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EXISTENCE OF POSITIVE SOLUTIONS FOR THE
ONE-DIMENSION SINGULAR P−LAPLACIAN EQUATION WITH

SIGN CHANGING NONLINEARITIES VIA THE METHOD OF
UPPER AND LOWER SOLUTION ∗

HAISHEN LÜ† , DONAL O’REGAN‡ , AND RAVI P. AGARWAL§

Abstract. A result concerning the existence of positive solutions for the Dirichlet boundary
value problem− (ϕp (u′))′ = f (t, u) , t ∈ (0, 1) , u (0) = c > 0 and u (1) = 0, is given in this paper.
Here f (t, y) may change sign and may be singular at y = 0.

1. Introduction. This paper establishes a new result concerning the existence
of nonnegative solutions for the Dirichlet boundary value problem

(1.1)
{ − (ϕp (u′))′ = f (t, u) , t ∈ (0, 1)

u (0) = c > 0, u (1) = 0;

here ϕp (x) = |x|p−2
x, p > 1. For p = 2, the above problem models steady-state

diffusion with reaction ( see [1] ) and many results have been obtained in the literature
when f (t, u) ≤ 0 or f (t, u) ≥ 0, (see [2 − 4] and the references therein). However,
very few results are available when f (t, u) changes sign.

For p �= 2, the above problem occurs in the study of the n−dimensional p−Laplace
equation, non-Newtonian fluid theory and the turbulent flow of a gas in a porous
medium [5] .

2. Main Results. Consider the boundary value problem

(2.1)
{ − (ϕp (u′))′ = F (t, u) for all t ∈ (0, 1)

u (0) = a, u (1) = b

where F : D → R is continuous function and D ⊂ (0, 1) × [0,+∞).

Definition 2.1. Let α ∈ C ([0, 1] , R) ∩ C1 ((0, 1) , R) and ϕp (α′) ∈
C1 ((0, 1) , R) . Now α is called a lower solution for problem (2.1) if (t, α (t)) ∈ D
for all t ∈ (0, 1) and { − (ϕp (α′))′ ≤ F (t, α (t)) , t ∈ (0, 1)

α (0) ≤ a, α (1) ≤ b.

Let β ∈ C ([0, 1] , R) ∩ C1 ((0, 1) , R) and ϕp (β′) ∈ C1 ((0, 1) , R) . Now β is called an
upper solution for problem (2.1) if (t, β (t)) ∈ D for all t ∈ (0, 1) and{ − (ϕp (β′))′ ≥ F (t, β (t)) , t ∈ (0, 1)

β (0) ≥ a, β (1) ≥ b.
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Lemma 2.1 [7]. Suppose α, β are lower and upper solution of problem (2.1) and
assume the following conditions are satisfied:

(H1) α (t) ≤ β (t) for all 0 ≤ t ≤ 1;
(H2) Daβ ⊆ D, here Dαβ = {(t, y) |0 < t < 1, α (t) ≤ y ≤ β (t)} ;
(H3) there exists a continuous function q ∈ C (0, 1) such that

|F (t, y)| ≤ q (t) , ∀ (t, y) ∈ Daβ ,

and ∫ 1

0

q (t) dt < +∞.

Then the BVP (2.1) has at least one solution u ∈ C ([0, 1] , R) ∩ C1 ((0, 1) , R) with
ϕp (u′) ∈ C1 ((0, 1) , R) such that

α (t) ≤ u (t) ≤ β (t) , 0 ≤ t ≤ 1.

