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DISCRETE BOUNDARY VALUE PROBLEMS
WITH INITIAL AND FINAL CONDITIONS ∗

RAGHIB M. ABU-SARIS†

Abstract. In this research, we consider a nonhomogeneous linear difference equation with
constant coefficients of order k ≥ 2 subject to boundary conditions that split into two groups: initial
and final conditions. We establish necessary and / or sufficient conditions on the distribution(s) of
the zeros of the associated characteristic polynomial that ensure the existence of a unique solution.

1. Introduction. Consider the kth order linear difference equation with con-
stant coefficients:

k∑
j=0

aj y(t + j) = g(t), t = 0, 1, 2, ..., a0ak �= 0 (1)

subject to boundary conditions (BC) of the form:

Initial Condition(s): y(i) = yi, i = 0, ..., k1 − 1 (2)
Final Condition(s): y(i) = yi, i = N, ..., N + k2 − 1 (3)

where k, k1, k2, and N are positive integers such that k ≥ 2, k1, k2 ≥ 1, k1 + k2 = k,
N > k1, aj ∈ C, and g : N ∪ {0} → C.

Our main objective in the present work is to characterize distributions of the
characteristic roots, i.e., the zeros of the associated characteristic polynomial of Eq.
(1):

p(λ) =
k∑

j=0

ajλ
j (4)

that ensure the existence of a unique solution of discrete boundary value problem
(DBVP) (1)-(3).

Our interest in DBVP was initiated by an open problem in [6] due to Trigiante.
In [1], the author et. al. investigated the case when all characteristic roots were
assumed to be distinct. The results obtained therein were extended in [2] for more
general boundary conditions, namely

y(ni) = yi, i = 1, ..., k, 0 = n1 < n2 < ... < nk (nk ≥ k). (5)

However, the assumption that “the characteristic roots being distinct” was kept. In
this paper, we continue our investigation of DBVP (1)-(3) and remove the assumption
that all characteristic roots are distinct. Thus, we are dealing with the most general
case of repeated characteristic roots. We believe the results that will be established
in this paper are extendable in a straight forward manner to boundary conditions of
the form (5).
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Observe that if the characteristic polynomial (4) has r ≥ 1 distinct characteristic
roots, then the general solution of Eq. (1) is given by

y(t) = yp(t) +
r∑

j=1

qj(t)zt
j , t ≥ 0

where yp(t) is a particular solution of Eq. (1), qj(t) =
∑mj−1

i=0 cjit
i is a polynomial

in t of degree mj − 1, and mj ≥ 1 is the multiplicity of characteristic root zj (see [4,
pages 63-78] for proofs and details) such that

∑r
j=1 mj = k. Applying BC (2)-(3), we

obtain: ∑r
j=1 qj(0) = y0 − yp(0)

...
...∑r

j=1 qj(k1 − 1)zk1−1
j = yk1−1 − yp(k1 − 1)∑r

j=1 qj(N)zN
j = yN − yp(N)

...
...∑r

j=1 qj(N + k2 − 1)zN+k2−1
j = yN+k2−1 − yp(N + k2 − 1)

which is a system of linear equations in which the coefficient matrix M is given by

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0
...

...
zk1−1
1 · · · (k1 − 1)k−1zk1−1

1

zN
1 · · · Nk−1zN

1
...

...
zN+k2−1
1 · · · (N + k2 − 1)k−1zN+k2−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

if r = 1

(
M1 · · · Mr

)
if r > 1

(6)

where Mj is the k × mj matrix given by

Mj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
zk1−1

j

zN
j

...
zN+k2−1

j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

if mj = 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0
...

...
zk1−1

j · · · (k1 − 1)mj−1zk1−1
j

zN
j · · · Nmj−1zN

j
...

...
zN+k2−1

j · · · (N + k2 − 1)mj−1zN+k2−1
j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

if mj > 1

(7)
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for j = 1, ..., r. Therefore, the existence of a unique solution of DBVP (1)-(3) is
equivalent to the non-singularity of the block matrix M which we call, following
Trigiante in [6], Generalized Mosaic Vandermonde Matrix.

