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THE CAHN-HILLIARD’S EQUATION WITH BOUNDARY

NONLINEARITY AND HIGH VISCOSITY ∗

ROBERT WILLIE†

Abstract. The paper studies in less general scales of Banach spaces the dynamics generated
by a Cahn-Hilliard type equation in a smooth open bounded domain of any space dimensions. The
equation on the boundary satisfy nonlinear conditions. It establishes local well posedness of the
problem and a priori uniform on the domain boundedness and existence in the large of the solutions
is studied. It also discusses the asymptotic behaviour of the solutions in the form of existence of a
global attractor. An adequate notion of upper semicontinuity of the attractor in the limit of high
viscosity is considered and the limit attractor is found to correspond to finite dimensional processes.
These processes are depicted by limits of the spatial average solutions of the problem.

1. Introduction. In this paper, we study the dynamics of solutions in extended
scales of Hilbert spaces generated by a fourth order nonlinear parabolic problem

(1) ut + Div((d(x)∇3 + ∇)u) = f(u,∇u,∆u) in Ω, t > 0

where Ω ⊂ IRN , N ≥ 1 is an open bounded convex domain with smooth bound-
ary ∂Ω = Γ. The equation is supplemented by nonlinear boundary flux and initial
conditions of the form

(2) ∂�nd
∆u = g(u,∇u), ∂�nd

u = 0 on Γ and u(0) = u0 in Ω,

where d : Ω �−→ IR+ \{0} is uniformly continuous and denote the viscosity coefficient.
The notation

∂�nd
· = 〈d(x)∇·, �n〉 with �n the exterior unit normal vector at Γ,

denote the boundary derivative operator of the principal spatial differential operator
in (1). In the domain the nonlinearity

(3) f(u,∇u,∆u) = 6u|∇u|2 + 3u2∆u,

complement the physical relevant nonlinearity ϕ(u) = ∆(u3 − u) in the sense that
f(u,∇u,∆u) − ∆u = ϕ(u). The boundary nonlinearity is assumed of class C1 and
satisfy, either no growth assumptions or behavior of the type

|g(u1,∇u1) − g(u2,∇u2)|

≤ C



1 +
∑

j=1,2

|∇kuj |
ρ−1



 |u1 − u2| for k = 0, 1(4)

and ρ ≥ 1 verifying, if N = 4 then ρ < ∞ and if N ≥ 5 we have

(5) ρ ≤
N + 8α − 3

N − 8α + 1
where 3/4 > α ≥ 1/2,
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thither C ≥ 0 denote any generic constant.
Let us notice that, if in (1)-(2) unit viscosity constant and homogeneous boundary

conditions are assumed, the equations are standard of Cahn-Hilliard. Excellent refer-
ences on the physical background and current state of art of the standard equations
(1)-(2) with zero boundary conditions can be found in [9, 13, 22, 24]. Although not ex-
haustive we have provided bibliography where nonlinear parabolic problems with high
viscosity (large diffusion) has been studied before. The main objective of this paper
is to give a dynamical study of the equations (1)-(2) in less general [6, 12, 16, 18, 19]
scales of Banach spaces.

Now we can outline the structure of the paper. It is organized as follows. In Sec-
tion 2, we give the most needed preliminaries and formulate our problem in evolution
sense. In Section 3, we prove local well posedness of the problem in extended scales
of Hilbert spaces. In Section 4, we study a priori supremum norm boundedness and
existence in the large of the solutions of the equations (1)-(2) in Ω ⊂ IRN , N ≥ 4. In
Section 5, we discuss the existence of a global attractor of the equation. The affirma-
tive case is found in N ≤ 3, while the remaining is non conclusive. This is because
from the preceeding Section 4, we can not claim C1(Ω) regularity and boundedness
for all positive time of the solution to the problem, which otherwise would enable us
to have suitable reductions on the behaviors of the nonlinearities. The last Section 6,
prove only in the case of the domain of the equation in N ≤ 3 dimensions, the upper
semicontinuity in the limit of high viscosity of the attractor. The limit attractor is
of a finite dimensional equation. It attracts limit processes corresponding to the ones
defined in the spatial average solutions of the problem.

2. Preliminaries. Throughout the paper, we assume familiarity with the no-
tions of Sobolev spaces [1, 5, 14] and of general scales of Banach spaces [2, 12, 13, 19]
defined by sectorial elliptic differential operators (A,D(A)) in Lp(Ω), 1 ≤ p ≤ ∞ such
that

Xα ∼= D(Aα), D(A) = X1 ⊂ Wm,p(Ω),m ≥ 1

with continuous inclusions and 0 ≤ α ≤ 1. For technical embeddings and interpola-
tions results between these spaces, see [12, 19].