Theorem 2.1. Suppose the following conditions hold:
(H4) f : [0, 1] × (0,+∞) → (−∞,∞) is continuous and limy→0+ f (t, y) = −∞

uniformly on [0, 1] ;
(H5) there exist a constant a ∈ (0, c] and a continuous function g1 : (0,∞) →

(0,∞) such that

f (t, u) ≥ −g1 (u) for t ∈ [0, 1] , u > 0,

∫ a

0

g1 (s) ds < +∞

and
∫ a

0

(G1 (x))−1/p
dx > q1/p;

here G1 (x) =
∫ x

0
g1 (s) ds, 0 < x < a, q = p

p−1 ;
(H6) there exists b2 > c, b1 ∈ [0, b2) and a continuous function g2 : (0,∞) →

(0,∞) such that

f (t, u) ≤ g2 (u) for t ∈ [0, 1] , u > 0 and
∫ b2

b1

(G2 (x))−1/p
dx > q1/p;

here G2 (x) =
∫ b2

x
g2 (s) ds, b1 < x < b2.

Then (1.1) has at least one positive solution u ∈ C1 [0, 1] ∩ C (0, 1) .

Proof. We first prove the following four Claims.

Claim 1. The problem

(2.2)
{

(ϕp (φ′))′ = g1 (φ) , t ∈ (0, 1)
φ (1) = 0, φ′ (1) = 0, φ (t) > 0 for t ∈ [0, 1)

has a unique solution φ ∈ C [0, 1] ∩ C1 (0, 1) with

0 < φ (t) < a, ∀t ∈ [0, 1).

In addition

− (ϕp (φ′))′ ≤ f (t, φ) for t ∈ (0, 1) .
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Proof of Claim 1. From [9] we know that (2.2) has a unique positive solution. On
the other hand, since (ϕp (φ′))′ ≥ 0 we have that φ′ is increasing. Using φ′ (1) = 0 we
obtain φ′ ≤ 0.

Multiply both sides of (2.1) by φ′ and then integrate from s to 1, to obtain∫ 1

s

(ϕp (φ′ (t)))′ φ′ (t) dt =
∫ 1

s

g1 (φ (t)) φ′ (t) dt,

so ∫ ϕp(φ′(s))

0

ϕ−1
p (x) dx = G1 (φ (s)) .

Now use ∫ u

0

ϕ−1
p (s) ds =

1
q
|u|q ,

to obtain

1
q
|φ′|p = G1 (φ) .

Thus

φ′ = −q
1
p (G1 (φ))

1
p ,

so ∫ 1

t

dφ

(G1 (φ))
1
p

= −q
1
p (1 − t) for t ∈ [0, 1] .

Consequently

(2.3)
∫ φ(t)

0

(G1 (x))
−1
p dx = q

1
p (1 − t) for t ∈ [0, 1] .

Let

H1 (u) =
∫ u

0

(G1 (x))
−1
p dx.

Then

φ (s) = H−1
1

(
q

1
p (1 − s)

)

is a solution of (2.2) . Now
∫ φ(0)

0
(G1 (x))

−1
p dx = q

1
p and

∫ a

0
(G1 (x))

−1
p dx > q

1
p imply

0 < φ (0) < a. Also since φ′ ≤ 0 we have

(ϕp (φ′)) + f (t, φ) ≥ (ϕp (φ′))′ − g1 (φ) = 0 for t ∈ (0, 1) .

Claim 2. The problem

(2.4)
{ − (ϕp (θ′))′ = g2 (θ) , t ∈ (0, 1)

θ (0) = b2, θ′ (0) = 0, θ (t) > 0 for t ∈ (0, 1]
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has a unique solution θ ∈ C [0, 1] ∩ C1 (0, 1) such that

(2.5) b1 < θ (t) < b2, ∀t ∈ (0, 1].

In addition

− (ϕp (θ′))′ ≥ f (t, θ) for t ∈ (0, 1) .

Proof of Claim 2. From [9] we know that (2.4) has a unique positive solution. On
the other hand since − (ϕp (θ′))′ ≥ 0 we have that θ′ is decreasing. Using θ′ (0) = 0
we obtain θ′ ≤ 0. Let

H2 (x) =
∫ b2

x

(G2 (s))
−1
p ds, 0 < x < b2.

Argue as in Claim 1 to obtain

(2.6)
∫ b2

θ(t)

(G2 (x))
−1
p dx = q

1
p t for t ∈ (0, 1].

