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THE GROUP OF CONTACT DIFFEOMORPHISMS FOR
COMPACT CONTACT MANIFOLDS

John Bland and Tom Duchamp

For a compact contact manifold M2n+1, it is shown that the
anisotropic Folland–Stein function spaces Γs(M), s ≥ (2n + 4) form
an algebra. The notion of anisotropic regularity is extended to define
the space of Γs-contact diffeomorphisms, which is shown to be a topo-
logical group under composition and a smooth Hilbert manifold. These
results are used in a subsequent paper to analyse the action of the
group of contact diffeomorphisms on the space of CR structures on a
compact, three-dimensional manifold.

1. Introduction

Contact manifolds arise naturally in complex and CR geometry. The bound-
ary of a strongly pseudoconvex domain is a contact manifold, and more
generally, any strongly pseudoconvex CR manifold is a contact manifold. In
each case, the ∂̄b-operator, which may be thought to embody the tangential
Cauchy–Riemann equations, is a natural operator that arises in analysis.
The associated second-order operator �b is anisotropic, being second order
in the holomorphic tangential directions and only first order in the transverse
directions. In [FS], Folland and Stein introduced some anisotropic function
spaces, the anisotropic Sobolev spaces Γs and the anisotropic Banach spaces
Γs,α to reflect this behaviour and showed that these operators are solvable
with good estimates in these spaces; we henceforth refer to these as Folland–
Stein spaces. Since the underlying symmetry group is the group of contact
diffeomorphisms, in order to study the Hilbert space of CR structures up to
equivalence, it is natural to hope for a Hilbert space structure on the group
of contact diffeomorphisms which also respects this anisotropy.
Smooth contact diffeomorphisms were first studied by Gray [G]. Later,

Omori [O1, O2] showed that the space of contact diffeomorphisms is an
inverse limit Hilbert (ILH ) Lie group. Omori’s analysis used standard Hodge
theory based on the de Rham complex and worked within the category of
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ordinary Sobolev spaces. However, since the contact distribution is a hyper-
plane distribution, natural compatible geometric structures will respect this
anisotropy, as will the natural function spaces. These are the Folland–Stein
spaces introduced in [FS].
Our main interest in the study of the group of contact diffeomorphisms is

in its use as a symmetry group. In [CL], Cheng and Lee studied the action of
the group of contact diffeomorphisms on CR structures and avoided using
anisotropic spaces by working in the Nash Moser category to construct a
transverse slice to the action of smooth contact diffeomorphisms. In [B],
we restricted our attention to the case of the standard S3 ⊂ C

2 and used
explicit information to construct an anisotropic Hilbert space structure on
contact diffeomorphisms near the identity; and in [Bi], Biquard used a dif-
ferent method to construct a local parameterization for contact diffeomor-
phisms near the identity in the case when the contact manifold admits a
free transverse S1 action.
The main purpose of the current paper is to provide a general construction

of an anisotropic Sobolev space structure on the space of contact diffeomor-
phisms; this structure agrees with that constructed by ad hoc methods in [B]
and in [Bi]. Our analysis is based on the Hodge theory of the complex devel-
oped by Rumin in [R], which is naturally adapted to the contact structure
and based on the anisotropic Folland–Stein spaces rather than the ordinary
Sobolev spaces. The Folland–Stein space structure which we introduce on
the space of contact diffeomorphisms plays the role of Ebin’s structure on
the diffeomorphism group of a general manifold [E], [EM]. In [BD3], we
use the results proved here to obtain normal form theorems for Cauchy–
Riemann structures with only finite regularity.
Before discussing further the results in this paper, we briefly consider the

geometric context. One of the early motivations for studying the space of
CR structures was a suggestion by Kuranishi. In [Ku], he observed that if
one considers a normal isolated singularity in a complex space, and considers
an open ball containing that singularity, then the intersection of the bound-
ary of the ball with the complex space inherits a “partial complex structure”;
that is, a Cauchy–Riemann structure which is in addition strongly pseudo-
convex. In particular, the holomorphic tangent planes, which are tangent to
the boundary of the sphere define a codimension one distribution which is
totally non-integrable — that is, a contact distribution. Kuranishi observed
that by Hartog’s theorem, the Cauchy–Riemann structure on the link com-
pletely determines the complex structure on the interior, and hence the
singularity up to equivalence, and vice versa. In [Ku], he suggested that
one could replace the study of the deformation space for normal isolated
singularities with the deformation space for CR structures on their link; in
the first case, this is a purely algebraic theory for singular spaces, whereas
in the latter case, one is studying a space of smooth structures on a smooth



