]
.

We can introduce for i ≥ 0,

(2.26) Ji = inf{j ≥ 0, Ỹs̃j
· � ≤ Ysi

· �} ,

and using (2.20) we see that the right member of (2.25) equals

sup
z,z̃

Qz,z̃

[
exp

{
2ρ

∑
0≤i<N

(si+1 − si) 1{Iij occurs for some j∈[Ji,Ji+1∧N)}] .
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Our main claim (2.19) will therefore follow once we show:

(2.27) sup
N≥1,M>0,ỹ∈ZZd

ΨN,M (ỹ) ≤ 6 ,

with the notation
(2.28)
ΨN,M (ỹ) = Q0,ỹ

[
exp

{
2ρ

∑
0≤i<N

(
(si+1 − si) ∧ M

)
1{Iij occurs for some j∈[Ji,Ji+1∧N)}

}]
.

Let us then define

S = inf{i ≥ 0, Ii,j occurs for some j ∈ [Ji, Ji+1)} ≤ ∞ ,(2.29)

T̃ = inf{j ∈ [JS , JS+1), IS,j occurs} ≤ ∞ ,(2.30)

(T̃ = ∞, by convention when S = ∞) ,

and denote by (Γm)m≥0 the shift on the canonical space
∑

(where the Qz are defined),
which is such that si ◦ Γm = si+m − sm, i ≥ 0, Y. ◦ Γm = Ysm+· . Observe that for
any ỹ ∈ ZZd, Q0,ỹ-a.s., on {S < ∞}, for some sS < n ≤ sS+1 and s̃T̃ < m ≤ s̃T̃+1,
Ỹs̃T̃

· � > Ỹm · � = Yn · � ≥ YsS+1 · �.
As a result Q0,ỹ-a.s., on {S < ∞}:

(2.31) JS+1 ≥ T̃ + 1, and for i ≥ 0, JS+1+i = Ji ◦ (ΓS+1 × ΓT̃+1) + T̃ + 1

Let us then pick |ỹ| ≥ R, cf. above (2.17), and write
(2.32)

ΨN,M (ỹ) ≤ 1 + Q0,ỹ

[
S < ∞, exp{2ρ(sS+1 − sS)} exp

{
2ρ

∑
0≤i<N

(si+1 − si)

∧ M 1{Iij occurs for some j∈[Ji,Ji+1∧N)}
} ◦ (ΓS+1 × ΓT̃+1)

]
.

Observe that for any ỹ ∈ ZZd, i ≥ 0, j ≥ 0, the event {S = i, T̃ = j} is σ(s0, . . . , si,si+1,
Ysi+1∧·)⊗ σ(s̃0, . . . , s̃j+1, Ỹs̃j+1∧·)-measurable up to a Q0,ỹ-negligible set. Further for
any z, Qz satisfies the Markov property

Qz(A ∩ Γ−1
m (B)) = Qz(A,QYsm

(B)) ,

for m ≥ 0, measurable B and σ(s0, . . . , sm, Ysm∧·)-measurable A. Applying the
Markov property successively with respect to each component, and using translation
invariance, we see that the right hand side of (2.32) equals

1 + Q0,ỹ[S < ∞, exp{2ρ(sS+1 − sS)} ΨN,M (Ỹs̃T̃+1
− YsS+1)] ≤

1 + Q0,ỹ[S < ∞, exp{2ρ(sS+1 − sS)}] ‖ΨN,M‖∞ .

Note that

Q0,ỹ[S < ∞, exp{2ρ(sS+1 − sS)}] =
∑
i≥0

Q0,ỹ[S = i, e2ρ(si+1−si)]

≤ ∑
i≥0,j≥0

Q0,ỹ[Ii,j , e
2ρ(si+1−si)] ,
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and that Q0,ỹ-a.s., on Ii,j ,

|Ysi
− Ỹs̃j

| ≤ si+1 − si + s̃j+1 − s̃j ,

since for some n ∈ (si, si+1], m ∈ (s̃j , s̃j+1], Yn = Ỹm. As a result we see that

(2.33)
Q0,ỹ[S < ∞, exp{2ρ(sS+1 − sS)}] ≤ ∑

i,j≥0

Q0,ỹ[|Ysi
− Ỹs̃j

| ≤
si+1 − si + s̃j+1 − s̃j , e

2ρ(si+1−si)]

and from (2.2), (2.15), (2.16), this last quantity is smaller than∑
i,j,n≥0

Q0,ỹ[|Ysi
− Ỹs̃j

| ≤ n, e2ρn]ν(n) =
∑
z,n

G(z) 1{|ỹ + z| ≤ n} e2ρnν(n)

≤ 1

2
, in view of (2.17) and |ỹ| ≥ R .

Therefore, when |ỹ| ≥ R, N ≥ 1, M > 0:

(2.34) ΨN,M (ỹ) ≤ 1 + 1

2
‖ΨN,M‖∞ .

Pick now |ỹ| < R. Since a ≥ 1, Q-a.s., Ysi
· � ≤ −ai ≤ −i. Since |ỹ| < R, defining

(2.35) i0 = [2R]

we see that

(2.36) Q-a.s., |Ysi0+1 − ỹ| ≥ R .

Further, we can write:
(2.37)

ΨN,M (ỹ) ≤ Q0,ỹ

[
exp

{
2ρ

∑
i≤i0

(si+1 − si)
}

exp
{
2ρ

∑
0≤i<N

(si+1 − si) ∧ M 1{Iij occurs for some j∈[Ji,Ji+1∧N)}]
} ◦ (Γi0+1 × Id)

]
and using the Markov property and translation invariance

= Q0,ỹ

[
exp

{
2ρ

∑
i≤i0

(si+1 − si)
}

ΨN,M (ỹ − Ysi0+1)
]

(2.34)−(2.36),(2.2)

≤ (
1 + 1

2
‖ΨN,M‖∞

)
Q[e2ρs1 ]i0+1

(2.18)

≤ 3

2
+ 3

4
‖ΨN,M‖∞ .

