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A SECOND ORDER THREE-POINT BOUNDARY VALUE PROBLEM

WITH MIXED NONLINEAR BOUNDARY CONDITIONS∗

BASHIR AHMAD† AND TAGREED G. SOGATI‡

Abstract. We apply the generalized quasilinearization method to a second order three-point
boundary value problem involving mixed nonlinear boundary conditions and obtain a monotone
sequence of approximate solutions converging to the unique solution of the problem possessing a
convergence of order k(k ≥ 2).
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1. Introduction. The method of quasilinearization developed by Bellman and
Kalaba [1] and generalized by Lakshmikantham [2-3] later on, has been studied and
extended in several diverse disciplines. In fact, it is generating a rich history and an
extensive bibliography can be found in [4-10].

Multi-point nonlinear boundary value problems, which refer to a different family
of boundary conditions in the study of disconjugacy theory [11], have been addressed
by many authors, for example, see [12-14]. In particular, Eloe and Gao [15] dis-
cussed the quasilinearization method for a three-point boundary value problem. In
this paper, we study the generalized quasilinearization method for a second order
three-point boundary value problem with mixed nonlinear boundary conditions. In
fact, a sequence of approximate solutions converging monotonically to a solution of
the nonlinear three-point problem with the order of convergence k(k ≥ 2) has been
presented.

2. Preliminary results. Consider a three-point boundary value problem with
mixed nonlinear boundary conditions

x′′(t) = f(t, x(t)), (1.1)

px(0) − qx′(0) = a, px(1) + qx′(1) = g(x(
1

2
)), (1.2)

where f is continuous with fx > 0 on [0, 1]×R, p, q > 0 with p > 1 and g : R −→ R

is continuous. By Green’s function method, the solution, x(t) of (1.1)-(1.2) can be
written as

x(t) = a(
−t

p + 2q
+

p + q

p2 + 2pq
) + g(x(

1

2
))[

t

p + 2q
+

q

p2 + 2pq
] +

∫ 1

0

G(t, s)f(s, x(s))ds,

where the Green’s function G(t, s) for the mixed three-point boundary value problem
is given by

G(t, s) =
1

(p2 + 2pq)

{

(pt + q)(p(s − 1) − q), if 0 ≤ t ≤ s ≤ 1,

(p(t − 1) − q)(ps + q), if 0 ≤ s ≤ t ≤ 1.
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Notice that G(t, s) < 0 on [0, 1] × [0, 1].

We say that α ∈ C2[0, 1] is a lower solution of the boundary value problem (1.1)-
(1.2) if

α′′(t) ≥ f(t, α), t ∈ [0, 1],

pα(0) − qα′(0) ≤ a, pα(1) + qα′(1) ≤ g(α(
1

2
)),

and β ∈ C2[0, 1] is an upper solution of the boundary value problem (1.1)-(1.2) if

β′′(t) ≤ f(t, β), t ∈ [0, 1],

pβ(0) − qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g(β(
1

2
)).

Theorem 1. Assume that f is continuous with fx > 0 on [0, 1] × R and g is
continuous with 0 ≤ g′ < 1 on R. Let β and α be the upper and lower solutions of
(1.1)-(1.2) respectively. Then α(t) ≤ β(t), t ∈ [0, 1].

Proof. Define h(t) = α(t) − β(t) . For the sake of contradiction, we suppose that
h(t) > 0 for some t ∈ [0, 1]. First we take t0 ∈ (0, 1). Then by the definition of lower
and upper solutions together with fx > 0, we obtain

h′′(t0) = α′′(t0) − β′′(t0) ≥ f(t0, α(t0)) − f(t0, β(t0)) > 0. (1.3)

By the standard methodology, let h(t) have a local positive maximum at t0 ∈ (0, 1),
then h′(t0) = 0 and h′′(t0) ≤ 0, which contradicts (1.3). Thus, for t0 ∈ (0, 1), we
have α(t) ≤ β(t). Now, suppose that h(t) has a local positive maximum at t0 = 1,

then h′(1) = 0 and h′′(1) < 0. On the other hand, by definition of lower and upper
solutions and in view of the condition 0 ≤ g′ < 1, we find that

ph(1) + qh′(1) ≤ g(α(
1

2
)) − g(β(

1

2
))

=
g(α(1

2 )) − g(β(1
2 ))

α(1
2 ) − β(1

2 )
[α(

1

2
) − β(

1

2
)]

≤ α(
1

2
) − β(

1

2
)

= h(
1

2
).

Thus, ph(1) ≤ h(1
2 ) or h(1) < h(1

2 ) for p > 1, which is a contradiction. Similarly, we
get a contradiction for t0 = 0. Hence we conclude that α(t) ≤ β(t) on [0, 1].