2.1. The elliptic operator. Let us now, consider the stationary problem of
(1)-(2) and define the bilinear form ad : H2(Ω) × H2(Ω) �−→ IR by

(6) ad(u, ϕ) =

∫

Ω

d(x)∆u∆ϕ −

∫

Ω

∇u∇ϕ.

Then, it is easy to see that (6) is symmetric and continuous. Further, if high viscosity
is assumed then we also have coercivity in H2(Ω). Thus Lax-Milgram’s Theorem
[5, 14] is satisfied. This imply that the bilinear form (6) define an isomorphism
Ldu ∈ H−2(Ω) as follows:

for each u ∈ H2(Ω) ⇒ ad(u, ϕ) = 〈Ldu, ϕ〉, ∀ϕ ∈ H2(Ω).

Moreover, the restriction Ldu ∈ L2(Ω) define an elliptic operator Ad : D(Ad) ⊂
L2(Ω) �−→ L2(Ω) with realization

D(Ad) =
{

u ∈ H2(Ω) : Adu = Div((d(x)∇3 + ∇)u) ∈ L2(Ω)(7)

and ∂�nd
∆u = ∂�nd

u = 0 on Γ} ,
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and such that Ldu = Adu for all u ∈ D(Ad). It is well known [12, 14, 13] that Ad

is a sectorial operator in L2(Ω) and its resolvent is a compact set as an operator in
L2(Ω). Hence [12, 16, 18], the extended scales of Hilbert spaces D(Aα

d ) = Xα
d , α ∈ IR

are well defined and endowed with the graph norm

‖Aα
d u‖0 = ‖u‖α, ∀u ∈ Xα

d , α ∈ IR.

In particular, we have

X1
d
∼= D(Ad), X

1/2
d

∼= H2(Ω), X0
d
∼= L2(Ω), and X

−1/2
d

∼= H−2(Ω).

2.2. The evolution equation. Now we derive a formal evolution equation of
the equations (1)-(2) in functional spaces. For this it suffices to observe that in terms
of adequate test functions, we can rewrite the Cahn-Hilliard’s equation (1)-(2) in the
form

(8)
ut + Ldu = h(u,∇u,∆u), t > 0

u(0) = u0 ∈ Xβ
d ,

where −1/4 ≥ β ≥ −1/2. The nonlinear form h(u,∇u,∆u) ∈ H−2(Ω) is given and
defined by

(9) 〈h(u,∇u,∆u), ϕ〉 =

∫

Ω

f(u,∇u,∆u)ϕ +

∫

Γ

g(u,∇u)ϕ,

for any ϕ ∈ H2(Ω). In prespective, our study of the dynamics of the equations (1)-
(2) shall be based on the evolution equation (8). In the following section, we shall
investigate its local well posedness.

3. Local well posedness. In this section, we study local existence and unique-
ness of solutions of the equations (1)-(2), in the extended scales of Hilbert spaces
Xα

d , α ∈ IR. The main theorem conclude the following.

Theorem 3.1. Consider the nonlinear evolution problem (8) and assume for
domain in space dimensions N = 1, 2, 3 that 1 ≥ α > 3/4 and if N ≥ 4 that α ∈ IR+

satisfy 1/2 ≤ α ≤ 3/4. Then, the problem (8) is locally well posed and the unique
strong solution is given by

(10) ud(t) = e−Ldtu0 +

∫ t

0

e−Ld(t−s)h(u(s),∇u(s),∆u(s))ds.

In addition satisfy that ud ∈ C((0, T ), Xα
d )∩C1((0, T ), Xγ

d ) for any γ < β +1 and the
mapping t �−→ ud(t) ∈ Xα

d is locally Hölder continuous. Moreover, in the sense of dis-
tributions and almost everywhere in time, we have the equivalence of the formulations
(8) and the equations (1)-(2).

Proof. It suffices to prove that the nonlinear mapping

(11) Xα
d ∋ u �−→ h(u,∇u,∆u) ∈ Xβ

d

for −1/4 ≥ β ≥ −1/2 is locally Lipschitz continuous on bounded subsets. For this we
note that from (3) we have

|f(u,∇u,∆u) − f(w,∇w,∆w)|

≤ 6|u − w||∇u|2 + 6|w|||∇u|2 − |∇w|2| +

+ 3|u2 − w2||∆u| + 3|w|2|∆(u − w)|

≤ 6|∇u|2|u − w| + 6|w||∇(u − w)| (|∇u| + |∇w|) +

+ 3|∆u||u + w||u − w| + 3|w|2|∆(u − w)|.
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Next we observe that, by virtue of embeddings of the general scales of Banach spaces
generated by sectorial elliptic operators in Lp spaces into Sobolev’s spaces [12, 19] we
deduce

(12) Xα
d ⊂ Ck(Ω) for k = 1 if N = 1, 2, 3.