Combining (2.34) and (2.37), we see that

(2.38) ‖ΨN,M‖∞ ≤ 3

2
+ 3

4
‖ΨN,M‖∞ .

Further as follows from direct inspection, ‖ΨN,M‖∞ < ∞. The claim (2.27) immedi-
ately follows. This completes the proof of Proposition 2.3.

We now come to the main result of this section. From now on we assume (0.9),
that is we are in the so-called non-nestling situation, cf. [20], [18], and � ∈ Sd−1,
η > 0, are such that

(2.39) lP-a.s., for all x ∈ ZZd, d(x, ω) · � ≥ η .
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This ensures in particular that (1.5) holds, cf. Proposition 2.4 of [20] for instance.
We keep the restriction on a

(2.40) 2 < a ≤ 10
√

d .

Theorem 2.4. (d ≥ 4, under (0.2), (0.9), (2.40))

There exists ρ0(d, η, κ) > 0 such that

(2.41) Qz,z̃

[
exp

{
ρ0

∑
x

L∞(x) ∧ L̃∞(x)
}] ≤ 6, for z, z̃ in ZZd .

Further in the notations of (0.13) and Proposition 1.2, when α ≤ ρ0,

(2.42) Q � lP ,

and hence Q is the only R-invariant probability absolutely continuous with respect to
lP, and it is equivalent to lP and an ergodic R-invariant measure.

Proof. Let us explain how the second half of the theorem follows from (2.41).
From Lemma 2.1, we see that when α ≤ ρ0, supN lE[f2

N ] < ∞. Along some extracted
subsequence Nk, fNk

converges weakly in L2(lP) to f∞. It follows from (1.31) that

(2.43) Q0 = f∞
P0,ω[D� = ∞]
P0[D� = ∞]

lP .

The claim (2.42) then follows from (1.29).

The last statement about uniqueness equivalence and ergodicity is classical, see
for instance Kozlov [11], p. 82, or Lecture 1 in [3].

We now turn to the proof of (2.41). From Theorem 5.2 in the Appendix,

(2.44) sup
x

(1 + |x| d−3
2 )G(x) ≤ c1(d, η, κ) .

Further as we now see for some c2(d, η) > 0:

(2.45) E0[e8c2τ1 |D� = ∞] ≤ 3

2
.

Indeed as follows from (1.32) of Sznitman [18], for suitable c3(d, η) > 0, c4(d, η) > 1,

(2.46) E0[exp{c3 Xτ1 · �}] ≤ c4 .

Further for u > 0,

(2.47)
P0[τ1 > u] ≤ P0

[
Xτ1 · � >

η

2
u
]
+ P0

[
Xτ1 · � ≤ η

2
, τ1 > u

]
≤ c4 e−c3

η
2 u + P0[T �

η
2 u > u] .

However for ω ∈ Ω, x ∈ ZZd,

(2.48) Mn = Xn − X0 −
n−1∑

0
d(Xk, ω)
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is a Px,ω-martingale with bounded increments, and for lP-a.e. ω, on {T �
η
2 u > u},

P0,ω-a.s., M[u] · � ≤ η
2 u − η(u − 1) ≤ −η

2 u + η. Using Azuma’s inequality, cf. Alon-
Spencer-Erdös [1], p. 85,

(2.49) P0[T �
η
2 u > u] ≤ exp

{ − η2

32u
(u − 2)2+

}
, for u > 0 .

Moreover from (1.27) of [18], for a suitable c5(d, η) > 0

(2.50) P0[D� = ∞] ≥ c5 .

Inserting (2.49) in the last member of (2.47), and using (2.50), the claim (2.45) easily
follows by choosing c2 small enough. From the renewal property (1.12), we find

(2.51)
∑
n

e4c2nν(n) ≤ 3

2
.

Further for z �= 0, breaking the sum below according to |z̃−z| ≥ 1
2 |z| or |z̃−z| < 1

2 |z|,
we obtain

(2.52)

∑
z̃,n

G(z̃ − z) 1{|z̃| ≤ n} ec2nν(n)
(2.44)

≤ c6

|z| d−3
2

∑
n

(nd + 1) ec2nν(n)

+ c7

∑
n

|z|d 1
{ |z|

2
≤ n

}
ec2nν(n)

and using (2.51)

≤ c8(|z|− (d−3)
2 + e−c2 |z|)

where all the above positive constants depend at most on d, η, κ. As a result we can
choose R(d, η, κ) > 1 such that for |z| ≥ R, the rightmost hand side of (2.52) is smaller
than 1

2 . Defining ρ0 via

(2.53) ρ0(2R + 1) = c2, (in particular c2 ≥ 2ρ0),

we see that ρ0 and R fulfill (2.17) - (2.18), and (2.41) follows from (2.19).

Remark 2.5. Because ρ0 solely depends on d, η, κ, it is easy to provide examples
where (0.2), (0.9) hold and α ≤ ρ0. The condition α ≤ ρ0 can be viewed as an
assumption about low disorder for the walk. The above theorem shows the equivalence
of the static and dynamic points of views for non-nestling walks when the dimension
is high and the disorder is low. The results of Section 3 will naturally lead to question
whether these assumptions are mainly artifacts of the proof. �

The next result is a variant of Theorem 2.4, which will be used in Section 4 when
we prove a “quenched” central limit theorem.

