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Let L — M be a Hermitian line bundle over a compact manifold.
Write S for the space of all unitary connections in L whose curvatures
define symplectic forms on M and G for the identity component of
the group of unitary bundle isometries of L, which acts on S by pull-
back. The main observation of this note is that S carries a G-invariant
symplectic structure, there is a moment map for the G-action and that
this embeds the components of S as G-coadjoint orbits. Restricting
to the subgroup of G which covers the identity on M, we see that
prescribing the volume form of a symplectic structure can be seen as
finding a zero of a moment map. When M is a K&hler manifold, this
gives a moment-map interpretation of the Calabi conjecture. We also
describe some directions for future research based upon the picture
outlined here.

1. Introduction

Let L — M be a Hermitian line bundle over a compact 2n-dimensional
manifold. We assume throughout that ¢1(L) contains symplectic forms. This
note investigates the space S of all unitary connections A in L for which wy =
%F '4 is a symplectic form on M. Write G for the identity component of the
group of all unitary bundle isometries (not necessarily covering the identity
on M). In other words, we consider those diffeomorphisms of L which send
fibres to fibres by unitary isomorphisms and which can be connected by a
path of such diffeomorphisms to the identity. The group G acts on S by
pull-back. The main observation of this note is the following.

Theorem 1.

o S carries a G-invariant symplectic form;
e There is an equivariant moment-map p: S — Lie(G)* for the G-
action;
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o The map pu embeds each component of S as a coadjoint orbit of G.

e The cover G/ Stabg(A) of the orbit of A € S is integral if and only
if the Weinstein homomorphism 71 (Ham(wy)) — St is trivial (where
Stabg(A) C G is the identity component of the stabilizer of A and
Ham(wy) is the group of Hamiltonian diffeomorphisms).

The first three parts are proved in Section 2.2, while the statement con-
cerning the Weinstein homomorphism is shown in Section 2.3.

In Section 3, we consider the restriction of the moment map u for the
action of the subgroup 7 = Map, (M, S') C G of bundle isometries covering
the identity on M. It turns out that the moment map sends a connection A
to the volume form w /n!. In this way the problem of prescribing the volume
of a symplectic structure can be seen in terms of moment map geometry.

As we explain in Section 3.1 one outcome of this is that when by (M) =0
the space of symplectic forms with fixed volume form is naturally a symplec-
tic manifold. When by (M) # 0 this space carries a torus-fibration with fibres
of dimension by (M) whose total space is naturally a symplectic manifold.

In Section 3.2, we consider the problem of prescribing the volume form
of a Kéhler metric. This is the renowned Calabi conjecture, now of course
Yau’s theorem [YauT78|. Using the picture outlined above we show how the
Calabi conjecture can be phrased as finding a zero of the moment map inside
a complex group orbit. This puts the problem into the same framework
as the Hitchin—Kobayashi correspondence (concerning Hermitian—Einstein
connections) and the Donaldson-Tian—Yau conjecture (concerning Kéahler
metrics with constant scalar curvature).

The focus of this note is to explain the above geometric picture; no
attempt is made here, however, to explore the potential applications. Both
Sections 2 and 3 end with a brief discussion of some of these possible direc-
tions for future research (some more speculative than others!).

2. The space of connections with symplectic curvature

2.1. A note on conventions and notation. The introduction speaks of
unitary connections in a Hermitian line bundle L — M over a compact
2n-dimensional manifold. In what follows, it will be more convenient to use
the language of principal bundles. We write p: P — M for the principal S'-
bundle associated to L and ¢ for the vector field generating the S'-action on
P. In this formalism, a unitary connection is a 1-form A € Q(P,R) which
is both S'-invariant and satisfies A(£) = 5~. Then wa € Q?(M,R) is defined
by the equation p*w4 = dA. Note connection 1-forms are more usually taken
to be imaginary valued, but to prevent a proliferation of factors of 27 we
have divided out by this at the beginning. Our conventions mean that the
tangent space to the space of connections is identified with Q!(M,R) where
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a € Q' (M, R) corresponds to an infinitesimal change of p*a in the connection
1-form A and an infinitesimal change of da in wy.

We write S for the set of connections in P for which w4 is symplectic.
This is open in the space of all connections (for, say, the C*° topology)
and so again, T4S = Q!'(M,R). Finally, in this language, unitary bundle
isomorphisms are S'-equivariant diffeomorphisms of P. The group G denotes
the identity component of the group of all unitary bundle isomorphisms. Its
Lie algebra Lie(G) is the algebra of S'-invariant vector fields on P.

2.2. Symplectic structure and moment map. We begin by describing
a symplectic structure on S.

Definition 2. We define a 2-form €2 on S by

1 _
QA(a,b):(n_l)!/Ma/\b/\wz L

for a,b € QY (M, R) = TxS.
Proposition 3. The 2-form §2 is a symplectic form.