Then

θ (t) = H−1
2

(
q

1
p t
)

for t ∈ (0, 1]

is a solution of (2.4) . Now since
∫ b2

θ(1)
(G2 (x))

−1
p dx = q

1
p and

∫ b2
b1

(G2 (x))
−1
p dx > q

1
p

we have b1 < θ (1) < b2. Moreover

(ϕp (θ′))′ + f (t, θ) ≤ (ϕp (θ′))′ + g2 (θ) = 0 for t ∈ (0, 1) .

Claim 3. φ (t) < θ (t) for all t ∈ (0, 1) .

Proof of Claim 3. If a ≤ b1 then φ (t) < a ≤ b1 < θ (t) for t ∈ (0, 1) . We now
consider the case b1 < a. We easily obtain that

G1 (u) > 0 for u ∈ (0, a) , G2 (u) > 0 for u ∈ (b1, b2)

and

q
1
p =

∫ φ(t)

0

(G1 (x))
−1
p dx +

∫ b2

θ(t)

(G2 (x))
−1
p dx for t ∈ (0, 1) .

Let

Φ (u) =
∫ u

0

(G1 (x))
−1
p dx +

∫ b2

u

(G2 (x))
−1
p dx for u ∈ [b1, a] .

It is obvious that Φ ∈ C [b1, a] ∩ C2 (b1, a) with

Φ′ (u) = (G1 (u))
−1
p − (G2 (u))

−1
p for u ∈ (b1, a) ,

and

−pΦ′′ (u) = (G1 (u))
−1
p −1

g1 (u) + (G2 (u))
−1
p −1

g2 (u) for u ∈ (b1, a) .
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If Φ′ (u0) = 0 for u0 ∈ [b, a] , then G1 (u0) = G2 (u0) > 0. On the other hand,
g1 (u0) + g2 (u0) > 0, so

−pΦ′′ (u0) = (G1 (u0))
−1
p −1 (g1 (u0) + g2 (u0)) > 0.

Consequently, Φ has no locally minimum point in (b1, a). Notice

Φ (b1) =
∫ b1

0

(G1 (x))
−1
p dx +

∫ b2

b1

(G2 (x))
−1
p dx ≥

∫ b2

b1

(G2 (x))
−1
p dx > q

1
p .

Since a < b2 we have

Φ (a) =
∫ a

0

(G1 (x))
−1
p dx +

∫ b2

a

(G2 (x))
−1
p dx ≥

∫ a

0

(G1 (x))
−1
p dx > q

1
p .

Consequently

(2.7) Φ (u) =
∫ u

0

(G1 (x))
−1
p dx +

∫ b2

u

(G2 (x))
−1
p dx > q

1
p for u ∈ [b1, a] .

Suppose there exists t0 ∈ (0, 1) such that θ (t0) < φ (t0) . Then b1 < θ (t0) <
φ (t0) < a. By (2.3) and (2.6) we have

q
1
p =

∫ φ(t0)

0

(G1 (x))
−1
p dx +

∫ φ(t0)

θ(t0)

(G2 (x))
−1
p dx +

∫ b2

φ(t0)

(G2 (x))
−1
p dx

≥
∫ φ(t0)

0

(G1 (x))
−1
p dx +

∫ b2

φ(t0)

(G2 (x))
−1
p dx

= Φ(φ (t0))

> q
1
p (see (2.7)),

a contradiction.

Claim 4. There exists η ∈ C [0, 1]∩C1 (0, 1) such that φ (t) ≤ η (t) ≤ θ (t) , ∀t ∈
(0, 1) and { − (ϕp (η′))′ ≥ f (t, η) , t ∈ (0, 1)

η (0) = c, η (1) = 0.