Remark 1.1. It is worth mentioning that the forcing term g(t) appears in
the solution through yp(t). If one is interested in the existence of solutions only,
the presence of g(t) will play a crucial role in the desired condition(s). However,
the non-singularity of the matrix M restricts the effect of g(t) to the solution formula.

The present paper is organized as follows. In Section 2, we recall and establish all
needed results for the proof of our main result, Theorem 3.1 which will be established
in Section 3. In Section 4, we relate the developed conditions to the coefficients of
the given difference equation. This connection raises some related questions that are
important in their own right.

2. Preliminary Results. To establish our main result in this paper, we need
to recall the following two results:

Theorem 2.1 (Flowe and Harris [5]). Let m1, ..., mr be positive integers, �v(z) =
(1, z, ..., zm)t, m = m1 + ... + mr − 1, and A(z1, ..., zr; m1, ..., mr) = (A1 · · · Ar)
where

Aj =
(
�v(zj), · · · , �v(mj−1)(zj)

)
.

If D(z1, ..., zr; m1, ..., mr) = det(A(z1, ..., zr; m1, ..., mr)), then

D(z1, ..., zr; m1, ..., mr) =

⎛
⎝ r∏

i=1

mi−1∏
ji=0

ji!

⎞
⎠ r∏

j=2

j−1∏
i=1

(zj − zi)
mimj .

Remark 2.1. In Theorem 2.1, the convention that empty product, i.e., the upper
limit is less than the lower one, is equal 1 is adopted. Thus, if r = 1 and so m1 = k,
then D(z1; m1) =

∏m1−1
j1=0 j1!.

Theorem 2.2 (Abu-Saris and Al-Dosary [2]). If

Dk(z1, ..., zk; n2, ..., nk) = det

⎛
⎜⎜⎜⎝

1 1 · · · 1
zn2
1 zn2

2 · · · zn2
k

...
...

...
znk
1 znk

2 · · · znk

k

⎞
⎟⎟⎟⎠ ,

then

Dk(z1, ..., zk; n2, ..., nk) = Φ(z1, ..., zk)Vk(z1, ..., zk)

where

Φ(z1, ..., zk) =
∑

‖α‖=n−k(k−1)/2

aα zα, n = n2 + ... + nk
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such that

α = (α1, ..., αk), αi ∈ {0, ..., nk − k + 1}, i = 1, ..., k, ‖α‖ = α1 + · · · + αk,

zα = zα1
1 · · · zαk

k , and aα = aα1···αk
> 0.

We, also, need to establish the following two lemmas.

Lemma 2.1. If �u(z) = (zn1 , zn2 , ..., znk)t and �vj(z) =
(
nj

1z
n1, nj

2z
n2 , ..., nj

kznk

)t

,
then

�vj(z) =
j∑

�=0

1
�!

(∆�nj)|n=0 z� �u(�)(z)

Proof. First, by Newton’s forward interpolating polynomial [3, page 128]

nj =
j∑

�=0

(
n
�

)
(∆�nj)|n=0 =

j∑
�=0

(∆�nj)|n=0

�!

�−1∏
i=0

(n − i).

Therefore,

njzn =
j∑

�=0

(∆�nj)|n=0

�!
z� d�zn

dz�
.

Since (∆nj
i )|ni=0 is independent of i, the result follows.

By Lemma 2.1 and the well-known properties of determinants, we have the
following result:

Lemma 2.2. Let k, m1, ..., mr be positive integers such that m1+m2+ ...+mr =
k. Let �u(z) = (zn1 , zn2 , ..., znk)t and �vi(z) =

(
ni−1

1 zn1 , ni−1
2 zn2 , ..., ni−1

k znk
)t

.
If B = (B1 · · · Br) such that Bj = (�v1(zj) · · · �vmj (zj)), then

det(B) =

⎛
⎝ r∏

j=1

z
mj(mj−1)/2
j

⎞
⎠ det(A)

where A = (A1 · · · Ar) and Aj =
(
�u(zj), · · · , �u(mj−1)(zj)

)
.

3. An Existence and Uniqueness Theorem. Our main result on the
existence of a unique solution of DBVP (1)-(3) is stated in the next theorem.