Proof. To prove non-degeneracy on 1485, let J be an almost complex struc-
ture on M compatible with w,4. The action of J on T'"M determines a dual
action on T*M given by (Ja)(v) = —a(Jv). For a real 1-forms a,b we have
the following identity:

(a,b)ws =na A Jb AW,

where the innerproduct (a,b) is that determined by J and wy. It follows
that for any 1-form a:

1
Quala, Ja) = o /M la|? Wk,

which is non-zero whenever a is.
Next, we check € is closed. For this let a,b,c € Q'(X,R), thought of as
vector fields on S. Then

dQ(a,b,c) =a-Qb,c)+b-Qc,a) +c-Qa,b).

(The formula for general vector fields also includes terms with Lie brackets,
but in our case these vanish since the vector fields a, b, ¢ are linear on the
affine space of all connections and so commute.) Now,

1
G'Q(b,C):M/MbACAdGAWZ_2.
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Hence
1
dQ(a,b,c) = /(daAbAc+dbAcAa+dc/\aAb)/\wf‘_g,
(n=2)!'Jur
1 n—2
:(n_2)!/Md(a/\b/\c/\wA ),
=0.

0

Referee claims 2 is exact. To show this they pick a reference connection
Ay € § and then set
1
—_— A—Ag) ANaAw? L
(n—i—l)(n—l)!/M( 0) A
Now dO(a,b) = a - ©O(b) — b-O(a). (The formula for general vector fields
also includes a term with a Lie bracket, but in our case this vanishes since

the vector fields a, b are linear on the affine space of all connections and so
commute.) Then

O4(a) =

a‘G)(b):(nle)l(n_l)!/M (anbAWE Tt +(n—1)(A—Ag) Ab
/\da/\wfl_2)

In the equation for dO I seem to get then

2 1
46(a.b) = o7 + Coy oy

/ (A— Ag) Ad(aAb) AWy ?
M

Now

(A—Ap) Ad(aAb) AW ™2 = aAbA(wa—wa,) A2 —d((A—Ag) AaAbAWT ).
So,

1 . . -
(n _ 1)' /M(A—AO)/\CZ(G//\())/\WA 2 = Q(a’ b)_m /M G//\b/\(.UAO /\LUA 2.

This means that I get

n—1

dO(a,b) = Q(a,b) —

| /Ma/\b/\wAO AwG2,
But I don’t see why d© = Q).

Next we turn to the group action. Recall that G is the identity component
of the group of S'-equivariant diffeomorphisms of P. This group acts by
pull-back on connection 1-forms, preserving the set S and the symplectic
structure 2. We now give a moment map for this action.

The Lie algebra Lie(G) is the space of S'-invariant vector fields on P.
Given a connection A € Q'(P,R) and n € Lie(G), the pairing A(n) is an
Slinvariant function on P and so descends to a function on M which we
also denote A(n).
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Proposition 4. The map u: S — Lie(G)* defined by
1 n
) = [ Ay

Tl

is a G-equivariant moment map for the action of G on S.

Proof. Given n € Lie(G), let a,, be the vector field on S corresponding to the
infinitesimal action of 7). In other words, at A € S, a,, is the 1-form given by
an = Ly(A)
=(doty+tyod)A
= d(A()) + tp.ywa,
(where in the first two lines we have implicitly identified a, and p*a,).

Let b € Q'(M,R) be another vector field on S. The identity to be proved is
b {p,m) = Q(b, ay).

We begin with the left-hand side. The vector field b € Q'(M,R) on S
corresponds to an infinitesimal change of p*b in A and hence an infinitesimal
change of p*b(n) = b(p«n) in A(n). Meanwhile, the infinitesimal change in
w4 is db.

Hence,

1 n 1 n—1
b- <M777> = /M (mb(p*ﬂ) WA + WA(H) db A Wy > .
To compute the right-hand side of the moment-map identity we have that,
at A€ S,
1
- A n—l.
ey [ A A + ) £

Next we use the following identity: on a 2n-dimensional manifold, given a
1-form a and a 2-form [ the (2n+1)-form aA 5" necessarily vanishes; hence,
for any vector field v,

0=1t,(aNB") =a)p” —nanibApL

Putting o = b, § = w4 and v = p,n, this gives

Qb,ayn) =

b,y = L [ (prdtam) A+ o )
= /M <(ni1);z4(77)db AWyt %b(pw) aﬁ) ,
=b- <M7 77>'

Finally, G-equivariance follows immediately from the definition of y. [

We remark that this picture is motivated by the well-known observation
of Atiyah and Bott [AB83] that “curvature is a moment map”. In [AB83],
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Atiyah and Bott consider unitary connections in bundles of arbitrary rank,
but over a base with a fized symplecitc form.

To complete the proof of Theorem 1 we show that the components of S
are identified via p with coadjoint orbits.

Lemma 5. The map pu: S — Lie(G)* embeds each component of S as a
coadjoint orbit of G.

Proof. We must show two things: firstly, that p is injective; secondly that G
acts transitively on the components of S.

To prove injectivity of u, suppose that A # A’. Then we can find a vector
field v on M such that the A’-horizontal lift n of v satisfies A(n) > 0, hence
(u(A),n) > 0. But A'(n) =0 and so (u(A’),n) = 0, hence u(A) # pu(4’).