Consequently, there exists Lf = L(‖ϕ‖∞, ‖∇ϕ‖∞, ‖∆ϕ‖∞) ≥ 0 where ϕ ∈ Xα
d is

either u or w excluding the single validity of the variable, such that the mapping
ϕ �−→ f(ϕ,∇ϕ,∆ϕ) ∈ L2(Ω) is Lipschitz continuous.

Now in the case N ≥ 4, we note that the general scales of Banach spaces-Sobolev’s
type inclusions [12, 19] imply that

Xα
d ⊂ Lq(Ω) if q ≤ 2N

N−8α and X
α−1/2
d ⊂ Lr(Ω) if r ≤ 2N

N+4−8α

where q, r ≥ 2. Moreover 2
q + 2

r ≤ 1 thus Hölder’s inequality yields that

∫

Ω

|f(u,∇u,∆u) − f(w,∇w,∆w)|2

≤ 24 × 36
(

‖∇u‖4
r‖u − w‖2

q + ‖w‖2
q‖∇(u − w)‖2

r×

×
(

‖∇u‖2
r + ‖∇w‖2

r

))

+

+ 24 × 9
(

‖∆u‖2
r(‖u‖

2
q + ‖w‖2

q)‖u − w‖2
q +

+ ‖w‖4
q‖∆(u − w)‖2

r

≤ 24 × 36C
(

‖u‖2
α + ‖w‖2

α

)2
‖u − w‖2

α,

and hence on bounded subsets of Xα
d , 1/2 ≤ α ≤ 3/4 we have the nonlinear mapping

(3) is again Lispchitz continuous.

Let us now consider the boundary nonlinearity. We remark that in the case
N = 1, 2, 3 the Lipschitz continuity is trivial, since g ∈ C1 and from the general scales
of Banach spaces-Sobolev type embeddings we have the inclusions (12) are satisfied.
It therefore only remains to prove in the case N ≥ 4. To this end, let ρ > 0 be as in
(5) and set 1

σ + 1
ρ = 1. Then, using Hölder’s inequality and the following

(13) (a + b)p ≤ 2p(ap + bp), p > 0, a, b ≥ 0

it follows for any u1, u2 ∈ Xα
d ,with 1/2 ≤ α ≤ 3/4 satisfying ‖uj‖α ≤ r,j = 1, 2 from

(4) that

∫

Γ

|g(u1,∇u1) − g(u2,∇u2)|
σ

≤ 23σCσ





∫

Γ

|u1 − u2|
σ +

∫

Γ

∑

j=1,2

|∇kuj |
(ρ−1)σ|u1 − u2|

σ





≤ 23σCσ(|Γ|
1
σ )σ



1 +
∑

j=1,2

(∫

Γ

|∇kuj |
ρ+1

)
ρ−1
ρ+1 σ



 ×

×

(∫

Γ

|u1 − u2|
ρ+1

)
σ

ρ+1

, k = 0, 1.
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In subsequence to the above, we use the inclusions Xα
d ⊂ Lρ+1(Γ) and since Lσ(Γ) ⊂

Xβ
d , −1/4 ≥ β ≥ −1/2, there exists µ : IR2 �−→ IR+ continuous and increasing such

that

Lg = 23C|Γ|
1
σ µ(‖u1‖

ρ−1
α , ‖u2‖

ρ−1
α ) ≥ 0

is the local Lipschitz continuity constant of the nonlinear mapping Xα
d ∋ u �−→

g(u,∇u) ∈ Xβ
d and the desired result is obtained. Now we can apply abstract semi-

group theory results [12, 18, 19, 20] to obtain the conclusions of the theorem including
the regularity stated. The rest is evident and our proof is complete.

4. Supremum norm on Ω smoothness. In this section, we study the existence
of a priori uniform in the domain bounds for all positive time of the solution to the
problem (8), in the case N ≥ 4. It is well known [13], that these estimates are available
in the case N ≤ 3 via Sobolev embeddings and W k,p estimates, when in general the
nonlinear term in the domain, comes from a polynomial of odd degree

(14) ϕ(ξ) =

2q−1
∑

k=0

akξk, a2q−1 > 0

or when ϕ has a nonnegative primitive function and the representation f(ξ,∇ξ,∆ξ)
= ∆ϕ(ξ). This is rather simple for N = 1, 2. If N = 3, a priori estimates guaranteeing
existence in the large follow from nontrivial interpolation estimates [24] p.154-158.
The method we employ in the proof of the following theorem, is the Moser iteration
technique [3, 15, 26].