Theorem 2.6. (d ≥ 4, under (0.2), (0.9))

There exists ρ1(d, η, κ) > 0, such that in the notations of (0.15),

(2.54) Ex ⊗ Ex̃

[
exp

{
ρ1

∑
z

LX(z) ∧ LX̃(z)
}] ≤ 10, for x, x̃ ∈ ZZd .

Proof. Let us define for x, x̃ ∈ ZZd

(2.55) ϕ(x, x̃) = Ex ⊗ Ex̃

[
exp

{
ρ0

∑
z

LX(z) ∧ LX̃(z)
} |D� = ∞, D̃� = ∞]

.
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Choosing a as in (2.40), the renewal property (1.12) and a mere repetition of the
arguments of Proposition 2.3 and of the proof of (2.41) shows that

(2.56) ‖ϕ‖∞ ≤ 6 ,

(the sole modification is that we replace Ii,j in (2.23) by

Ii,j = {for some n ∈ [τi, τi+1), m ∈ [τ̃j , τ̃j+1), Xn = X̃m} ,

and distinguish between cases where Xτi
·� ≥ X̃τ̃j

·� or X̃τ̃j
·� ≥ Xτi

·� in the analogue
of (2.24)). Consider ρ1 ≤ ρ0, we see that the expression in (2.54) is smaller than:

(2.57) Ex ⊗ Ex̃

[
exp{ρ1(τ1 + τ̃1)} exp{ρ0

∑
z

LX(z) ∧ LX̃(z)
} ◦ (θτ1 × θτ̃1)

]
and applying the renewal property (1.13)

= Ex ⊗ Ex̃

[
exp{ρ1(τ1 + τ̃1) ϕ(Xτ1 , X̃τ̃1)] ≤ 6E0[eρ1τ1 ]2

and from (2.47), (2.49), we see that we can choose ρ1(d, η, κ) so that this last term is
smaller than 10.

Remark 2.7. The above applies in particular to the case of a classical nearest
neighbor simple random walk with jump probability (p(e))|e|=1, when d ≥ 4, p(e) > 0
for each e, and

∑
|e|=1 e p(e) �= 0. It shows that for ρ = ρ1(d, η = |∑ e p(e)|, κ =

infe p(e)), for all x, x̃ ∈ ZZd,

(2.58) Ex ⊗ Ex̃

[
exp{ρ∑

z
LX(z) ∧ LX̃(z)

}] ≤ 10 .

3. The directed case revisited. In this section, we return to the case of di-
rected walks and show that the counterexample discussed at the end of Section I is
unstable. From now on, we assume (0.3) as well as

(3.1) lP[ω(0, ei) > 0] = 1, for 1 ≤ i ≤ d .

For directed walks the one-dimensional situation is of course trivial, and we only focus
on the case d ≥ 2. With the notations of (1.34) and Proposition 1.4, our main object
is

Theorem 3.1. (d ≥ 2, under (0.3), (3.1))

(3.2) sup
lN

lE[g2
N ] < ∞ ,

(3.3) Q � lP .

Proof. The claim (3.3) follows from (3.2) and Proposition 1.4. Indeed gN is
a square integrable martingale which converges in L2(lP) and lP-a.s. to g∞, and
Q = g∞ lP. We turn to the proof of (3.2). For N ≥ 1,
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(3.4)

lE[g2
N ] =

∑
x,x̃

lE[pN (x, 0, ω) pN (x̃, 0, ω)] =

∑
x,x̃

lE
[
Px,ω ⊗ Px̃,ω[XN = 0 = X̃N ]

] translation
invariance=

∑
x,x̃

lE[Px−x̃,ω ⊗ P0,ω[XN = X̃N = −x̃]] =
∑
y

lE
[
Py,ω ⊗ P0,ω[ZN = 0]

]
,

provided (Zn)n≥0 = (Xn − X̃n)n≥0. Observe that the summands in the last sum
vanish when y does not belong to

(3.5) L = {x ∈ ZZd, x1 + · · · + xd = 0} .

Notice also that for z ∈ L, under lP × (Pz,ω ⊗ P0,ω), (Zn)n≥0 defines a Markov chain
with state space L, starting at point z, and with transition kernel

(3.6)

K(x, y) =
d∑
1

lE[ω(0, ei)]2, if x �= 0 and y = x

lE[ω(0, ei)] lE[ω(0, ej)], if x �= 0 and y = x + ei − ej , for i �= j ,

d∑
1

lE[ω(0, ei)2], if x = 0 and y = x ,

lE[ω(0, ei)ω(0, ej)], if x = 0 and y = ei − ej , for i �= j ,

0 in all other cases .

Observe that K differs at the single site 0 from the kernel K0 of a random walk on L
defined by the first two lines of (3.6), with x arbitrary in L instead of x �= 0. In view
of (3.1) these two kernels are irreducible, also they are either both transient or both
recurrent. Note also that by (3.4),

(3.7) lE[g2
N ] =

∑
x∈L

KN (x, 0) .

Let us first assume that K is transient. If λ stands for the counting measure on L
and W for the Green kernel:

(3.8) W (x, y) =
∑
n≥0

Kn(x, y), x, y ∈ L ,

we define

(3.9) ∆(y) = λK(y) − 1, y ∈ L .

In view of (3.6),

(3.10) ∆(y) = 0, whenever y /∈ {ei − ej , 1 ≤ i, j ≤ d} .