Next, we show that Gy acts transitively on the components of S. Given
A€ S, let psa: Lie(G) — T4S denote the infinitesimal action of G at A. We
have already seen that

(2.1) pa(n) = an = d(A(n)) + tp.wa.

First, we show that p4 is surjective. Given a € Q'(M,R), let v be the wa-
dual vector field and let 1 be the A-horizontal lift of v to P. Then p4(n) = a.
Now, given a path A(t) in S, let v(t) be the vector field, which is w4()-

dual to %(t) and let n(t) be the A(t)-horizontal lift of v(t) to P. The
time-dependent vector field 7n(t) integrates up to a path g(¢) in Gy with g(0)

the identity. By construction, g(t) - A(0) = A(t). O

2.3. Integrality and the Weinstein homomorphism. We next turn to
the question of whether or not the orbits of S are integral coadjoint orbits.
It turns out that, up to taking a certain cover, the obstruction to this is a
homomorphism 1 (Ham,,,) — S!, first introduced by Weinstein [Wei89).

We briefly recall the definition of an integral coadjoint orbit. For more
details see, for example, [Kir04]. Given a Lie group G with Lie algebra g,
fix f € g*. We write Stab(f) C G for the stabilizer of f under the coadjoint
action and b for the Lie algebra of the stabilizer. The linear map f: g — R
restricts to a Lie algebra homomorphism f: h — R. The orbit Oy of f is
called integral when the map h — R is (up to a factor of i) the derivative of
a homomorphism w: Stab(f) — S*.

This condition implies the existence of a principal circle bundle Q — O
which carries a connection whose curvature is the symplectic form on Op;
moreover the symplectic action of G on Oy lifts to a connection-preserving
action on Q. To see this, first note that G — Oy is the total space of a
principal Stab(f)-bundle. The representation w gives rise to an associated
principal S'-bundle

Q:wa51—>(’)f.
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The action of G on itself by left-multiplication commutes with that of right-
multiplication by Stab(f) and so G acts on @ covering the action on Oj.
At a point ¢ € @ the derivative of this action gives a map L,: g — T,Q
whose image is transverse to the tangent space to the S'-fibre through ¢. So
L,(g) C T,Q defines a connection, in the sense of a horizontal distribution
in @, which one checks is S'-invariant and G-invariant and whose curvature
is the symplectic form on Oy.

In our situation, when considering integrality it is easier to work not
with the coadjoint orbit itself, but instead with Oy = G/ Stabg(f) where
Stabg(f) is the identity component of Stab(f). This space is a cover of Oy
with fibre Stab(f)/ Stabg(f) and inherits a symplectic structure by pulling
back that from O;. We call 6f integral when the map h — R is (up to a
factor of i) the derivative of a homomorphism w: Stabg(f) — S!. Again,
this condition implies the existence of a principal circle bundle @ — (5f
with connection whose curvature is the symplectic form. The action of G
also lifts to a connection-preserving action on @

Accordingly, we next investigate the identity component Staby(A) of the
stabilizer Stab(A) C G of a point A € S. For an alternative exposition of
the following, see Weinstein’s article [Wei89].

We start from the short exact sequence

1 — Mapy(M, S') — G — Diffg(M) — 1
(where the subscripts 0 denote the identity components.)

Lemma 6 (Weinstein [Wei89]). Restricting this short exact sequence to
Stabg(A) gives the short exact sequence

(2.2) 1 — S!' — Stabg(A4) — Ham(wa) — 1
where S' C Mapy (M, S') are the constant gauge transformations.

Proof. First note that the restriction of the map G — Diff((M) to Stabg(A)
certainly takes values in w-symplectomorphisms. To verify that the image
lies in Ham(wy4), recall the formula (2.1) for the infinitesimal action pa(n)
of n € Lie(G) at A given above. From this it follows that n € Lie(Stab(A))
if and only if p,n is a Hamiltonian vector field with Hamiltonian —A(n).
Integrating this result we see that the image of Stabg(A) lies in Ham(wg4).

Next we check that the map 7: Stabg(A) — Ham(wy,) is surjective. Given
a wa-Hamiltonian vector field v on M with Hamiltonian h we write v” for the
A-horizontal lift of v. Then the vector field n = v” — h% on P is S'-invariant,
hence in Lie(G) and pa(n) = 0. So n € Lie(Stab,) and 7.(n) = v, meaning
T is surjective. Integrating this shows that 7: Stabg(A) — Ham(wa) is
surjective.
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The kernel of 7 is Stabg(A) N Mapy(M, S1). Given f: M — S!, the cor-
responding change in A is fd(f~!). Hence, ker 7 = S is the constants, and
the short exact sequence for G restricts to Stabg(A) as claimed. O

Given A € § the moment map at A restricts to give a Lie algebra homo-
morphism
p(A): Lie(Stab(A)) — R.
The kernel of this map is an ideal I C Lie(Stab(A)); moreover, the inclusion
St C Stab(A) determines a copy of R C Lie(Staby), which is mapped
isomorphically onto R by p. It follows that the derivative of Stab(A4) —
Ham(A) identifies I = HVect(w4) and so there is a splitting

(2.3) Lie(Stab(A)) 2 R @ HVect(w4)

into a direct sum of ideals.
Alternatively, one can see this splitting via an isomorphism

C>(M,R) = Lie(Stab(A)).