CONTACT DIFFEOMORPHISMS 51

manifold. Note that in complex dimensions 3 or more (CR dimensions 5 or
more), the space of structures (up to equivalence) is finite-dimensional.
In [BlEp], we introduced the notion of “stably embeddable deformations”

for CR structures and completed the formal part of Kuranishi’s program.
By “formal”, we mean at the level of power series. In [Miy1,Miy2], Miya-
jima introduced a new double complex to do the analysis, and completed
Kuranishi’s program.
In three dimensions (corresponding to complex surfaces), the situation

is more subtle due to the presence of non-embeddable structures. Indeed
in [B], we showed that the space of non-embeddable structures is an infinite-
dimensional Hilbert space. On the other hand, results by Kiremidjian [Kir]
show that these non-embeddable structures bound compact complex mani-
folds on the pseudoconcave side. In the case of the three sphere, these results
were substantially refined by Epstein–Henkin [EH] providing considerable
additional information.
It is worth noting that this infinite-dimensional space of non-embeddable

structures corresponds to an infinite-dimensional space of geometries. In
[BD1], we showed that these correspond in a natural way to deformations
of the complex structure in a neighbourhood of a standard complex line
P1 in P2. (The deformed manifolds are not embedded as complex subman-
ifolds of P2.) In [ABE], we showed that in turn, at least at the linearized
level about the standard structure, these spaces corresponded to a family of
“geometries”, namely the two-dimensional projective structures on a stan-
dard complex 2-ball.
These observations show that in a natural way, the space of CR structures

up to equivalence defines a family of geometries up to equivalence. It is
natural to study this space in more detail. In [BD3], we use the results of the
current paper for this purpose. Note that in order to obtain the Hilbert space
description it is necessary to use a weighted Folland–Stein space structure.
This is rather easy to see on an intuitive level; indeed, two CR manifolds will
be equivalent if there is a CR mapping from one to the other; finding a CR
mapping is tantamount to solving a boundary Cauchy–Riemann equation,
that is a CR equation; however, it is well known that sharp estimates can
only be obtained using anisotropic Sobolev spaces, and indeed this is the
purpose for which Folland and Stein introduced in [FS] what we now refer
to as the Folland–Stein spaces.
Another example of this type of result is the work of Biquard [Bi] in which

he established the Positive Frequency Conjecture of Lebrun. In this paper,
Biquard uses a twistor space construction to relate the existence of a filling
of a conformal structure on the 3 sphere by a selfdual/antiselfdual Einstein
metric on the 4 ball to the existence of a CR structure on an associated
5 manifold with positive/negative “frequency”. Adapting arguments of [B]
to his situation, he uses the presence of a free S1 action in his model case
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to construct a weighted Sobolev space structure on the space of contact
diffeomorphisms, and then uses this weighted Sobolev space structure to
analyse the space of CR structures up to equivalence, thereby establishing
the Positive Frequency Conjecture.
The paper is structured as follows. In Section 2, we introduce the

anisotropic function spaces and show that, for s ≥ (2n + 4), they form an
algebra. We believe that the sharp result here would be that the intersection
of Γs with the space of bounded functions is an algebra for all s; however,
the result that we have stated is sufficient for our purposes. We also extend
the machinery developed by Palais [Pal] for doing global analysis on mani-
folds to the context of anisotropic function spaces. In Section 2.6, we review
Rumin’s complex and state the results that we will use in the analysis of the
space of contact diffeomorphisms. In Section 3, we show that the operations
of composition and inversion are continuous in the topology induced by the
anistropic structure. In Section 4, we construct a local coordinate system for
the space of diffeomorphisms and then use Rumin’s estimates to show the
space of contact diffeomorphisms locally forms a smooth Hilbert submani-
fold within the coordinate chart. Using this result, we easily prove that the
space of contact diffeomorphisms is a smooth Hilbert manifold modelled on
the anisotropic function spaces.

1.1. Notation. We summarize here the notation and conventions used
throughout the paper.
If A is a subset of a topological space X, then A denotes the closure of A

in X. If A and B are subsets of X, then the notation A � B means that A
is compactly contained in B.
If F : A → B is a map between Banach spaces, with norms ‖ · ‖A and

‖ · ‖B, respectively, then the expression
‖F(f)‖B ≺ ‖f‖A

means that there is a constant C > 0 such that ‖F(f)‖B ≤ C‖f‖A for all
f ∈ A.
We give R

m the standard inner product (·, ·), and we let |·| denote the
corresponding norm. The symbols (·, ·)s and ‖ · ‖s, for s = 0, 1, . . . denote
the Folland–Stein inner products and norms, respectively.
If N is a smooth manifold, then TN and T ∗N denote its tangent and

cotangent bundles, respectively; ΛpN denotes the pth exterior power of T ∗N ;
Ωp(N) denotes the space of smooth p-forms on N ; LXβ denotes the Lie
derivative of the form β with respect to the vector fieldX; andX β denotes
interior evaluation. IfN has a Riemannian metric, then |X| denotes the norm
of the tangent vector X with respect to that metric.
The symbol Cr(E), r = 0, 1, 2, . . . ,∞, denotes the space of Cr-sections of

a fibre bundle E →M , equipped with the topology of uniform convergence
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of derivatives up to order r on compact sets. Similarly, Cr(M,N) denotes
the space of Cr maps from M to N .
We endow R

2n+1 with the contact structure defined by the one-form

η0 = dx2n+1 −
n∑
j=1

xn+jdxj ,

where (x1, . . . , xn, xn+1, . . . , x2n, x2n+1) are the standard coordinates on
R

2n+1, and we let dV0 denote the standard volume form:

dV0 =
1
n!
η0 ∧ (dη0)n.