Theorem 4.1. Consider the nonlinear evolution problem (8) and assume in
addition that the initial data is uniformly bounded on Ω. Assume that

(15) ud(t, u
0
d) ∈ Lr(Γ) where r > (N − 1)(ρ − 1),

is bounded uniformly for t ∈ (0, T ). Then ud(t, u
0
d) ∈ Xα

d with α ∈ IR+ such that
1/2 ≤ α ≤ 3/4, satisfy

(16) sup
Ω

|ud(t, u
0
d)| ≤ C, ∀t ≥ 0.

Proof. We carry out the demostration of Theorem 4.1 in phases. Our first lemma
assert the following.

Lemma 4.2. The solution of the problem (8) satisfy in an almost everywhere
sense in time, the differential inequality

d

dt

∫

Ω

|u|r+1 + β

∫

Ω

|∆|u|
r+1
2 |2 ≤ cte

∫

Ω

|u|r+1 + cte

where cte ≥ 0 denote some postive constant, β > 0,and r ≥ 1.

Proof. Consider the problem (8) and in the inner product of L2(Ω) with |u|r−1u ∈
H2(Ω) for r ≥ 1. Then, integrating by parts we obtain that

d

2dt

∫

Ω

||u|
r+1
2 |2 +

2r

(r + 1)2

(∫

Ω

d(x)|∆|u|
r+1
2 |2 − 2

∫

Ω

|∇|u|
r+1
2 |2

)

≤ 6r

∫

Ω

|∇u|2|u|r+1 + C

∫

Γ

|∇u|ρ−1|u|r+1 +

+ C

∫

Γ

|u|ρ+r + C

∫

Γ

|u|r+1.(17)
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Now we estimate above (17). Since r ≥ 1 imply 2r ≥ 2 and r + 1 ≥ 2, then Hölder
and Young’s inequalities imply

6r

∫

Ω

|∇u|2|u|r+1 ≤ 6r3

(∫

Ω

|∇|u|
r+1
2 |

2(r+1)
r−1

)
r−1
r+1

(∫

Ω

|u|r+1

)
2

r+1

≤ 3r4

∫

Ω

|∇|u|
r+1
2 |

2(r+1)
r−1 + 6r3

∫

Ω

|u|r+1

≤ 3r4C

(∫

Ω

|∆|u|
r+1
2 |2 + |∇|u|

r+1
2 |2

)

θ(r+1)
(r−1)

×

×

(∫

Ω

|∇|u|
r+1
2 |2

)

(1−θ)(r+1)
r−1

+ 6r3

∫

Ω

|u|r+1,

where the third estimate follows an application of Nirenberg-Gagliardo’s inequality

[12, 19] with θ = N
2 − N(r−1)

2(r+1) .

Now successively we use Young’s inequality in [5] pp.56, let 1
s + 1

s′
= 1 then

(18) ab ≤ εas + Cεb
s′

, with a, b ≥ 0, 0 < ε < 1, Cε = ε−
1

s−1 .

Let ε = ε(δ) > 0 be adequately chosen with δ > 0 sufficiently small. Then it follows
that

6r

∫

Ω

|∇u|2|u|r+1 ≤ 2δ

∫

Ω

(

|∆|u|
r+1
2 |2 + |∇|u|

r+1
2 |2

)

+ 6r3

∫

Ω

|u|r+1 + Cδ.(19)

Similiarly, if σ = r+1− (r−1)(ρ−1)
2 > 0. We have using Hölder and Young’s inequalities

that

C

∫

Γ

|∇u|ρ−1|u|r+1 ≤ C

(∫

Γ

|∇|u|
r+1
2 |

2(r+1)
r−1

)

(r−1)(ρ−1)
2(r+1)

(∫

Γ

|u|r+1

)
σ

r+1

≤ ρrC

∫

Γ

|∇|u|
r+1
2 |

2(r+1)
r−1 + rC

∫

Γ

|u|r+1

≤ ρrC

(∫

Ω

|∆|u|
r+1
2 |2 + |∇|u|

r+1
2 |2

)

θ(r+1)
(r−1)

×

×

(∫

Ω

|∇|u|
r+1
2 |2

)

(1−θ)(r+1)
r−1

+ rC

∫

Γ

|u|r+1

where the last estimates follow from Nirenberg-Gagliardo’ s inequality [12, 19] with

θ = N
2 − (N−1)(r−1)

2(r+1) . Thus, a repeated application of Young’s inequality (18) yield

C

∫

Γ

|∇u|ρ−1|u|r+1 ≤ 2δ

∫

Ω

(

|∆|u|
r+1
2 |2 + |∇|u|

r+1
2 |2

)

+ rC

∫

Γ

|u|r+1 + Cδ(20)