The isomorphism sends a function h to the vector field v,bl — h% where vy, is
the Hamiltonian vector field corresponding to A. This map is an isomorphism
of Lie algebras where C°°(M, R) is endowed with the Poisson bracket defined
by wa. Now the above splitting (2.3) corresponds to the constant functions
plus those with w4-mean value zero.

Using left-multiplication we can view the splitting (2.3) as defining a
connection on the principal S'-bundle Stabg(A) — Ham(w,). Because
the horizontal subspace (the HVect(w4) summand) is a Lie sub-algebra of
Lie(Stab(A)), this connection is flat.

Lemma 7. The holonomy of the flat connection in Stabg(A) — Ham(wy)
is the Weinstein homomorphism [Wei89],

w: 71 (Ham(wy)) — ST

Proof. One definition of the Weinstein homomorphism is the following. Let
[¢] € m(Ham(wa)) where ¢ is generated by the Hamiltonian function
H: M xS' — R. We assume moreover that each H; has mean-value zero, i.e,
for each t € St, fM H; W' = 0. Pick a point z € M and a disc D bounding
the loop ¢¢(z). The value of the Weinstein homomorphism on [¢] is defined
to be the image z € S! = R/Z of the real number

(2.4) = /D wa — /0 1 Hy(¢y(x)) dt.

Such a disc can always be found and different discs change Z by an integer
given by integrating w4 over a sphere in M, and hence do not change z € S*.
To complete the definition of the Weinstein homomorphism, one checks that
z does not depend on the choice of x or on the representative of the homotopy
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class [¢]. Then w([¢]) = z gives a well-defined map 71 (Ham(wy)) — S1,
which one checks is a homomorphism.

We now show that this agrees with the holonomy of the flat connec-
tion in the principle S'-bundle Stabg(A) — Ham(w,). Recall that the flat
connection is defined by setting the horizontal lift of v € HVect(w4) with
mean-value zero Hamiltonian h to be the vector field ¢ € Lie(Stab(A))
given by
0

90

Now let ¢ be a loop in Ham(wy) generated by H as before. We now lift
¢ to a path in Stabg(A) via the flat connection. Let v; be the vector field
generating ¢ and v, the lift of v; to P — M given by

0

90

The lift of the loop ¢ to Stabg(A) is the flow of ¥;.

Now the holonomy along ¢ is a constant gauge transformation and so to
compute it, it suffices to find its action at a single point. Pick x € M and
p € P above z. The flow 7: [0,1] — P of o; starting at p covers the loop
¢¢(x) in M; since 4(0) and (1) both lie over = they differ by z € S!, which is
the holonomy along ¢ that we seek. To see why this is the same z as before,
note that the first term in the formula (2.4) for Z gives the holonomy of A
around ¢y(p), hence the contribution of the first term in the above formula
(2.5) for v; while the second integral in (2.4) gives the contribution of the
second term in (2.5). O

b=1"—h

(25) ’[Jt = UE — Ht

Remark 8. One can interpret this result as giving an alternative definition
of the Weinstein homomorphism in which:

(1) The independence of z on the point x and the representative ¢ of
the class [¢] is immediate, by virtue of the definition as a holonomy
representation.

(2) There is no need to assume the existence of a disc D bounding ¢(z)
in order to define w as a holonomy representation; one only needs the
disc to write down the formula (2.4). Such a disc does indeed exist,
but the proof is in general deep, relying on the theory of pseudoholo-
morphic curves. The definition of w in terms of holonomy given here
is purely “classical”, answering a comment of McDuff, see footnote 3
of [McD10] (at least in the case |w]| is an integral class).

Proposition 9. Given A € S, the cover O4 = G/ Staby(A) of the corre-
sponding coadjoint orbit O4 of G is integral if and only if the Weinstein
homomorphism w: m (Ham(w,)) — S is trivial.

Proof. The cover Oy is integral precisely when the kernel of the homomor-
phism p(A): Lie(Stab(A)) — R integrates up to a subgroup of Stabgy(A).
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In our case, this kernel defines the horizontal space of the flat connection
whose holonomy is w. So the orbit is integral if and only if parallel transport
identifies all the S!-fibres of Stabg(A) — Ham(w,). This happens precisely
when the holonomy is trival. 4

On the one hand, there are examples of symplectic manifolds for which
the Weinstein homomorphism is trivial. Indeed, for a surface of genus at
least one, the Hamiltonian group is even contractible. On the other hand,
there are also plenty of manfiolds for which the Weinstein homomorphism
is non-trivial; the simplest being S2. To see this, restrict the short exact
sequence (2.2) to the subgroup SO(3) C Ham to obtain the sequence

1— 8= U@2)—-S0@3) — 1.

~

The flat connection corresponds to the Lie algebra isomorphism u(2) =
su(2) @ iR; its holonomy is non-trivial and gives the standard isomorphism

U(2) 2 SU(2) x4, St

Similiar remarks apply to CP" with the Fubini-Study metric and, more
generally to certain toric varieties. See the recent survey article of McDuff
[McD10] for more on this subject.