Proof of Claim 4. Let R = mint∈[0,1] θ (t) > 0 and

F (t, y) =

⎧⎨
⎩

f (t, y) , y ≥ R
max {f (t, y) , f (t, R)} , 0 < y < R
f (t, R) , y = 0

First we prove that F : [0, 1]× [0,∞) → (−∞,∞) is continuous. By (H4) , there exist
δ, 0 < δ < R, such that f (t, y) < f (t, R) for all (t, y) ∈ [0, 1] × (0, δ]. As a result

F (t, y) = f (t, R) for (t, y) ∈ [0, 1] × (0, δ],

so F : [0, 1] × [0,∞) → (−∞,∞) is continuous.
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By Claim 1 and Claim 2, we have

− (ϕp (θ′ (t)))′ − F (t, θ (t)) = − (ϕp (θ′ (t)))′ − f (t, θ (t)) ≥ 0, t ∈ (0, 1)

− (ϕp (φ′ (t)))′ − F (t, φ (t)) ≤ − (ϕp (φ′ (t)))′ − f (t, φ (t)) ≤ 0, t ∈ (0, 1)

and

0 < φ (0) < c ≤ θ (0) , φ (1) = 0 < θ (1) , 0 < φ (t) < θ (t) for t ∈ (0, 1) .

From Lemma 2.1, we know the problem{ − (ϕp (η′ (t)))′ = F (t, η (t)) , t ∈ (0, 1)
η (0) = c, η (1) = 0.

has a solution η ∈ C [0, 1] ∩ C1 (0, 1) with φ (t) ≤ η (t) ≤ θ (t) , ∀t ∈ (0, 1). Since
F (t, y) ≥ f (t, y) , (t, y) ∈ (0, 1) × (0,∞), we have − (ϕp (η′ (t)))′ ≥ f (t, η (t)) for all
t ∈ (0, 1) .

Proof of Theorem 2.1. For n ∈ {3, 4, · · · } , consider the problem

(2.8)
{

(ϕp (z′ (t)))′ − f (t, z (t)) = 0, t ∈ (0, n−1
n

)
z (0) = c, z

(
n−1

n

)
= η

(
n−1

n

)
.

From Claim 1 and Claim 4, we have{ − (ϕp (η′))′ ≥ f (t, η) , t ∈ (0, n−1
n

)
η (0) = c, η

(
n−1

n

)
= η

(
n−1

n

)
and { − (ϕp (φ′))′ ≤ f (t, φ) , t ∈ (0, n−1

n

)
φ (0) ≤ c, φ

(
n−1

n

) ≤ η
(

n−1
n

)
.

Then η is an upper solution and φ is a lower solution of problem (2.8) . On the
other hand 0 < φ (t) ≤ η (t) , t ∈ [0, 1 − 1

n

]
and f :

[
0, 1 − 1

n

] × Dφη → (−∞,∞)
is continuous. From Lemma 2.1, problem (2.8) has at least one solution zn ∈
C
([

0, n−1
n

]
, R
) ∩ C1

((
0, n−1

n

)
, R
)

and ϕp (z′n) ∈ C1
((

0, n−1
n

)
, R
)

such that

φ (t) ≤ zn (t) ≤ η (t) for 0 ≤ t ≤ n − 1
n

.

Fix n0 ∈ {3, 4, · · · }. Now lets look at the interval
[
0, 1 − 1

n0

]
. Let

Rn0 = sup
{
|f (t, u)| : t ∈

[
0, 1 − 1

n0

]
and u ∈ Dφη

}
.

The Mean Value Theorem implies that there exists τ ∈
(
0, 1 − 1

n0

)
with |z′n (τ)| ≤

3 sup[0,1] η (t) ≡ Ln0 . Hence for t ∈
[
0, 1 − 1

n0

]
we have

|z′n (t)| ≤ ϕ−1
p

(
|z′n (τ)| +

∣∣∣∣
∫ t

τ

(ϕp (z′n))′ dx

∣∣∣∣
)

≤ (ϕp (Ln0) + Rn0)
1

p−1
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where ϕ−1
p is an inverse function of ϕp.

As a result

{zn}∞n=n0
is bounded, equicontinuous family on

[
0, 1 − 1

n0

]
.