Observe that:

(3.11) (λ + ∆W )K = λK + ∆(W − I)
(3.9)
= λ + ∆ + ∆W − ∆ = λ + ∆W .
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Hence iterating the above equality:

(3.12) (λ + ∆W )KN = λ + ∆W , for N ≥ 0 .

As mentioned above the random walk with kernel K0 is transient as well, and nec-
essarily d ≥ 3. If W0 denotes the Green kernel attached to K0, we know from
Spitzer [17], p. 281 that limx→∞ W0(0, x) = 0. From the perturbation formula
W = W0 + W (K − K0)W0, we infer that

(3.13) lim
x→∞ W (0, x) = 0 .

From the identity W = W0 +W0(K−K0)W , we see that (3.13) holds with 0 replaced
by any point. Hence for some M > 0,

(3.14) (λ + ∆W )(y) ≥ 1

2
, when |y| ≥ M .

Coming back to (3.12), we see that for N ≥ 1,

1

2

∑
|x|≥M

KN (x, 0) ≤ ∑
|x|≥M

(λ + ∆W )KN (0) = (λ + ∆W )(0) − ∑
|x|<M

(λ + ∆W )KN (x, 0)

≤ const. < ∞ .

From (3.7), we now deduce (3.2).

Let us then assume that K is recurrent. The corresponding invariant measures ρ
of K and λ of K0 are unique up to a constant multiplicative factor, cf. Durrett [6],
p. 263. Using the “cycle trick” based at the point 0, cf. [6], p. 262, in order to express
ρ(·)
ρ(0) and λ(·)

λ(0) ≡ 1, we see that

(3.15) ρ(y) ≥ const. > 0, for y ∈ L .

Since for all N ≥ 1

(3.16)
∑

y∈L
ρ(y)KN (y, 0) = ρ(0) ,

the claim (3.7) follows. This proves (3.2).

Remark 3.2. 1) The directed situation is reminiscent of directed polymers in a
random potential, cf. Bolthausen [2], Carmona-Molchanov [4], Sinai [16]. However in
the case of directed random walks in random environment, what might be nicknamed
the “disordered phase”, i.e. when Q is not absolutely continuous with respect to
lP, see Proposition 1.5, appears to be unstable. Remarkably, independently of the
dimension, under the mild partial ellipticity condition (3.1), the second moments
lE[g2

N ] are uniformly bounded. One can naturally wonder whether this also happens
in the fully elliptic situation discussed in Section 2.

2) A straightforward modification of the argument used to prove (1.8), (1.9) in Lecture
1 of [3], shows that under the assumptions of Theorem 3.1, Q is in fact equivalent to
lP. It is the only R-invariant probability absolutely continuous with respect to lP, and
the Markov chain with initial law Q and transition kernel R is ergodic.
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4. A lP-almost sure central limit theorem. In this section we apply the
controls derived in Section 2, to the derivation of a functional central limit theorem
for the D(lR+, lRd)-valued variable

(4.1) Bn
. =

1√
n

(X[·n] − [·n]v), with v as in (0.16) ,

under P0,ω, for lP-a.e. ω. Under quite general assumptions, cf. [18], [19], and in
particular under (0.2), (0.9), it is known that

(4.2)
the law of Bn

. under P0 converges weakly to the law P of a d-dimensional
Brownian motion with non-degenerate covariance matrix A .

We shall see that under (0.2), (0.9), when d ≥ 4, in the low noise regime this central
limit theorem under P0 can be extended to a lP-almost sure central limit theorem
under P0,ω. Our main tool to this end is the control of the lP-variances of certain
P0,ω-expectations. We shall combine these “concentration estimates” with (4.2). It
will be convenient to consider the C(lR+, lRd)-valued variable:

(4.3) βn
. = the polygonal interpolation of k

n
−→ Bn

k
n

, k ≥ 0 .

Throughout this section the space C(lR+, lRd) of continuous lRd-valued functions on
lR+ is endowed with the topology of uniform convergence on bounded intervals and
its Borel σ-algebra. The space D(lR+, lRd) is endowed with the Skorohod topology
and its Borel σ-algebra. It is also convenient to endow the space C([0, T ], lRd), for
T > 0, with the distance

(4.4) dT (w,w′) = sup
s≤T

|w(s) − w′(s)| ∧ 1

and its corresponding Borel σ-algebra. The next lemma highlights the interest of
controlling the lP-variance of functionals of the type E0,ω[F (βn

. )], for F an arbitrary
bounded Lipschitz function on C([0, T ], lRd), (with a slight abuse of notations con-
cerning F (βn

. )).

Lemma 4.1. Assume that for all T > 0, for all bounded Lipschitz functions F on
C([0, T ], lRd), and all b ∈ (1, 2]:

(4.5)
∑
m

varlP(E0,ω[F (β[bm]
. )]) < ∞ ,

then lP-a.s.,

βn
. converges in law under P0,ω towards P(4.6)

Bn
. converges in law under P0,ω towards P .(4.7)

Proof. The statement (4.7) follows from (4.6) and Proposition 10.4, p. 149 in
Ethier-Kurtz [8]. Let us prove (4.6). We use the notation bm in place of [bm]. From
(4.2), (4.5), and Proposition 10.4 of [8], on a set of full lP-measure Ω0, for all rationals
b ∈ (1, 2], and functions F of the form

(4.8) FT,δ(w) = sup
0≤s,t≤T,|t−s|≤δ

|w(s) − w(t)| ∧ 1, T > 0, δ > 0, rationals,
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or F finite product of functions exp{i z · w(s)}, z ∈ Qd, s > 0 rational,

(4.9) E0,ω[F (βbm. )] → EP [F ], as m → ∞ .