2.4. Further questions. Given a subgroup H C Diffg(M), the preimage
under G — Diffy(M) is a subgroup H' C G which inherits a Hamiltonian
action on S. The moment-map ' for the action of H’ is simply the projec-
tion of p under Lie(G)* — Lie(H’)*. One might look for zeros of x’ in the
hope that they give symplectic structures which respect in some way the
additional geometry imposed in passing from Diffy(M) to H.

We explore this idea in the next section in its most extreme form, when
‘H = 1 is the trivial group. This leads to the problem of prescribing the
volume form of a symplectic structure. In a separate article [Finll] we
exploit this same idea for certain manifolds M and subgroups H. The man-
ifolds in question are S2-bundles over four-manifolds and in this way we
give a moment-map interpretation of the anti-self-dual Einstein equations
for a Riemannian metric on a four-manifold. Besides these two situations,
however, there are many other possibilities one could study and it would be
interesting to see more examples.

We close this section with a speculative remark. The above picture
associates to each isotopy class of symplectic forms in ¢;(L) a certain coad-
joint orbit of G. On the one hand, distinguishing isotopy classes of symplectic
forms is a central problem in symplectic topology; on the other hand,
classifying coadjoint orbits is a central problem in the theory of infinite-
dimensional Lie groups. One might hope that Theorem 1 opens up the path
for a transfer of ideas between these two areas.
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An important approach to the study of coadjoint orbits is the celebrated
“orbit method” (see, for example, the text of Kirillov [Kir04]). For the
group G, perhaps the first case to consider would be a surface of genus at
least one. There, the corresponding coadjoint orbit is integral. Moreover,
as we will see in the following section, it comes with a natural isotropic
fibration whose infinite-dimensional fibres fail to be coisotropic by a finite-
dimensional discrepancy (see Remark 14). Thus we have in place more-or-
less the initial data required by geometric quantisation. This still leaves, of
course, the principal difficulty of what should play the rZle of the “square-
integrable sections” of the prequantum line bundle, since the base is infinite-
dimensional. Exactly how to quantize such a coadjoint orbit is, in my opinion
at least, an interesting and difficult question.

3. Prescribing the volume form of a symplectic structure

Given a Hamiltonian action of a group G with a moment map p taking
values in g*, the action of a sub-group H C G has moment map given by
composing p with the projection g* — h*. In this section, we apply this
observation to the action of the subgroup of bundle isometries of L — M,
which cover the identity.

3.1. Purely symplectic case. Of course, 7 = Map(M,S!) and so
Lie(7) = C*(X,R). (One normally uses imaginary valued functions here
but again we have multiplied by —27i throughout.) By integrating against
top-degree forms, we can identify Q2"(M,R) with a subset of Lie(7)*. With
this understood, we have the following result, which is an immediate corol-
lary of Proposition 4.

Proposition 10. There is an equivariant moment map v: S — Lie(7T)* for
the action of T on S given by v(A) = w' /nl.

(Strictly speaking, above we only mentioned the invariance of the sym-
plectic form €2 on S for the identity component G of the group of bundle
isometries, but it is clear from the definition that € is invariant under the
action of all bundle isometries, which cover orientation preserving diffeo-
morphisms of M, a group which contains 7, unlike G which only contains
null-homotopic maps M — S'.)

So prescribing the volume of a symplectic structure in ¢;(L) can be seen
as finding a zero of a moment map. More precisely, since 7 is abelian, the
coadjoint action is trivial and so we can equally use v—6 as a moment map for
any 0 € Lie(T)*. Given a volume form § € Q?"(M,R) with [0] = ¢ (L)",
the equation for A € S given by w’; /n! = 6 is the same as finding a zero of
the moment map v — 6.

Given such a 6, we next turn to the symplectic reduction v~1()/7. By
standard theory this is a symplectic manifold (of infinite dimension). To
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describe it we write Xy for the space of symplectic forms w € ¢;(L) with
w"/n! = 0.

Proposition 11. If by(M) = 0 then Xy = v=1(0)/T. In particular, the
space of symplectic forms with fixed volume form is naturally a symplectic
manifold.

In general there is a submersion v=(0)/T — Xy with fibres isomorphic
to H'(M,R)/H'(M,Z). The restriction of the symplectic structure to these
fibres is identified with the 2-form on H'(M,R) defined by

»—>71 o c n—l
(ar, B) (n_l)!/M AB A (L)L

Proof. We begin with the following standard fact. Given a symplectic form
w € c1(L), write S, C S for the set of unitary connections A for which
wa = w. Then S, /7 can be identified with H'(M,R)/H'(M,Z).

More precisely, given Ag € S, any other connection A € &, is of the
form A = Ag + %a for a closed 1-form a. There is thus a surjection
c: S, — H'(M,R) given by c¢(A) = [a]. Now T = Map(M, S') acts on
H'(M,R), the action of f € T on H'(M,R) is by addition of s1-[fd(f™")] €
HY(M,Z). With this action understood, ¢ is 7-equivariant. Since any ele-
ment of H'(M,Z) can be written in as %[fd(fﬁl)} for some f € T, the
map c descends to an identification S,,/7 — H*(M,R)/H'(M,Z).