Theorem 2. Assume that f is continuous on [0, 1] × R with fx > 0 and g is
continuous on R satisfying 0 ≤ g′ < 1. Further, we assume that there exist an upper
solution β and a lower solution α of (1.1)-(1.2) such that α(t) ≤ β(t), t ∈ [0, 1]. Then
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there exists a solution x(t) of (1.1)-(1.2) satisfying α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

Proof. Define F and G by

F (t, x) =







f(t, β) + x−β
1+x−β

, if x(t) > β(t),

f(t, x), if α(t) ≤ x(t) ≤ β(t),
f(t, α) + x−α

1+|x−α| , if x(t) < α(t),

G(x) =







g(β(1
2 )), if x > β(1

2 ),
g(x), if α(1

2 ) ≤ x ≤ β(1
2 ),

g(α(1
2 )), if x < α(1

2 ).

Since F (t, x) and G(x) are continuous and bounded, a standard application of
Schauder’s fixed point theorem ensures the existence of a solution, x of the prob-
lem

x′′(t) = F (t, x(t)), t ∈ [0, 1],

px(0) − qx′(0) = a, px(1) + qx′(1) = G(x(
1

2
)).

In order to complete the proof, we need to show that α(t) ≤ x(t) ≤ β(t) on [0, 1]
which can be done using the procedure employed in the proof of theorem 1. In this
case, G satisfies 0 ≤ G′ ≤ 1 on [α(1

2 ), β(1
2 )].

Remark. In case of the problem −x′′(t) = f(t, x(t)), we require the condition
fx < 0 and the corresponding Green’s function G(t, s) is nonnegative, that is,

G(t, s) ≥
q2

(p2 + 2pq)
, (t, s) ∈ [0, 1]× [0, 1].

3. Main result.

Theorem 3. Assume that
(A1) ∂i

∂xi f(t, x), i = 0, 1, 2, ..., k, are continuous on [0, 1]×R satisfying ∂i

∂xi f(t, x) ≥

0, i = 0, 1, 2, ..., k − 1, with ∂k

∂xk (f(t, x) + φ(t, x)) ≤ 0, where ∂i

∂xi φ(t, x), i =

0, 1, 2, ..., k are continuous and ∂k

∂xk φ(t, x) ≤ 0 for some function φ(t, x).
(A2) α, β ∈ C2[0, 1], R] are lower and upper solutions of (1.1)-(1.2) respectively.

(A3) di

dxi g(x), i = 0, 1, 2, ..., k, are continuous on R satisfying 0 ≤ di

dxi g(x) <
M

(β−α)i−1 with dk

dxk g(x) ≥ 0 and 0 < M < 1
3 .

Then there exists a monotone sequence of approximate solutions {wn} converging to
the unique solution, x of (1.1)-(1.2) with the order of convergence k(k ≥ 2).

Proof. Define F : [0, 1]× R −→ R by

F (t, x) = f(t, x) + φ(t, x).

Using (A1), (A3) and the generalized mean value theorem, we obtain

f(t, x) ≤

k−1
∑

i=0

∂i

∂xi
F (t, y)

(x − y)i

i!
− φ(t, x),
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g(x) ≥
k−1
∑

i=0

di

dxi
g(y)

(x − y)i

i!
.

Set

F ∗∗(t, x, y) =
k−1
∑

i=0

∂i

∂xi
F (t, y)

(x − y)i

i!
− φ(t, x), (1.4)

and

h∗(x, y) =

k−1
∑

i=0

di

dxi
g(y)

(x − y)i

i!
. (1.5)

Observe that F ∗∗(t, x, y) and h∗(x, y) are continuous and

f(t, x) = min
y

F ∗∗(t, x, y), f(t, x) = F ∗∗(t, x, x), (1.6)

g(x) = max
y

h∗(x, y), g(x) = h∗(x, x). (1.7)

Expanding φ(t, x) by Taylor’s theorem, (1.4) takes the form

F ∗∗(t, x, y) =

k−1
∑

i=0

∂i

∂xi
f(t, y)

(x − y)i

i!
−

∂k

∂xk
φ(t, ξ)

(x − y)k

k!
. (1.8)

Differentiating (1.8) and using (A1), we get

F ∗∗
x (t, x, y) >

k−1
∑

i=1

∂i

∂xi
f(t, y)

(x − y)i−1

(i − 1)!
≥ 0, (1.9)

which implies that F ∗∗
x (t, x, y) is increasing in x for each (t, y) ∈ [0, 1]× R. Similarly,

differentiation of (1.5) together with (A3) yields

h∗
x(x, y) =

k−1
∑

i=1

di

dxi
g(y)

(x − y)i−1

(i − 1)!
,

which is clearly nonnegative and further

h∗
x(x, y) =

k−1
∑

i=1

di

dxi
g(y)

(x − y)i−1

(i − 1)!