Observe that for T > 0,

(4.10) hT (δ) Def= EP [FT,δ], is such that lim
δ→0

hT (δ) = 0 .

This and (4.9) shows that for ω ∈ Ω0, for all rationals b ∈ (1, 2], T ∈ lN:

(4.11) for all ε > 0, there exist δ > 0, lim
m

P0,ω

[
sup

0≤s,t≤T
|s−t|≤δ

|βbm
s − βbm

t | ≥ ε
] ≤ ε .

Hence for ω ∈ Ω0, and b ∈ (1, 2], the laws of βbm. under P0,ω are tight. An analogous
argument with F of the form indicated on the line below (4.8) shows that for ω ∈ Ω0,

(4.12) for rational b ∈ (1, 2], the law of βbm. under P0,ω converges weakly to P .

We now want to infer the convergence of the laws of the βn
. under P0,ω. We consider

b rational in (1, 2], and

(4.13) bm ≤ n < bm+1 .

We have the identity:

(4.14) βn
s =

√
bm

n
βbm

s n
bm

, s ≥ 0 .

Hence from (4.9), with b = 2 and F = FT,δ, we see that for ω ∈ Ω0, T, δ > 0 rationals:

(4.15)

lim
n

E0,ω

[
sup

0≤s,t≤T
|s−t|≤δ

|βn
s − βn

t | ∧ 1
] ≤ lim

n
E0,ω

[
sup

0≤s,t≤T
|s−t|≤δ

|βbm

s n
bm

− βbm

t n
bm

| ∧ 1
] ≤

lim
n

E0,ω

[
sup

0≤u,v≤2T
|u−v|≤2δ

|βbm
u − βbm

v | ∧ 1
] (4.9)−(4.10)

= h2T (2δ) .

By a similar argument as in (4.11), we see that for ω ∈ Ω0, the laws of the βn
. under

P0,ω are tight. Further with F as in the line below (4.8), ω ∈ Ω0, and a large enough
rational T ,

lim
n

|E0,ω[F (βn
. )] − E0,ω[F (βbm. )] | ≤ ‖F‖Lip lim

n
E0,ω[sup

s≤T
|βn

s − βbm
s | ∧ 1]

(4.14)
= lim

n
E0,ω

[
sup
s≤T

∣∣∣√ bm

n
βbm

s n
bm

− βbm
s

∣∣∣ ∧ 1
] (4.10)−(4.12)

≤ h2T ((b − 1)T ) +

EP [ sup
0≤s≤2T

|(√b − 1)Zs| ∧ 1] ,

provided (Zs)s≥0 denotes the canonical process on C(lR+, lRd). Letting b tend to 1,
we see that for ω ∈ Ω0, (4.6) holds. This concludes the proof of Lemma 4.1.
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We are now ready for the main result of this section. We recall that α is defined
in (0.13) and ρ1 in (2.54).

Theorem 4.2. (d ≥ 4, under (0.2), (0.9))

There exists ρ2(d, η, κ) > 0, such that when α ≤ ρ2, lP-a.s.,

(4.16) Bn
. converges in law under P0,ω to P , (cf. (4.2) for the definition of P ) .

Proof. In view of Lemma 4.1, it suffices to show that (4.5) holds whenever b ∈
(1, 2], and F is a function bounded by 1, with Lipschitz constant smaller than 1,
relative to dT . The heart of the matter is to estimate

(4.17) V n = varlP(E0,ω[F (βn
. )]), n ≥ 1 .

We use the martingale method. We pick a ∈ (2, 10
√

d], and introduce the sequence
τk, k ≥ 1, corresponding to � from (0.9) and a, as in (1.10), (1.11). We define for
n ≥ 1, the discrete ball

(4.18) Cn = {x ∈ ZZd, |x| ≤ nγ}, where γ ∈
(
0,

1

2

)
is some fixed constant .

We introduce an n-dependent enumeration of ZZd, for which:

(4.19) zm ∈ Cn, for m ≤ |Cn|, (and hence zm /∈ Cn for m > |Cn|) ,

as well as the n-dependent filtration (Gk)k≥0:

(4.20) Gk = σ(ω(zm, ·), m ≤ k), k ≥ 1, and G0 = {∅,Ω} .

We now have the martingale

(4.21) Mn
k = lE[E0,ω[F (βn

· )] | Gk], k ≥ 0 ,

so that denoting by ∆Mn
k , k ≥ 1, the increments Mn

k − Mn
k−1,

(4.22) V n =
∑
k≥1

lE[(∆Mn
k )2] = V n

1 + V n
2 ,

where V n
1 , V n

2 respectively refer to the sum restricted to k ≤ |Cn| and k > |Cn|. From
now on we drop the superscript n for simplicity, and start to bound V1. We define

mn =
[nγ

a

]
+ 1 ,(4.23)

β̃n
. = βn

·+ τmn
n

− βn
τmn

n

= the polygonal interpolation of(4.24)

k

n
→ 1√

n
(Xk+τmn

− Xτmn
− kv) ,

as well as the variables M̃k, just as in (4.21), with β̃n
. in place of βn

. . Note that P0-a.s.,

(4.25) sup
s≥0

|β̃n
s − βn

s | ≤ 2√
n

(τmn
+ 1) .
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Further we can write with hopefully obvious notations:

(4.26)

V1 ≤ 2
∑

1≤k≤|Cn|
(lE[(∆Mk − ∆M̃k)2] + lE[(∆M̃k)2])

≤ 2 lE[(M|Cn| − M̃|Cn|)2] + 2
∑

k≤|Cn|
lE[(∆M̃k)2]

Jensen≤ 2 E0[(F (βn
. ) − F (β̃n

. ))2] + 2
∑

k≤|Cn|
lE[(∆M̃k)2]

≤ 4

n
E0[(τmn

+ 1)2] + 2
∑

k≤|Cn|
lE[(∆M̃k)2] ,

where we used (4.25) and the Lipschitz property of F in the last step. Further in view
of the renewal property (1.12) and Theorem 2.1 of [18] we see that for some constant
c independent of n

≤ c

n
m2

n + 2
∑

1≤k≤|Cn|
lE[(∆M̃n)2] .