But, by virtue of Nirenberg-Gagliardo’s inequality in [15] for Lp functions on Γ and
Young’s (18) we find if ε(δ) = δ

rC that

(21) rC

∫

Γ

|u|r+1 ≤ δ

∫

Ω

|∇|u|
r+1
2 |2 + rC

∫

Ω

|u|r+1.
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Consequently

C

∫

Γ

|∇u|ρ−1|u|r+1 ≤ 3δ

∫

Ω

(

|∆|u|
r+1
2 |2 + |∇|u|

r+1
2 |2

)

+ rC

∫

Ω

|u|r+1 + Cδ.(22)

It only remains the third term in (17). Thanks to references in [26] we have, if r ≥ 1 is
as in (15) then there exists θ > 0 such that r = (N −1)(ρ−1)+θ and Nakao-Hölder’s
inequality imply

(23)

∫

Γ

|u|ρ+r ≤

(∫

Γ

|u|
(r+1)(N−1)

N−2

)Θ1
(∫

Γ

|u|r
)Θ2

(∫

Γ

|u|r+1

)Θ3

where

Θ1 =
(N − 2)(ρ − 1)

(N − 1)(ρ − 1) + θ
, Θ2 =

ρ − 1

(N − 1)(ρ − 1) + θ

and Θ3 =
θ

(N − 1)(ρ − 1) + θ
.

Thus the continuity of the inclusions H1(Ω) ⊂ LΘ(Γ) with Θ = 2(N−1)
N−2 conclude that

∫

Γ

|u|ρ+r ≤ C

(∫

Ω

|∇|u|
r+1
2 |2 +

∫

Ω

(|u|
r+1
2 )2

)

(N−1)Θ1
N−2

(∫

Γ

|u|r
)Θ2

×

×

(∫

Γ

|u|r+1

)Θ3

.(24)

Since (N−1)Θ1

N−2 + Θ3 = 1, we can use Young’s inequality (18) and the hypothesis (15)
imply that

rC

∫

Γ

|u|ρ+r ≤ δ

(∫

Ω

|∇|u|
r+1
2 |2 +

∫

Ω

(|u|
r+1
2 )2

)

+

+ r
1

Θ3 C
2(ρ−1)

θ

∫

Γ

|u|r+1.(25)

Now arguing as after (20) we obtain Cε(δ) = C
ε(δ) > 0 for ε(δ) =

(

r
1

Θ3 C
2(ρ−1)

θ

)−1

δ

such that

rC

∫

Γ

|u|ρ+r ≤ 2δ

(∫

Ω

|∇|u|
r+1
2 |2 +

∫

Ω

(|u|
r+1
2 )2

)

+

+ r
2

Θ6 C
2(ρ−1)

θ

∫

Ω

|u|r+1.

Grouping all the above in (17) and without loss of exactness we find the differential
inequality

(26)
d

dt

∫

Ω

|u|r+1 + β

∫

Ω

|∆|u|
r+1
2 |2 ≤ (rC)σ1

∫

Ω

|u|r+1 + rC
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where β = infΩ d(x) − c(δ) > 0 , σ1 = σ(N, ρ,Θj , θ) > 0,j = 1, 2, 3 and the desired
result is proved.

Lemma 4.3. Let ri = 2i, i ≥ 1 and define yi(t) =
∫

Ω
|u|ri+1 then

(27) yi(t) ≤ C(riC)σ

(

K(ri−1+1)si + ( sup
t∈(0,T )

yi−1(t))
si

)

,

for some σ > 0, where si = ri+1
ri−1+1 and K = K(‖uε

0‖∞) ≥ 0.

Proof. Consider the differential inequality (26). If ri = 2i, i ≥ 1 define

Θi =
2(ri + 1)

N(ri + 1) − (N − 2)(ri−1 + 1)
and Θ′

i = 1 − Θi.

Then, Hölder’s inequality and Sobolev’s embeddings conclude

∫

Ω

|u|ri+1 ≤

(∫

Ω

|u|
N(ri+1)

N−2

)Θ′

i
(∫

Ω

|u|ri+1

)Θi

≤ C

(∫

Ω

(|u|
ri+1

2 )2 +

∫

Ω

|∇|u|
ri+1

2 |2
)

NΘ′

i
N−2

(∫

Ω

|u|ri+1

)Θi

.