The group 7 is abelian, so its orbits in S are isotropic and hence the
restriction of the symplectic form €2 on S to S, descends to a 2-form on
S./T = H'Y(M,R)/H*(M,Z). It follows from the definition of  that the
2-form is identified with the 2-form on H'(M,R) given by

— ! « c n—l
(ar, B) (n_l)!/M AB A (L)L

The result follows from these two observations applied fibrewise to the
map v~ 1(#) — X, which sends each connection A to its curvature wy. [

Remark 12. When b;(M) = 0, the symplectic structure on X can be
seen directly (and with no need for the condition that the fixed choice of
symplectic class be integral). The tangent space at a point w € Xy is the
space of exact 2-forms v such that w™ ' Ay = 0. We now define a skew
pairing © on T,,Xy by

1 e
0(v,7) = (n—l)'/Ma/\a//\w Y

where a,a’ are 1-forms with da = v, da’ = /. If a is another 1-form with
da = 7y, then d(a — a) = 0 and so, since by (M) = 0, we can write a — a = df
for some function f. Hence,

/(a—d)/\a//\wnlz—/ fda' AWt
M M
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which vanishes since da’ A w1 = 4/ Aw™! = 0. It follows that ©(v,')
does not depend on the choice of a or a’.

When the fixed symplectic class [w] = ¢1(L) is integral, © is precisely the
2-form, which arises from the identification v=1(6)/7 = Xy. It follows from
the general theory that © is closed and non-degenerate, something which
one can verify directly from the definition.

Remark 13. Still under the assumption that b;(M) = 0, note that the
group Diff (M, #) of volume-preserving diffeomorphisms acts on the symplec-
tic manifold Xp. This action is Hamiltonian in the sense that the infinitesimal
action of a single divergence-free vector field u is a Hamiltonian vector field
on Xy. To define a Hamiltonian h: Xy — R for the action of u note that
L,0 =0 so 1,0 is a closed (2n — 1) form. Since by (M) = ba,—1(M) = 0, we
can write ¢,0 = df for some (2n — 2)-form 3. We define the function h by

/ OB A w.

Given a tangent vector v € 1, Xy, i.e., an exact 2-form v = da with v A

w™™1 =0, then the corresponding infinitesimal change in h is given by

v-h:—/ ﬂ/\'y:—/ ﬁ/\daz/qﬁ/\a.
M M M

On the other hand, the infinitesimal action of u at w € Xy is vy, = d(1w)

and so )
O(Yu,v) = m /M Lyw N\ @ AWl = /Lué?/\ a.

Hence, h is a Hamiltonian for the action of wu.

Of course the Hamiltonian A is uniquely determined only up to the addi-
tion of a constant. This is reflected in our description of h by the freedom in
the choice of (3; adding a closed (2n — 2)-form to [ does not alter df =
but changes h by a constant. Writing down a moment map for the action
amounts to choosing these constants consistently. The choices involved sug-
gest that this cannot be done in such a way as to give an equivariant moment
map.

Remark 14. As mentioned above, 7 is abelian and so the 7-orbits in S
are isotropic. It follows from the standard theory of symplectic reduction
that the fibres of the moment map v are coisotropic and, moreover, given
A € S, the tangent space to the fibre of v through A is the symplectic
complement of the tangent space to the 7-orbit through A. When M is a
surface, the isotropic fibration of S given by the 7T-orbits is close to being
a Lagrangian fibration. To see this, note that for a surface, volume forms
and symplectic forms are the same thing. Now in the proof of Proposition
11 we saw that the codimension of 7 - A in v~ (w4) is by (M). So for S? the
T-orbits give a Lagrangian fibration of S, while for higher genus surfaces
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this infinite-dimensional isotropic fibration fails to be Lagrangian only by a
finite-dimensional discrepancy.

3.2. The Kahler case. This point of view has additional use when M
is a complex manifold. Recall that the Calabi conjecture (now, of course,
Yau’s theorem [Yau78]) states that given a Kihler class k € H?(M,R) and
volume-form 6 on M with total volume % / K" there is a unique Kahler
metric w € kK with w"/n! = 6.

(An alternative and perhaps more usual formulation of the Calabi conjec-
ture is that given any closed real (1, 1)-form p representing 27cy (M) there is
a unique Kéahler metric w € k whose Ricci form is p. Passing between these
two statements is a standard procedure in Kéhler geometry: the volume form
of a Kéhler metric is at the same time a Hermitian metric on the anticanon-
ical bundle K* since A" =~ K ® K ; moreover, the Ricci form p is, up to a
factor of ¢, the curvature of K* with this Hermitian structure. So prescribing
the volume form of a K&hler metric is the same thing as prescribing its Ricci
curvature. See, for example, the introductory text [Tia00].)