The conditional expectation with respect to Gk is obtained by integrating out the i.i.d.
variable ω(zm, ·), m > k. Denoting by lEGk , this conditional expectation, we find for
0 ≤ k ≤ |Cn|:

M̃k = lEGk
[
E0,ω[F (β̃.)]

]
=

∑
x

lEGk
[
E0,ω[F (β̃.), Xτmn

= x]
]

(4.27)

and using the notations of (1.13),

=
∑
x

lEGk
[
E0,ω[F (β̃.), τmn

(X
x

. ) = Hx, D� ◦ θHx
= ∞]

]

and in view of (4.24) and the Markov property:

=
∑
x

lEGk

[
P0,ω[τmn

(X
x

0 ) = Hx]Ex,ω

[
D� = ∞, F

(
βn
. − x√

n

)]]
.

Note that in the above sum only sites x contribute for which

x · � ≥ mn a
(4.23)
> nγ

which are necessarily of the form zm with m > |Cn|. Further the term P0,ω[τmn
(X

x

. ) =
Hx] is σ(ω(z, ·); z · � < x · �)-measurable, whereas Ex,ω[D� = ∞, F (βn

. − x√
n
)] is

σ(ω(z, ·), z · � ≥ x · �)-measurable, and in view of the above discussion, all such z with
z · � ≥ x · �, are of the form zm, with m > |Cn|. Hence performing the integration
with respect to all variable ω(z, ·), z · � ≥ x · �, in the last line of (4.27), we find:

=
∑
x

lEGk
[
P0,ω[τmn

(X
x

. ) = Hx]
]

E0[D� = ∞, F (βn
. )]

but the same calculation with F = 1, shows that

= E0[F (βn
. ) |D� = ∞] .
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In particular the rightmost term of (4.26) vanishes and

(4.28) V1 ≤ c

n
m2

n, with c independent of n .

We now bound V2. We first consider k > |Cn|, ω, ω′ ∈ Ω which coincide except perhaps
at zk, and for which the drift condition (0.9) holds at each site of ZZd.

(4.29)

|E0,ω′ [F (βn
. )] − E0,ω[F (βn

. )] | =∣∣∣ E0,ω

[
F (βn

. )
( ∏

|e|=1

(ω′(zk, e)
ω(zk, e)

)[T n]+1∑
0

1{Xm=zk,Xm+1=zk+e}
− 1

)]∣∣∣ ,

where we recall that F is a function on C([0, T ], lRd) bounded by 1, so that in the
notations of Theorem 2.6, and (0.13),

≤ P0,ω[H(zk) < ∞, eαLX(zk)] = P0,ω[H(zk) < ∞]Ezk,ω[eαLX(zk)] .

In view of (0.9), it is routine to prove that for some ρ3(d, η, κ) > 0, ρ4(d, η, κ) > 1

(4.30) lP-a.s., for all z ∈ ZZd, Ez,ω[eρ3LX(zk)] ≤ ρ4 .

Therefore combining (4.29), (4.30), we see that provided α ≤ ρ3

(4.31) V2 ≤ c
∑

k>|Cn|
lE[P0,ω[H(zk) < ∞]2]

where c has the same meaning as in (4.28). By a similar calculation as in (2.8) -
(2.12),

≤ c
∑

k>|Cn|
E0 ⊗ E0

[
exp

{
α

∑
x

LX(x) ∧ LX̃(x)
}
, H(zk) < ∞, H̃(zk) < ∞]

≤ c E0 ⊗ E0

[
exp

{
α

∑
x

LX(x) ∧ LX̃(x)
} ( ∑

x
LX(x) ∧ L̃X̃(x)

)
, In

]
,

where In stands for the event, in the notation of (1.2),

(4.32) In = {Xi = X̃j , for some i ≥ TCn
, j ≥ T̃Cn

} .

If we apply Cauchy-Schwarz’s inequality to the last expression of (4.31), and use
Theorem 2.6, the bound we obtain combined with (4.28), shows that when α < ρ1

2 ∧ρ3,
for any b ∈ (1, 2] and function F on C([0, T ], lRd) bounded by 1, with Lipschitz
constant 1 with respect to dT , (4.5) holds, provided we can show that for some ζ > 0,

(4.33) lim
n

nζ P0 ⊗ P0[In] < ∞ .

By Proposition 1.4 of [18], sup0≤m≤τ1
|Xm| has some finite exponential moment under

P0, so that by standard Cramer-type estimates, and the renewal property (1.12), for
small c > 0:

(4.34) lim
n

n−γ log P0[TCn
< τm′

n
] < 0, with m′

n = [cnγ ] .

The claim (4.33) will thus follow if we show that for some ζ > 0,

lim nζ P0 ⊗ P0[Jn] < ∞, with(4.35)

Jn = {Xi = X̃j , for some i ≥ τm′
n
, j ≥ τ̃m′

n
} .(4.36)
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Clearly for R > 0,

P0 ⊗ P0[Jn] ≤ P0 ⊗ P0[ |Xτm′
n
− X̃τ̃m′

n
| ≤ R] +∑

i,j≥0

P0 ⊗ P0

[∣∣Xτm′
n
− X̃τ̃m′

n

∣∣ > R, X[τm′
n+i, τm′

n+i+1)
∩ X̃[τ̃m′

n+j , τ̃m′
n+j+1)

�= ∅] ,

so by a similar argument as in (2.33),

≤ P0 ⊗ P0[ |Xτm′
n
− X̃τ̃m′

n
| ≤ R] + sup

|z|≥R

∑
z̃,n

G(z̃ − z) 1{|z̃| ≤ n} ν(n) .