≤

k−1
∑

i=1

di

dxi
g(y)

(β − α)i−1

(i − 1)!

≤

k−1
∑

i=1

M

(i − 1)!
< M(1 +

k−2
∑

i=1

1

2i−1
) = M(3 −

1

2k−3
)

< 3M < 1,

where α ≤ y ≤ x ≤ β. Select α = w0 and consider the following mixed problem

x′′ = F ∗∗(t, x(t), w0(t)), t ∈ [0, 1], (1.10)
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px(0) − qx′(0) = a, px(1) + qx′(1) = h∗(x(
1

2
), w0(

1

2
)). (1.11)

Using (A3), (1.6) and (1.7), we obtain

w′′
0 ≥ f(t, w0) = F ∗∗(t, w0, w0), t ∈ [0, 1],

pw0(0) − qw′
0(0) ≤ a, pw0(1) + qw′

0(1) ≤ g(w0(
1

2
)) = h∗(w0(

1

2
), w0(

1

2
)),

and

β′′ ≤ f(t, β) ≤ F ∗∗(t, β, w0), t ∈ [0, 1],

pβ(0) − qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g(β(
1

2
)) ≥ h∗(β(

1

2
), w0(

1

2
)),

which imply that w0 and β are lower and upper solutions of (1.10)-(1.11) respectively.
It follows by Theorems 1 and 2 that there exists a unique solution, w1 of (1.10)-(1.11)
such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [0, 1].

Now, we consider the problem

x′′ = F ∗∗(t, x(t), w1(t)), t ∈ [0, 1], (1.12)

px(0) − qx′(0) = a, px(1) + qx′(1) = h∗(x(
1

2
), w1(

1

2
)). (1.13)

Again, using (A3), (1.6) and (1.7), we get

w′′
1 = F ∗∗(t, w1, w0) ≥ F ∗∗(t, w1, w1), t ∈ [0, 1],

pw1(0)−qw′
1(0) ≤ a, pw1(1)+qw′

1(1) = h∗(w1(
1

2
), w0(

1

2
)) ≤ h∗(w1(

1

2
), w1(

1

2
)),

and

β′′ ≤ f(t, β) ≤ F ∗∗(t, β, w1), t ∈ [0, 1],

pβ(0) − qβ′(0) ≥ a, pβ(1) + qβ′(1) ≥ g(β(
1

2
)) ≥ h∗(β(

1

2
), w1(

1

2
)),

implying that w1 and β are lower and upper solutions of (1.12)− (1.13) respectively.
By the earlier arguments, we find a solution, w2 of (1.12) − (1.13) such that

w0(t) ≤ w2(t) ≤ β(t), t ∈ [0, 1].

Continuing this process successively, we obtain a monotone sequence {wn} of solutions
satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ ... ≤ wn(t) ≤ β(t), t ∈ [0, 1],
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where each element wn of the sequence is a solution of the following problem

x′′ = F ∗∗(t, x(t), wn−1(t)), t ∈ [0, 1],

px(0) − qx′(0) = a, px(1) + qx′(1) = h∗(x(
1

2
), wn−1(

1

2
)),

and is given by

wn(t) = a(
−t

p + 2q
+

p + q

p2 + 2pq
) + h∗(wn(

1

2
), wn−1(

1

2
))[

t

p + 2q
+

q

p2 + 2pq
]

+

∫ 1

0

G(t, s)F ∗∗(s, wn, wn−1)ds.

(1.14)

In view of the fact that [0, 1] is compact and the monotone convergence is pointwise,
it follows that the convergence of the sequence is uniform. If x(t) is the limit point of
the sequence, then passing onto the limit n → ∞, (1.14) gives

x(t) = a(
−t

p + 2q
+

p + q

p2 + 2pq
) + h∗(x(

1

2
), x(

1

2
))[

t

p + 2q
+

q

p2 + 2pq
]

+

∫ 1

0

G(t, s)F ∗∗(s, x(s), x(s))ds

= a(
−t

p + 2q
+

p + q

p2 + 2pq
) + g(x(

1

2
))[

t

p + 2q
+

q

p2 + 2pq
]

+

∫ 1

0

G(t, s)f(s, x(s))ds.

Thus x(t) is the solution of (1.1)-(1.2).
Now, we show that the convergence of the sequence of iterates is of order k(k ≥ 2).

For that, we set en(t) = x(t) − wn(t), an(t) = wn+1(t) − wn(t), t ∈ [0, 1] and note
that en(t) ≥ 0, an(t) ≥ 0, en(t) − an(t) = en+1(t). Also en(t) ≥ an(t) and hence by
induction ek

n(t) ≥ ak
n(t). Further

pen(0) − qe′n(0) = 0, pen(1) + qe′n(1) = g(x(
1

2
)) − h∗(wn(

1

2
), wn−1(

1

2
)).