When k = ¢1(L) is the first Chern class of a holomorphic line bundle, we
can reformulate the Calabi conjecture as the search for the zero of a moment
map in a complex group orbit, in a manner analogous to the Hitchin—
Kobayashi correspondence [Don85, UY86] or the Donaldson-Tian—Yau
conjecture concerning existence of constant scalar curvature Kéhler metrics
(as outlined in, for example, [Don02]).

To describe this we first restrict attention to the subspace S¥!' C S of
unitary connections in L — M whose curvature is a positive (1,1)-form
on the complex manifold M. The complex structure J on M makes Sb!
into a Kéhler manifold. To see this notice that the endomorphism a — Ja
of Q'(M,R) makes S into an almost complex manifold. Given A € Sb!,
a € T4SH! if and only if d(a®!) = 0. Since (Ja)*! = —ia®! it follows that
Sb1is an almost complex submanifold of S.

To show that this almost complex structure is integrable we use the
standard identification of the space of unitary connections having curva-
ture of type (1,1) with the space of holomorphic structures on the line
bundle L — M. The identification sends a unitary connection A to the 0-
operator given by the (0,1)-component of A. The J-operator is integrable
precisely because w4 is (1,1). A unitary connection is determined by its
(0, 1)-component and, conversely, every integrable J-operator can be com-
pleted in a unique way to a unitary connection with (1,1) curvature (see,
e.g., [GH94]). In this way we identify S1! with the open subset of integrable
0-operators whose curvatures are in fact Kahler forms. Under this identifica-
tion, the almost complex structure described in the preceding paragraph is
identified with the natural holomoprhic structure on the space of integrable
5—0perators.
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The symplectic structure €2 on S restricts to a Kihler metric on St!:
given A € SY1, wy and J pair to give a Riemannian metric g4 on M; now
Qa(a, Ja) = ||a||? is the L?(ga)-norm of a and so the restriction of Q to St
pairs with the complex structure to give a Kihler metric on St1.

This whole setup is, of course, reminiscent of the moment-map description
of the Hitchin—-Kobayashi correspondence. There one starts with a Hermit-
ian vector bundle (of arbitrary rank) E — M and considers the space A1 of
all unitary connections with (1, 1)-curvature or, equivalently, all integrable
0-operators. The key difference is that for the Hitchin-Kobayashi correspon-
dence the symplectic structure on A is defined via a fized choice of Kihler
metric on M. In our situation, however, the Kéhler form w4 on M depends
on the unitary connection A € Sb! and the symplectic structure on St is
different from that in the Hitchin—Kobayashi correspondence.

While the whole group G does not act by Kihler isometries on S™! (since
the induced action on M does not preserve .J) the subgroup 7 = Map(M, S')
does. The action extends, at least locally, to a holomorphic (though not
isometric) action of the complexification 7€ = Map(M,C*). This is most
easily seen by considering SU'! C H as an open set in the space of integrable
d-operators in L. Now 7€ acts on H by pulling back. Note this is not the
same as pulling back the corresponding unitary connection by an element of
7T, since this does not preserve the property of being unitary. In terms of
connections, the action of f € Map(M,C*) on A is given by

(3.1) frA=A+fo(f7) - fo(f ).
In particular, given a function ¢ € C°°(M,R), the action of f = e? is
(3.2) e A=A+ 99— d¢
and hence
i -
(3.3) Wb g = WA + %aad)

From this formula it is clear that the 7C-orbit of A € Sb! leaves the open
set SH C ‘H. Indeed e? - A remains in SU! precisely when ¢ is a Kihler
potential for w4. Nonetheless this calculation proves the following result.

Lemma 15. Fiz Ag € SY'. The map A — wy gives a surjection from
(TC - Ag) NSV to the space of Kihler metrics in ci(L).

From here we see that the Calabi conjecture fits into the general frame-
work of moment maps in Kahler geometry. Namely, finding a Kéahler form
in ¢1(L) with volume form 6 is the same as finding a zero of the moment
map v — 6 in a given complex orbit (7€ - A)NSH!,

We recall a little of the general set-up alluded to here. The starting point
is the action of a Lie group G by holomorphic isometries on a Kéhler man-
ifold X, along with an equivariant moment map pu: X — g*. We suppose
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that the action extends to an action of G, the complexifictaion of G. The
problem is, given z € X, to find g € G such that pu(g-2) = 0. Since p is
G-invariant, this is really a question on the symmetric space GC/G. There
is a function F': G/G — R, called the Kempf Ness function, whose critical
points correspond to solutions of u(g - ) = 0. Moreover, F' has the impor-
tant property that it is convex along geodesics in G€/G. The downward
gradient flow of F' provides a concrete way to attempt to find a zero of the
moment map.

Applying this to the case of the T-action on S, we can give a moment
map interpretation of some well-known facts concerning the Calabi conjec-
ture. For a start, the symmetric space of interest is the quotient 7C/7 of
positive real functions C*°(M, R ), or at least the open subset correspond-
ing to (7¢- A) N SY!. Taking logarithms as in the discussion surrounding
equations (3.2) and (3.3), we identify this space with the space of Kéhler
potentials

K= {quCOO(M,]R) :wA+QiT&9¢>O}.