Further,
NΘ′

i

N−2 < 1 using Young’s inequality (18) we get

(riC)σ1

∫

Ω

|u|ri+1 ≤ δ

(∫

Ω

(|u|
ri+1

2 )2 +

∫

Ω

|∇|u|
ri+1

2 |2
)

+

+ (riC)σ

(∫

Ω

|u|ri−1+1

)si

(28)

where si = ri+1
ri−1+1 and σ = σ1(N + 2)/2 ≥ σ1(Nri−1 + ri + 2)/(ri + 2). Consequently

in (26) on setting yi(t) =
∫

Ω
|u|ri+1 we obtain

dyi

dt
+ βyi ≤ (riC)σ(yi−1 + 1)si

for some β = β(C, η) > 0, without loss of generality C ≥ 1 and we have used [23]
Theorem 11.11. It is easy to see, the inequality solve as

yi(t) ≤ C(riC)σ

(

yi(0) + 1 + ( sup
t∈(0,T )

yi−1(t))
si

)

.

But, by hypothesis on the initial data there is K = K(‖uε
0‖∞) > 0 such that yi(0)+1 ≤

K(ri−1+1)si . Hence we obtain (27) and the proof of the lemma is complete.

Lemma 4.4. The general iteration scheme of (27) for i = k ≫ 1 large is bounded
above independent of k ≫ 1 in terms of

sup
t∈(0,T )

∫

Ω

|u|2,

consequently, the solution of the problem (8) satisfy (16).
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Proof. Consider the iterative inequality (27) and observe that if i = 1, then

(29) y1(t) ≤ C(2C)σK2s1 + C(2C)σ

(

sup
t∈(0,T )

∫

Ω

|u|2

)s1

.

Inductively the iterative process, for i = 2 and using the elementary inequality (13)
which we rewrite here for convenience

(30) (a + b)p ≤ 2p(ap + bp) for a, b ≥ 0, p > 0,

we get that

y2(t) ≤ (2C)1+s2(2C)2σ+2σs2K2s1s2 +

+ (2C)1+s2(2C)2σ+2σs2

(

sup
t∈(0,T )

∫

Ω

|u|2

)s1s2

.(31)

Similarly as for (31) we conclude in the third iteration ,

y3(t) ≤ (2C)1+2s3+2s2s3(2C)3σ+2σs3+σs2s3K2s1s2s3 +

+ (2C)1+2s3+2s2s3(2C)3σ+2σs3+σs2s3

(

sup
t∈(0,T )

∫

Ω

|u|2

)s1s2s3

.

We now deduce, in general, the inductive process, for arbitrary i = k ≥ 3 furnishes
that

yk(t) ≤ (2C)1+2sk+2sk−1sk+...+2s2s3...sk ×

× (2C)kσ+(k−1)σsk+...+σs2s3...skK2s1s2...sk +

+ (2C)1+2sk +2sk−1sk+...+2s2s3...sk ×

× (2C)kσ+(k−1)σsk+...+σs2s3...sk

(

sup
t∈(0,T )

∫

Ω

|u|2

)s1s2s3...sk

≤ (2C)2Ak(2C)σBkK2χk + (2C)2Ak(2C)σBk

(

sup
t∈(0,T )

∫

Ω

|u|2

)χk

where χk = sk . . . s1 ≤ rk+1
2 and

Ak = 1 + sk + sksk−1 + . . . + sksk−1 . . . s1 ≤ (rk + 1)

∞
∑

i=0

1

ri + 1
,

Bk = k + (k − 1)sk + (k − 2)sksk−1 + . . . + sksk−1 . . . s1 ≤ (rk + 1)

∞
∑

i=1

i

ri + 1
.

Since ri = 2i we have the above series converge and it follows

yk(t) ≤

(

(2C)2ω1(2C)σω2K + (2C)2ω1(2C)σω2 sup
t∈(0,T )

(∫

Ω

|u|2
)1/2

)rk+1

≤

(

(2C)2ω1(2C)σω2K

(

sup
t∈(0,T )

(∫

Ω

|u|2
)1/2

+ 1

))rk+1
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where ω1 =
∑∞

i=1
1

ri+1 and ω2 =
∑∞

i=1
i

ri+1 .
Passing the power index rk + 1 to the left and taking up limits as k → ∞ ,we

obtain

sup
Ω

|u(t, u0)| ≤ lim
k→∞

(∫

Ω

|u|rk+1

)
1

rk+1

≤ (2C)2ω1(2C)σω2K

(

sup
t∈(0,T )

(∫

Ω

|u|2
)1/2

+ 1

)

for all t ≥ 0. This therefore complete the proof of our lemma.

In conclusion, combining all the above lemmas we obtain the proof of our core
Theorem 4.1.