We control the first term with the help of (1.12) and (5.11) from Theorem 5.2 in
the Appendix and the second term with (2.52). The claim (4.35) follows by picking
R = nγ/4. This concludes the proof of Theorem 4.2.

Remark 4.3. Note that in the situation of the example corresponding to (1.41),
the lP-almost sure central limit theorem for Bn

. breaks down. However if we make the
additional assumption (3.1) in the directed situation, the technique of Theorem 4.2
can successfully be applied, when d ≥ 4. This is somewhat in the same spirit as part
of the results of Conlon-Song [5].

5. Appendix. If p (x) , x ∈ Zd, is a probability measure, we write Σp for the

covariance matrix, and pn for the n-fold convolution of p. We set µ (p) def=
∑

x∈Zd

xp (x) .

The function G is defined by

(5.1) G (x) =
∑

i,j≥0

∑
z∈Zd

pi (z) pj (x + z) .

Theorem 5.1. Assume d ≥ 4, and let γ1, γ2, γ3 > 0. There exist K1 (d, γ1, γ2) ,
and K2 (d, γ1, γ2, γ3) such that for any probability measures p (x) , x ∈ Zd, satisfying∑

x∈Zd

p (x) exp [γ1 |x|] ≤ 2,(5.2)

Σp ≥ γ2Id,(5.3)

|µ (p)| ≥ γ3,(5.4)

one has

(5.5) sup
x

pn (x) ≤ K1n
−d/2, n ≥ 1,

(5.6) sup
x

(
1 + |x|(d−3)/2 )

G (x) ≤ K2.

Proof. We will drop dependencies on the dimension in the notation. (5.5) follows
from a concentration inequality of Esseen (Corollary to Theorem 6.2 of [7]). In fact,
if B is a ball with radius 1/2 centered at x ∈ Zd, and if Pn is the probability measure∑

y pn (y) δy on Rd, then Esseen’s inequality gives

pn (x) = Pn (B) ≤ K (γ1, γ2) n−d/2.
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The constant in [7] is given explicitly in terms of the minimal eigenvalue of a truncated
covariance matrix, which can easily been estimated by γ1, γ2 in our case. (Esseen’s
estimate is valid also without any moment conditions on p).

We now derive (5.6) from (5.5).We find ρ (γ1) > 0 such that

pλ (x) def= eλ·xp (x)
/

z (λ)

is well defined for λ ∈ Bρ (0) , the ball of radius ρ around 0, where z (λ) def=∑
x eλ·xp (x) . We can choose ρ (γ1, γ2) > 0, such that pλ satisfies (5.2) and (5.3)

with γ1, γ2 replaced by γ1/2, γ2/2 if λ ∈ Bρ (0) . Let

Ap (λ) def=
∑
x

xpλ (x) .

By choosing ρ still smaller, if necessary, Ap is analytic and maps Bρ (0) one to one
on a neighborhood of µ (p) containing a ball Bε (µ (p)) where ε (γ1, γ2) > 0. For
ξ ∈ Bε (µ (p)), we find a unique λξ with |λξ| < ρ, such that µ (λξ) = ξ. Applying this
to ξ = x/n, |x − nµ| < nε, we get

pn (x) = exp
[−λx/nx + n log z

(
λx/n

)]
p

λx/n
n (x)

≤ K1

(γ1

2
,
γ2

2

)
n−d/2 exp [−nI (x/n)] ,

where

I (ξ) def= λξξ + log z (λξ) .

I is analytic on Bε (µ), is convex, and satisfies I (µ) = 0, ∇I (µ) = 0, and ∇2I (µ) =
Σ−1

p . The second derivative of I is positive definite in a neighborhood of µ (p) whose
radius depends only on γ1, γ2, uniformly in distributions p, satisfying (5.2) and (5.3).
It therefore follows that for some positive δ (γ1, γ2) ∈ (0, 1],

pn (x) ≤ Cϕδ
n (x;µ (p) n) ,

for x/n ∈ Bε (µ) , where

ϕδ
n (x;m) def=

δn/2

(2π)d/2
nd/2

exp
[
− δ

|x − m|2
2n

]
, n ≥ 1, ϕ0 (x;m) def= δ0x,

and where we use C for a positive constant, depending only on the γ’s (and d), not
necessarily the same at different occurrences. On the other hand, standard exponential
estimates show that for some δ̃ (ε, γ1) = δ̃ (γ1, γ2) > 0, one has

pn (x) ≤ C exp
[ − δ̃

∣∣x − nµ
∣∣]

for x/n /∈ Bε (µ) . Therefore we get the estimate

(5.7) pn(x ≤ C
(
ϕδ

n

(
x;nµ

)
+ 1{|x−an|≥εn} exp

[ − δ̃
∣∣x − nµ

∣∣]),
uniformly in p’s satisfying (5.2) and (5.3). We use that now to estimate the right-hand
side of (5.1). Observe that∑

n≥0

1{|x−µn|≥εn} exp
[ − δ̃ |x − nµ| ] ≤ C exp [−δ′ |x|] ,
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for some δ′ > 0 (depending still only on γ1, γ2), and it is easy to see that
∑

i ϕδ
i (x) ≤

C (1 + |x|)−d+2
. Therefore, the three terms in the estimate of (5.1) coming from the

second summand in (5.7) can all be estimated by

∑
z∈Zd

(1 + |z|)−d+2 exp [−δ′ |x + z|] ≤ C (1 + |x|)−d+2
,

and we get

(5.8) G (x) ≤ C
∑

i,j≥1

∑
z

ϕδ
i (z; iµ) ϕδ

j (x + z; jµ) + C (1 + |x|)−d+2
.