Since 7 is an abelian group, the symmetric metric on K should be flat.
Indeed, tangent vectors correspond to infinitesimal K&hler potentials and,
given our fixed choice of volume form 6, the metric is given by the L? inner-
product

(f,g) = /nge.

In particular, the geodesics for this metric are simply the affine lines in
K c C*(M,R).

The Kemp—Ness function is determined by the requirement that when it
is pulled back to a function on G its derivative in the imaginary directions
is given by the moment map. So, in our situation, given A € S"!, the
derivative of the pull-back of F' along the path e!® - A is

(3.4) ar(o) = [ ¢ (“j;,‘ - ) .

As we saw above, on the level of Kihler forms, the tangent to the path et®
corresponds to the Kéhler potential %a?gb. So we can interpret F' as a func-
tion on the space of Kéhler potentials, given by integrating (3.4) along a
path. But this is precisely the definition of a well-known energy functional,
the so-called “Fp-functional”, described in, for example, [Tia00]. The stan-
dard moment-map theory tells us that F' is convex along affine lines in K,
something which can be verified directly. As has long been observed, this
fact plays an important rZle in the study of the Calabi conjecture. In par-
ticular, since any two points of K lie on a geodesic, we see immediately that
a solution to the Calabi conjecture must be unique.
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We can also consider the downward gradient flow of F'. In our situation,
this is the flow of Kéhler metrics given by

(3.5) ?; = —%&9 <‘”ne/”!>

Given Yau’s solution to the Calabi conjecture, one might expect that the
flow (3.5) exists for all time and converges at infinity to the solution. This
has very recently been proved independently by Cao—Keller [CK11] and
Fang-Lai-Ma [FLMO09].

3.3. Further questions. Despite the fact that Yau has long since resolved
the Calabi conjecture, this moment-map picture does raise interestings ques-
tion. Typically there is a notion of “stability” associated to such a set-up;
one then aims to show that a complex orbit is stable if and only if it contains
a zero of the moment map. In our case, given a volume form 6 we might
hope to define the “f-stability” of L — X. The general setup would lead us
to believe that L — X is f-stable (whatever that may mean) if and only
if ¢1(L) contains a solution to the Calabi conjecture. Of course, we know
that this is always the case and so perhaps the sought-after definition of
f-stability is something trivially satisfied by all positive bundles L — X.
On the other hand, Yau’s solution of the Calabi conjecture is a deep result,
so one might optimistically speculate that 6-stability (if indeed it can be
defined) is some non-trivial property of L — X implied by Yau’s theorem.

There are also other versions of the Calabi conjecture which are not yet
completely understood, e.g., for non-compact manifolds or singular volume-
forms. To approach this problem, one might consider a modification of the
setup described here, with appropriate boundary conditions at infinity or
near the singularities. It would be very interesting to know if this moment-
map approach sheds any light on these versions of the Calabi conjecture.

Another use of this interpretation of the Calabi conjecture may be as a
testing ground for approaches to another famous — and as yet unresolved —
conjecture in Kéhler geometry, namely the Donaldson—Tian—Yau conjec-
ture concerning the existence of constant scalar curvature Kéhler metrics
(see [Don02] for a formulation of this conjecture). Since the observation of
Donaldson [Don97] and Fujiki [Fuj92] that this problem can be described
in terms of a moment-map, the general framework of such problems has
guided much work on the subject.

With this in mind, one may attempt to reprove facts about the Calabi
conjecture, directly using the moment-map formalism, and in doing so learn
more about the harder problem of constant scalar curvature. While insta-
bility does not play a role in the Calabi conjecture (since a solution always
exists) the comparison with constant scalar curvature metrics is certainly not
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devoid of interest. For example, just as the constant scalar curvature prob-
lem has a sequence of finite-dimensional approximations (involving Bergman
spaces and balanced embeddings, see [Don01]) so does the Calabi conjecture
(see [Don05]). If one could somehow use the finite-dimensional approxima-
tions to resolve problems related to the Calabi conjecture, this may shed
light on exactly how to approach constant scalar curvature metrics in an
analogous way.

To be more precise, we give one instance of how this might work. The
flow (3.5) associated to the Calabi conjecture is known to exist for all time,
but the present proofs rest on Yau’s estimates. These in turn rely on the
maximum principle and hence depend critically on the fact that the flow is
second order. The analogous flow in the case of constant scalar curvature
metrics — called the Calabi low — is fourth order and so it is far from clear
how to approach it analytically. It is for this reason that long-term existence
of the Calabi flow is still an open problem.

It may be possible instead to understand the flow via a sequence of finite-
dimensional flows on Bergman spaces. In [Finl0] a sequence of flows on
the Bergman spaces are defined and it is shown that the finite-dimensional
flows converge to Calabi flow for as long as it exists. Cao and Keller [CK11]
have very recently proved the analogous result in the case of the flow (3.5).
Now, if one could prove directly that the finite-dimensional flows of [CK11]
converge, one would have a new proof of the long-time existence of the flow
(3.5) which was independent of Yau’s estimates and, moreover, written in
such a way as to stand a chance of generalizing to the case of the more
difficult and currently rather intractable Calabi flow.
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