Let us remark that, even though the solution to the equation (8) and its time
derivative are spatially differentiable almost everywhere in the function spaces, see
Theorem 3.1 and we can consider the problem defined by ϕ = ∇u. Thus seems likely
that under appropriate boundedness hypotheses of the data and of the solution of
the new auxiliary problem, test functions of the form |∇u|r−1∇u,r ≥ 1 will yield
an integral differential inequality of the type (26) for gradient ∇u of the solution.
However, in this approach there appear an important sign problem in the initial
integral differential inequality of the form (17), which make the method of the proof
of Theorem 4.1 obsolescent for proving a priori first order continuously differentiable
smoothness on Ω and existence in the large of the solutions to the problem (8).

5. The universal attractor. In this section, we discuss the asymptotic be-
haviour for long time of the solutions to our problem (1)-(2) in the form of existence
of a global attractor. Such dynamical structures for equations of pattern formation
have been studied before [7, 8, 9, 17, 24]. Our aim here is to provide an analogueous
study but in extended scales of Hilbert spaces. The main theorem of the section assert
the following.

Theorem 5.1. The nonlinear semigroup generated by the evolution equation (8)
in the scales for 1 ≥ α > 3/4 has a global compact attractor Ad ⊂ Xα

d , and the limit
set ω(u0) ⊂ Ad.

Proof. It suffices to observe that the local semigroup generated by (8) is bounded
dissipative independent of the initial data in bounded subsets B ⊂ Xα

d ,1 > α > 3/4,
uniformly in t > 0.

Thus using [19] Theorem 7.9, we get the orbit {ud(t, u0) : t > 0} is relatively com-
pact in Xα

d ,1 > α > 3/4. Moreover, using [10] or [8] Theorem 1 we conclude there is a
subset Ad ⊂ Xα

d ,1 > α > 3/4, attracting each point in B. This is true, since using (10)

we have the semigroup is point dissipative. As the ω-limit set ω(u0) = ∩t≥τ{ud(t, u0)},
for any τ > 0, is connected, compact, invariant and minimal attractive set, we must
have it contained in Ad. This completes the proof of the theorem. Let us com-

ment that in the case of homogeneous boundary conditions to (8), the attractor has
a special form [8, 9]

Ad = {ϕ ∈ Xα
d : |ϕΩ| ≤ b, b > 0}, where ϕΩ =

1

|Ω|

∫

Ω

ϕ

and is not an attractor in the sense of [10] p. 17 as the stationary problem contains
an arbitrary constant function, hence unbounded in Xα

d .
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Technically the existence of an attractor in the case N ≥ 4 is delicate. This is due
to insufficient uniform continuously differentiable smoothness in the closed domain
and boundedness up to maximum time of existence of solutions to the evolution
equation (8). The need of these is that they render controllability in the sense of
estimates on the nonlinearities. For in an alternative approach, we concretely compute
the primitive function to the complement of the physical relevant nonlinearity in the
domain, and associate to the equation the energy functional

Jd(u) =
1

2

(∫

Ω

d(x)|∆u|2 −

∫

Ω

|∇u|2
)

−

∫

Ω

(|u∇u|2∆u + u3∇u|∆u|2) −

∫

Γ

G(u,∇u),(32)

where

G(u,∇u) =

∫ ∇u

0

∫ u

0

g(r, s)drds.

Then we show (32) is of Liapunov for the evolution process in (8). Thus, we would

conclude of immediate bounded dissipativeness of the solution in X
1/2
d and the method

in [7] ( also has been used in [28]) is applicable for the existence of an attractor. The
approach of [7] in the otherwise fails due to the lack of an adequate notion of dissipative
conditions for strongly dependent on arguments vector valued nonlinearities of the
type to our problem. It is the point dissipative property of the semigroup generated
by the dynamical system of the equation that we cannot assert. Thus, in concrete we
do not know whether the nonlinear semigroup generated by solutions to (8) has an
attractor when the equations (1)-(2) are defined in a smooth open bounded domain
Ω ⊂ IRN for N ≥ 4 space dimensions.

6. Convergence of Attractors. The upper semicontinuity of attractors in the
limit case of high viscosity has been a theme of study in the last two and half decades.
The main problems so far exhausted have been second order parabolic and hyperbolic
equations. Of most recent, situations have included nonlinear boundary conditions,
localized high viscosity in the domain and the asymptotic behavior of the inertial
manifold, see for examples the references at the end of paper.

We now study the convergence of attractors as d = infΩ{d(x)} → ∞ in the equa-
tion (8). This limit phenomenon of high viscosity in the equation has the effect of
stablizing all spatial inhomogeneities. In such a way that there is homogenization
to a constant function in Ω of solutions to the problem. This conclusion holds from
previously known results in second order nonlinear parabolic problems. It is recon-
firmed here in the subsequent lines for a fourth order equation (1)-(2). In particular,
if homogeneous boundary conditions in (2) are considered, the limit solution describe
limit processes of the mass conservation in time property, i.e

ud(t) = −

∫

Ω

ud = u0
d, t ≥ 0.