The Arzela-Ascoli theorem guarantees the existence of a subsequence Nn0 of integers
and a function un0 ∈ C

[
0, 1 − 1

n0

]
with zn converging uniformly to un0 on

[
0, 1 − 1

n0

]
as n → ∞ through Nn0 . Similarly

{zn}∞n=n0
is bounded, equicontinuous family on

[
0, 1 − 1

n0 + 1

]
,

so there is a subsequence Nn0+1 of Nn0 and a function un0+1 ∈ C
[
0, 1 − 1

n0+1

]
with zn converging uniformly to un0+1 on

[
0, 1 − 1

n0+1

]
as n → ∞ through Nn0+1.

Note un0+1 = un0 on
[
0, 1 − 1

n0

]
since Nn0+1 ⊆ Nn0 . Proceed inductively to obtain

subsequence on integers

Nn0 ⊇ Nn0+1 ⊇ · · · ⊇ Nk ⊇ · · ·
and functions

uk ∈
[
0, 1 − 1

k

]

with

zn converging uniformly to uk on
[
0, 1 − 1

k

]
as n → ∞ through Nk

and

uk+1 = uk on
[
0, 1 − 1

k

]
.

Define a function u : [0, 1] → [0,∞) by u (t) = uk (t) on
[
0, 1 − 1

k

]
and u (1) = 0.

Notice u is well defined and φ (t) ≤ u(t) ≤ η (t) for t ∈ (0, 1) . Next fix t ∈ [0, 1) and
let m ∈ {n0, n0 + 1, · · · } be such that 0 ≤ t < 1 − 1

m . Let N+
m = {n ∈ Nm : n ≥ m} .

Let n ∈ N+
m and let a = 0, b = 1 − 1

m .
Define the operator, L : C [a0, b0] → C [a0, b0] by

(Ly) (t) = y (a0) +
∫ t

a0

ϕ−1
p

(
Ay +

∫ b0

s

q (τ) f (τ, y (τ)) dτ

)
ds

where Ay satisfies

∫ b0

a0

ϕ−1
p

(
Ay +

∫ b0

s

f (τ, y (τ)) dτ

)
ds = y (b0) − y (a0) .

Let yn → y uniformly on [a0, b0] . As the proof in Theorem 2.4[5], if we
show limn→∞ Ayn

= A, then this together with ϕ−1
p continuous, implies that
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L : C [a0, b0] → C [a0, b0] is continuous. Associate Ayn
with yn and notice

∫ b0

a0

(
ϕ−1

p

(
Ayn

+
∫ b0

s

f (τ, y (τ)) dτ

)
− ϕ−1

p

(
Ay +

∫ b0

s

f (τ, y (τ)) dτ

))
ds

= yn (b0) − yn (a0) − y (b0) + y (a0) .

The Mean Value Theorem for integrals implies that there exists ηn ∈ [0, 1] with

ϕ−1
p

(
Ayn

+
∫ b0

ηn

f (τ, y (τ)) dτ

)
− ϕ−1

p

(
Ay +

∫ b0

ηn

f (τ, y (τ)) dτ

)

=
yn (b0) − yn (a0) − y (b0) + y (a0)

b0 − a0
,

and since yn → y uniformly on [a0, b0] we have limn→∞ Ayn
= Ay.

Now since zn converges uniformly on [a0, b0] to u as n → ∞ and Lzn = zn we
obtain Lu = u, i.e.

− (ϕp (u′ (t)))′ = f (t, u) , a0 ≤ t ≤ b0.

We can do this argument for each t ∈ (0, 1) and so − (ϕp (u′ (t)))′ = f (t, u) , 0 < t <
1. It remains to show u is continuous at 1.

Let ε > 0 be given. Now since 0 < φ (t) ≤ η (t) , t ∈ (0, 1) and φ (1) = η (1) = 0,
there exists δ > 0 with

0 ≤ φ (t) ≤ η (t) <
ε

2
for t ∈ [1 − δ, 1] .

This together with the fact that φ (t) ≤ un (t) ≤ η (t) for t ∈ (0, 1) implies that

φ (t) ≤ un (t) ≤ η (t) <
ε

2
for t ∈ [1 − δ, 1] .