Using the generalized mean value theorem, we have

e′′n+1(t) = x′′ − w′′
n+1

=
∑k−1

i=0
∂i

∂xi f(t, wn) (x−wn)i

i! + ∂k

∂xk f(t, ξ) (x−wn)k

k!

−
∑k−1

i=0
∂i

∂xi f(t, wn) (wn+1−wn)i

i! + ∂k

∂xk φ(t, ξ) (wn+1−wn)k

k!

=
∑k−1

i=1
∂i

∂xi f(t, wn)
(ei

n
−ai

n
)

i! + ∂k

∂xk f(t, ξ) (en)k

k! + ∂k

∂xk φ(t, ξ) (an)k

k!

≥ (
k−1
∑

i=1

∂i

∂xi f(t, wn) 1
i!

k−1
∑

j=0

ej
nai−1−j

n )en+1 + ( ∂k

∂xk f(t, ξ) + ∂k

∂xk φ(t, ξ)) (en)k

k!

≥ ∂k

∂xk F (t, ξ) (en)k

k! ≥ −M‖en|
k,

(1.15)
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where M is a bound on 1
k!

∂k

∂xk F (t, ξ) for t ∈ [0, 1]. Thus, in view of (1.15), we have

en+1(t) = (g(x(
1

2
)) − h∗(wn+1(

1

2
), wn(

1

2
)))[

t

p + 2q
+

q

p2 + 2pq
] +

∫ 1

0

G(t, s)e′′n+1(t)ds

≤ (g(x(
1

2
)) − h∗(wn+1(

1

2
), wn(

1

2
)))[

t

p + 2q
+

q

p2 + 2pq
]

+ M‖en‖
k

∫ 1

0

|G(t, s)|ds

= [

k−1
∑

i=0

di

dxi
g(wn(

1

2
))

(x(1
2 ) − wn(1

2 ))i

i!
+

dk

dxk
g(ξ(

1

2
))

(x(1
2 ) − wn(1

2 ))k

k!

−

k−1
∑

i=0

di

dxi
g(wn(

1

2
))

(wn+1(
1
2 ) − wn(1

2 ))i

i!
][

t

p + 2q
+

q

p2 + 2pq
]

+ M1‖en‖
k

= [

k−1
∑

i=1

di

dxi
g(wn(

1

2
))

(ei
n(1

2 ) − ai
n(1

2 ))

i!
+

dk

dxk
g(ξ(

1

2
))

(en(1
2 ))k

k!
][

t

p + 2q

+
q

p2 + 2pq
] + M1‖en‖

k

= [

k−1
∑

i=1

di

dxi
g(wn(

1

2
))

1

i!

k−1
∑

j=0

ej
n(

1

2
)ai−1−j

n (
1

2
)en+1(

1

2
)

+
dk

dxk
g(ξ(

1

2
))

(en(1
2 ))k

k!
][

t

p + 2q
+

q

p2 + 2pq
] + M1‖en‖

k

≤ [

k−1
∑

i=0

M

(β − α)i−1

1

i!

i−1
∑

j=0

ei−1−j
n (

1

2
)aj

n(
1

2
)]M3en+1(

1

2
) + M2M3‖en‖

k + M1‖en‖
k.

(1.16)

where M1 provides a bound for M
∫ 1

0 |G(t, s)|ds, M2 provides a bound for
dk

dxk g(ξ(1
2 )) 1

k! , and M3 = 1
p+2q

+ q
p2+2pq

. Letting

Pn(t) =

k−1
∑

i=0

M

(β − α)i−1

1

i!

i−1
∑

j=0

ei−1−j
n (

1

2
)aj

n(
1

2
),

we find that

lim
n→∞

Pn(t) = lim
n→∞

k−1
∑

i=0

M

(β − α)i−1

1

i!

i−1
∑

j=0

ei−1−j
n (

1

2
)aj

n(
1

2
) = M <

1

3
.

Therefore, we can choose λ < 1
3 and n0 ∈ N such that for n ≥ n0, we have Pn(t) < λ

and consequently (1.16) becomes

‖en+1‖ < λ1‖en+1‖ + M4‖en‖
k. (1.17)

Solving (1.17) algebraically yields

‖en+1‖ ≤
M4

1 − λ1
‖en‖

k,
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where M4 = M1 + M2M3, λ1 = λM3 and ‖en‖ = max{|en(t)| : t ∈ [0, 1]} is the
usual uniform norm. This completes the proof.

Example. As an example, we can take f(t, x) = ex and g(x) = xp (for instance,
p = k) in (1.1)-(1.2) which clearly satisfy the hypotheses of the main result.

Acknowledgement. The authors gratefully acknowledge the referee for his/her
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