Our first theorem of the section state the following.

Theorem 6.1. Consider the nonlinear evolution problem (8) and let ud(t) ∈ Xα
d

for any α < 1 a.e in time, denote its solution. Denote by

(33) uΩ = |Ω|−1uχΩ ∈ L1(Ω), where χX =

{

1 if x ∈ X
0 otherwise,
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and assume the differential equation

(34) u̇Ω = hΩ(u), uΩ(0) = u0
Ω ∈ IR

where hΩ(u) = |Γ|
|Ω|g(u, 0)χΓ ∈ L1(Γ) is satisfied. Then

lim
d→∞

sup
t>0

∫

Ω

|∇ud|
2 = 0 and ud(t, u

0
d) → uΩ(t, u0

Ω)

strongly in L∞(0, T,Xα
d ) for any α < 1 as d = inf d(x) → ∞.

Proof. Let us denote by λN
2 (d) ∈ σ(Ad) the first non zero eigenvalue of the

operator (7). Then, using [21] Theorem 3.6 we have that

(35) λN
2 (d) ≥ dµN

2 ,

where µN
2 is the second eigenvalue of −∆ subject to Neumann homogeneous boundary

conditions.
Now, consider the variation of constants formula (10) and since on bounded sub-

sets of the scales of spaces we have the nonlinear map (11) is local Lipschitz continuous,
it follows that

‖ud(t)‖α ≤ Me−dµN
2 tt−ϑ‖u0

d)‖α +

+ MLh sup
0≤s≤t

‖ud(s)‖α

∫ t

0

e−dµN
2 (t−s)(t − s)−ϑds

≤ MLh sup
0≤s≤t

‖ud(s)‖α

∫ ∞

0

e−dµN
2 tt−ϑdt

where ϑ = α − β > 0, and Lh > 0 denote the Lipschitz constant. Thus, we easily see
that

‖ud(t)‖α → 0, uniformly on IR+ as d → ∞.

Therefore, using [23] Theorem 11.11 we conclude the first statement and the lower
semicontinuity of the H1(Ω) norm yields ud(t) → u(t) ∈ IR strongly in Xα

d uniformly
on any finite time interval, as d → ∞. Otherwise, if T = ∞ since by uniqueness of the
limit u(t) = uΩ(t) verify the equation (34), then uΩ(t) is not necessarily bounded.

Next our final theorem state the following.

Theorem 6.2. Consider the ordinary differential problem (34) and assume the
dissipative hypothesis

(36) lim sup
|u|→∞

hΩ(u)

u
< 0, hold.

Then, the semiflow defined by (34) has a global compact attractor A ⊂ IR. Moreover,
if N ≤ 3 then it is satisfied that

lim
d→∞

δ(Ad,A) = lim
d→∞

sup
ud∈Ad

inf
uΩ∈A

‖ud(t, u
0
d) − uΩ(t, u0

Ω)‖α = 0,

where 1 ≥ α > 3/4. In other words, the attractors of the equations (8) and (34) are
upper semicontinuous in the limit of high viscosity.
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Proof. The first part of the theorem is standard. In fact (34) is point dissipative
from which the conclusion follows. The second part is obtained using Theorem 6.1
and [10] p. 165, Sect. 4.10.2.
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[5] H. Brézis, Análisis funcional Alianza Universidad Textos, Masson Editeur, de Paris 1983.
[6] A. Carvalho, S. Oliva, A. Pereira and A. Rodriguez-Bernal, Attractors for Parabolic

Problems with Nonlinear Boundary Conditions, Journal of Mathematical Analysis and
Applications, 207:2 (1997).

[7] A. N. De Carvalho, J. W. Cholewa and T. Dlotko, Examples of global Attractors in

parabolic Problems, Hokkaido Mathematical Journal, 27 (1998), pp. 77–108.
[8] J. W. Cholewa and T. Dlotko, Global Attractor for Sectorial Evolutionary Equations, Jour-

nal of Differential Equations, 125 (1996), pp. 27–39.
[9] T. Dlotko, Global Attractor for the Cahn-Hilliard Equation in H

2 and H
3, Journal of Differ-

ential Equations, 113 (1994), pp. 381–393.
[10] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Mono-

graphs, 25 (1988), AMS.
[11] J. K. Hale and C. Rocha, Varying boundary conditions with large diffusivity, Journal de

Mathématiques Pures et Appliquées, 66 (1987), pp. 139–158.
[12] D. Henry, Geometric Theory of Semilinear parabolic equations, Lecture Notes in Mathematics

840, Springer-Verlag, 1981.
[13] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in

Nonlinear Differential Equations and Their Applications 16, Birkhäuser 1995.
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