Consequently

0 ≤ φ (t) ≤ u (t) ≤ η (t) <
ε

2
for t ∈ [1 − δ, 1]

and so u is continuous at 1. Thus u ∈ C [0, 1] ∩ C1 (0, 1) and u is a positive solution
of (1.1) . The proof of Theorem 2.1 is complete.

Remark 2.1. The ideas in this section can be used to discuss the BVP{ − (ϕp (u′))′ = f (t, u) , t ∈ (0, 1)
u (0) = 0, u (1) = c > 0.

Only minor adjustments are needed, so we leave the details to the reader.
To illustrate the above ideas we consider the following problem

(2.9)
{ − (ϕp (u′))′ = λa (t)

(
uβ − 1

uα

)
for t ∈ (0, 1)

u (0) = c > 0, u (1) = 0;

here λ > 0, a ∈ C [0, 1] and a (t) > 0 for t ∈ [0, 1] , 0 < α < 1 and 0 < β.

Corollary 2.1. (2.9) has at least one positive solution u ∈ C1 [0, 1]∩C (0, 1) if
λ > 0 is chosen sufficiently small.
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Proof. To see this we will apply Theorem 2.1. Let f (t, u) = λa (t)
(
uβ − 1

uα

)
.

Then f : [0, 1] × (0,+∞) → (−∞,∞) is continuous and limu→0+ f (t, u) = −∞
uniformly on [0, 1] .

In conditions (H5) and (H6) we let a = c, b2 = 2c, b1 = 0. Also we let

d0 = max
t∈[0,1]

a (t) and g1 (u) =
λd0

uα
for u ∈ (0,∞) .

Then g1 : (0,∞) → (0,∞) is a continuous function and

λa (t)
(

uβ − 1
uα

)
≥ −g1 (u) for t ∈ [0, 1] , u > 0,

∫ a

0

g1 (s) ds =
∫ a

0

λd0

sα
ds =

λd0

1 − α
a1−α < +∞.

Also we have

G1 (x) =
∫ x

0

λd0

uα
du =

λd0

1 − α
x1−α

and

∫ a

0

(G1 (x))
−1
p dx =

(
1 − α

λd0

) 1
p
∫ a

0

x
α−1

p dx

=
(

1 − α

λd0

) 1
p

· p

α + p + 1
· cα+p+1

p .

Then
∫ a

0
(G1 (x))

−1
p dx > q

1
p , provided

(2.10) λ
1
p < λ∗ =

(
1 − α

qd0

) 1
p

· p

α + p + 1
· cα+p+1

p .

Next let

g2 (u) = λd0u
β for u ∈ (0,∞) .

Then g2 : (0,∞) → (0,∞) is a continuous function and

λa (t)
(

uβ − 1
uα

)
≤ g2 (u) for t ∈ [0, 1] , u > 0,

and

G2 (x) =
∫ b2

x

g2 (u) du =
λd0

β + 1

(
(2c)β+1 − xβ+1

)
for x ∈ (0, 2c) .
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Thus

∫ b2

b1

(G2 (x))−
1
p dx =

∫ 2c

0

[
λd0

β + 1

(
(2c)β+1 − xβ+1

)]− 1
p

dx

=
(

β + 1
λd0

) 1
p
∫ 2c

0

dx[
(2c)β+1 − xβ+1

] 1
p

=
(

β + 1
λd0

) 1
p

· (2c)
p−β−1

p

∫ 1

0

dy

[1 − yβ+1]
1
p

≥
(

β + 1
λd0

) 1
p

· (2c)
p−β−1

p .

Then
∫ b2

b1
(G2 (x))

−1
p dx > q

1
p , provided with

(2.11) λ
1
p < λ∗∗ =

(
β + 1
qd0

) 1
p

· (2c)
p−β−1

p .

Thus if 0 < λ
1
p < min {λ∗, λ∗∗} , the conditions of Theorem 2.1 are satisfied. As a

result problem (2.9) has at least one positive solution.
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