Theorem 3.1. If zj = |zj |eiθ, j = 1, ..., r where |zi| �= |zj | whenever i �= j,
i.e., the characteristic roots are on the same ray with different moduli, then DBVP
(1)-(3) has a unique solution. In particular, if r = 1, i.e., there is one characteristic
root only, then there will always be a unique solution.



DISCRETE BOUNDARY VALUE PROBLEMS 37

Proof. First, by Lemma 2.2, we have

det(M) =

⎛
⎝ r∏

j=1

z
mj(mj−1)/2
j

⎞
⎠ E(z1, ..., zr; m1, ..., mr),

where

E(z1, ..., zr; m1, ..., mr) = det (A1 · · · Ar) ,

Aj =
(
�u(zj), · · · , �u(mj−1)(zj)

)
,

and

�u(z) = (1, ..., zk1−1, zN , ..., zN+k2−1).

Next we introduce the variables t1, ..., tk such that t1 = z1, tm1+1 =
z2, tm1+m2+1 = z3, ..., tm1+...+mr−1+1 = zr, and define the determinant:

Ẽ(t1, ..., tk) = det (�u(t1) · · · �u(tk)) ,

which, by Theorem 2.2,

Ẽ(t1, ..., tk) = Φ(t1, ..., tk) Vk(t1, ..., tk).

But (see [7, pages 97-99] for the derivative of determinants and related interesting
results),

E =
(

∂mr−1

∂mr−1tk
· · · ∂

∂tm1+...+mr−1+2

)
· · · · · ·

(
∂m1−1

∂m1−1tm1

· · · ∂

∂t2

)
Ẽ

when t1 = · · · = tm1 = z1, ......, tm1+...+mr−1+1 = · · · = tk = zr, and by the well-known
properties of determinants

Vk|t1=···=tm1=z1
= 0

∂j3

∂tj33

∂j2

∂tj22
Vk

∣∣∣∣∣
t1=···=tm1=z1

= 0 if j3 < 2, and for all j2 ≤ 1

∂j4

∂tj44

∂j3

∂tj33

∂j2

∂tj22
Vk

∣∣∣∣∣
t1=···=tm1=z1

= 0 if j4 < 3, and for all j3 ≤ 2, j2 ≤ 1

...
...

Therefore, differentiating Ẽ appropriately, and substituting t1 = · · · = tm1 = z1, ......,
tm1+...+mr−1+1 = · · · = tk = zr, one can see that all terms obtained from differentia-
tion vanish, except

Φ
(

∂mr−1

∂mr−1tk
· · · ∂

∂tm1+...+mr−1+2

)
· · · · · ·

(
∂m1−1

∂m1−1tm1

· · · ∂

∂t2

)
Vk︸ ︷︷ ︸

D(z1,...,zr;m1,...,mr)

.
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Now, suppose that zj = |zj | eiθ, j = 1, ..., r where |zi| �= |zj | whenever i �= j.
Then, by Theorem 2.1,

Ek(z1, ..., zr) = ei[n+‖α‖]θ︸ ︷︷ ︸
�=0

Φ(|z1|, ..., |zr|)︸ ︷︷ ︸
>0

D(|z1|, ..., |zr|)︸ ︷︷ ︸
�=0

�= 0.

where n =
∑r

j=2

∑j−1
i=1 mimj . This completes the proof.

We illustrate the applicability and limitation of Theorem 3.1 by the following
examples. In the first two examples the conditions of Theorem 3.1 are applicable
whereas in the last one they are not.

Example 3.1. The difference equation

y(t + 4) − 5y(t + 3) + 9y(t + 2) − 7y(t + 1) + 2y(t) = 0

has the characteristic polynomial

p(λ) = (λ − 1)3(λ − 2).

Since z1 = 1 and z2 = 2 are both positive real numbers, a unique solution
can always be constructed given any set of boundary conditions as described in (2)-(3).

Example 3.2. The difference equation

y(t + 5) − 7i y(t + 4) − 19 y(t + 3) + 25i y(t + 2) + 16 y(t + 1) − 4i y(t) = 0,

where i =
√−1 has the characteristic polynomial

p(λ) = (λ − i)3(λ − 2i)2.