(The summands with i or j = 0 can be incorporated into the second summand). We
may also restrict the summation on the right-hand side to j ≥ i ≥ 1, catching a
harmless factor 2. We use the inequality

(5.9)
∑
z

ϕδ
i (z; iµ) ϕδ

j (x + z; jµ) ≤ Cϕδ
i+j (x; (j − i) µ) .

Postponing the proof for a moment, we can now finish the proof of (5.6) easily. Fixing
k ≥ 0, we get

∑
i≥1

∑
z

ϕδ
i (z; iµ) ϕδ

i+k (x + z; (i + k) µ) ≤ C
∑
i≥1

ϕδ
2i+k (x; kµ) ≤ C

∑
i≥max(k,1)

ϕδ
i (x; kµ)

≤ C min
( |x − kµ|−d+2

, (1 + k)−d/2+1 )
,

and therefore

(5.10) G (x) ≤ C
∞∑

k=0

min
( |x − kµ|−d+2

, (1 + k)−d/2+1 ) ≤ C (1 + |x|)(−d+3)/2
.

In order to prove the last inequality, first remark that (5.4) and (5.2) imply that
|µ| is bounded and bounded away from 0. Then, if b

def= mink |x − kµ| , we have∑∞
k=0 |x − kµ|−d+2 ≤ Cb−d+3 by a straightforward estimate. So we can use this in

case b ≥ √|x|. In case b <
√|x|, we take the second part in the above min in (5.10) for

those k where |x − kµ| ≤ 2
√|x| getting of order

√|x| summands which are estimated
by (1 + k)−d/2+1 ≤ C (1 + |x|)−d/2+1

, and so this gives a contribution of at maximum
C (1 + |x|)(−d+3)/2

. Finally, (still for b <
√|x|), we have

∑
k:|x−kµ|>2

√
|x|

|x − kµ|−d+2 ≤ C
∑

j≥δ′′
√

|x|
j−d+2 ≤ C (1 + |x|)(−d+3)/2

for some δ′′ > 0. So this proves the second inequality of (5.10), and therefore the
theorem.
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It remains to prove (5.9): We consider ϕδ as a function on Rd, where it is just
the normal density. Set I =

[− 1
2 , 1

2

]d
. Then

ϕδ
i+j (x; (j − i) µ) =

∑
z∈Zd

∫
z+I

ϕδ
i (t; iµ) ϕδ

j (x + t; jµ) dt

≥ δd

(2πi)d/2 (2πj)d/2

∑
z∈Zd

exp
[
−

∫
I

{
δ|z+t−iµ|2

2i + δ|z+x+t−jµ|2
2j

}
dt

]
,

by Jensen’s inequality. Note that for t ∈ I, we have |t|2 ≤ d/4, and so

∫
I

{δ |z + t − iµ|2
2i

+
δ |z + x + t − jµ|2

2j

}
dt

≤ δ |z − iµ|2
2i

+
δ |z + x − jµ|2

2j
+ d/4,

if i, j ≥ 1, δ ≤ 1, where we have used that the integral of the cross terms vanishes (by
the symmetry of I). This proves the claim.

We apply this now to

p (x) def= P0

[
Xτ1 = −x|D� = ∞]

Theorem 5.2. (d ≥ 4, under (0.2), (0.9), 2 < a ≤ 10
√

d).

There exists K > 0, depending solely on d, η, κ such that

(5.11) sup
x

pn (x) ≤ K

nd/2
,

(5.12) sup
x

(
1 + |x|(d−3)/2

)
G(x) ≤ K

Proof. We simply need to check that (5.2)-(5.4) of the previous theorem are
satisfied, with γ1, γ2, γ3 depending only on d, η, κ. (5.4) is evident and (5.2) follows
from (1.23) and (1.24) in Sznitman [18].

It remains to prove (5.3). To this end, we consider e∗ ∈ Zd, with |e∗| = 1, such
that

e∗ · � = max
|e|=1

e · � ≥ 1√
d
.

Then e∗ ·� and (e + e∗) ·� for |e| = 1 are non-negative and smaller than a. We consider
for |e| = 1, k (e) > 0, the smallest integer such that

(e + (k (e) + 1) e∗) · � > a.

Note that

P0

[
Xτ1 = e + (k (e) + 1) e∗|D� = ∞]

≥ P0 [X1 = e∗,X2 = e∗ + e,Xk+2 = (k + 1) e∗ + e, 1 ≤ k ≤ k (e)] ≥ δ > 0,
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where δ depends only on d, η, κ. By letting the path backtrack in the direction e∗ after
reaching e+(k (e) + 1) e∗, one sees that if M is the smallest integer with M (e∗ · �) > a,
one also has

P0

[
Xτ1 = e + (k (e) + 1 + M) e∗|D� = ∞] ≥ δ > 0.

From this, we see that p (x) ≥ δ (d, η, κ) > 0, whenever, x is of the form
e + (k (e) + 1) e∗ or e + (k (e) + 1 + M) e∗, |e| = 1. The set of these points do not
lie in a (d − 1)-dimensional hyperplane. From this (5.3) follows.
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