Once more, since z1 = i and z2 = 2i are both on the positive imaginary axis, a
unique solution can always be constructed given any set of boundary conditions as
described in (2)-(3).

Example 3.3. Consider the DBVP

y(t + 2) − 4y(t) = 0, y(0) = y0, y(N) = yN .

Since the characteristic polynomial is

p(λ) = λ2 − 4,

the characteristic roots are z1 = 2 and z2 = −2. Thus Theorem 3.1 is not applicable.
However,

y(t) = c12t + c2(−2)t,

and so a solution exists if and only if the system(
1 1
2N (−2)N

) (
c1

c2

)
=

(
y0

yN

)

is consistent. This implies that, if N is odd, then a unique solution is guaranteed to
exist. On the other hand, if N is even, then a solution exists if and only if yN = 2Ny0,
in which case the solution is not unique.
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4. Conditions on the Coefficients. In applying Theorem 3.1, one may face
a difficulty in determining the characteristic roots when the degree of the charac-
teristic polynomial is higher than or equal to 5. Therefore, it is worth formulating
the existence and uniqueness conditions in terms of the coefficients aj , j = 0, ..., k−1.

The following two lemmas furnish a prelude for one possible approach in this
direction. The first lemma asserts that it is enough to investigate polynomials with
positive roots. The second one establishes necessary and / or sufficient conditions for
a polynomial to have positive roots.

Lemma 4.1. Suppose that bj = aj ei(k−j)θ0 . Then All zeros of the polynomial
q(λ) = λk +

∑k−1
j=0 bjλ

j lie on the ray Arg(z) = θ0, |z| > 0 if and only if the zeros of

p(λ) = λk +
∑k−1

j=0 ajλ
j are positive.

Proof. Suppose that the zeros of the polynomial q are given by z� = |z�| eiθ0 , � =
1, ..., k. Then

0 = q(|z�| eiθ0) = |z�|k eikθ0 +
k−1∑
j=0

bj |z�|j ei(jθ0) = ei kθ0

⎛
⎝|z�|k +

k−1∑
j=0

bj |z�|je−i(k−j)θ0

⎞
⎠

= ei kθ0

⎛
⎝|z�|k +

k−1∑
j=0

aj |z�|j
⎞
⎠ = p(|z�|).

Hence, the result follows.

Lemma 4.2.
(a) Suppose that all zeros of the polynomial p(λ) = λk +

∑k−1
j=0 ajλ

j are positive. Then
(−1)jak−j > 0 for j = 0, ..., k − 1, i.e., the coefficients have to alternate
in sign.

(b) Suppose that all the zeros of the polynomial p(λ) = λk +
∑k−1

j=0 ajλ
j are nonzero

and real. Then all of them are positive if and only if the coefficients alternate
in sign.

Proof. Part (a) follows immediately from the fact that

aj = (−1)k−j
∑

‖α‖=k−j

zα

where z1, ..., zk are the zeros of p(λ), and Part (b) follows from the fact that
polynomials with alternating coefficients can’t have negative real roots.

Using Theorem 3.1, Lemma 4.1, and the discriminant formulas for quadratic and
cubic polynomials [8, pp. 72-82], we have the following corollary.

Corollary 4.1.
(i) If a < 0, b > 0 and a2 − 4b ≥ 0, then the DBVP

y(t + 2) + a y(t + 1) + b y(t) = g(t), y(0) = y0, y(N) = yN

has a unique solution.
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(ii) If a < 0, b > 0, c < 0 and a2 b2 − 4 b3 − 4 a3 c − 27 c2 + 18 a b c ≥ 0, then the
DBVPs

y(t + 3) + a y(t + 2) + b y(t + 1) + c y(t) = g(t),
y(0) = y0, y(1) = y1, y(N) = yN (N > 2)

and

y(t + 3) + a y(t + 2) + b y(t + 1) + c y(t) = g(t),
y(0) = y0, y(N) = yN , y(N + 1) = yN+1 (N > 1)

have unique solutions.
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