We denote the contact distribution of η0 by H0 ⊂ TR
2n+1, and we set

T0 =
∂

∂x2n+1
, Xj =

∂

∂xj
+ xn+j ∂

∂x2n+1
, and

Xn+j =
∂

∂xn+j
, 1 ≤ j ≤ n.

Observe that the collection {Xj , 1 ≤ j ≤ 2n} is a global framing for H0.
Note that the one-forms

η0, dx
j , dxn+j , 1 ≤ j ≤ n,

are the dual coframe to T0, Xj , Xn+j , 1 ≤ j ≤ n.
Let f = (f1, . . . , fm) be a smooth, R

m-valued function defined on the
closure of a domain D � R

2n+1. We define

XIf =

{
Xi1Xi2 . . . Xitf, for t > 0,
f, for t = 0,

where we have introduced the multi-index notation I = (i1, . . . , it), 1 ≤ ij ≤
2n and XIf = (XIf

1, . . . , XIf
m). (For t = 0, I denotes the empty index

I = ().) The integer t is called the order of I and written |I|.
Throughout this paper,M denotes a fixed smooth, compact contact mani-

fold of dimension 2n+1, with contact distributionH ⊂ TM . We call sections
of H horizontal vector fields. We let

πH : T ∗M → H∗

denote the projection map; by abuse of notation, we also let

πH : ΛpM → ΛpH∗

denote the extension of πH to the exterior product bundles. For convenience,
we assume that M supports a fixed contact one-form1 η. The characteristic
(or Reeb) vector field T is the unique vector field satisfying the conditions

1None of our results depend on this assumption, for if the line bundle TM/H is non-
trivial, we can lift to a double cover of M , where a global contact form does exist.
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T η = 1 and T dη = 0. We can then identify the dual contact distribution
with the annihilator of T , i.e.,

H∗ = {β ∈ T ∗M : T β = 0} ⊂ T ∗M ;

more generally
ΛpH∗ = {β ∈ Λp(M) : T β = 0},

and we have the identity

(1.1.1) πH(β) = T (η ∧ β).
Two forms β1 and β2 on M are said to be equal mod η, written

β1 = β2 mod η,

if and only if β1 = β2 + η ∧ α, for some α ∈ Ω∗(M). An easy exercise in the
exterior calculus proves the equivalences

β1 = β2 mod η ⇐⇒ η ∧ (β1 − β2) = 0 ⇐⇒
T ((β1 − β2) ∧ η) = 0 ⇐⇒ πH(β1) = πH(β2).

We will also fix an endomorphism J : H → H such that J2 = −Id and such
that the operator X → dη(X, JX) is non-negative. (Such an endomorphism
always exists.) We let g denote the Riemannian metric defined by the formula

g(X,Y ) = η(X)η(Y ) + dη(X, JY ),

were we have extended J to a map J : TM → TM by setting J(T ) =
0. The endomorphism J and the metric g are said to be adapted to the
contact structure. Finally, ∗ denotes the Hodge star operator associated to
the metric g.
We say that a chart φ : U → R

2n+1 for M is an adapted coordinate chart
if η = φ∗η0. It follows that the identities φ∗T = T0 and φ∗H = H0 hold
for φ adapted. An adapted atlas for M is a finite, smooth atlas {φα : Uα →
R

2n+1}, consisting of adapted coordinate charts, together with open regions
Dα � φα(Uα) such that {Wα = φ−1

α (Dα)} covers M . By compactness of
M and Darboux’s Theorem for contact structures [Arn, p. 362], M has an
adapted atlas. An adapted coordinate chart for a fibre bundle π : E → M
with m-dimensional fibres is a coordinate chart for E of the form

ψ : U → φ(V )× R
m : q → (φ(π(q)), χ(q))

with ψ surjective and where φ : V → R
2n+1 is an adapted chart for M . The

chart is said to be centred at the point q0 if in addition ψ(q0) = (0, 0). If
σ : V → U is a local section of E, the function fσ : φ(V ) → R

m defined by
the formula

fσ = χ ◦ σ ◦ φ−1

is called the local representation of σ.
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2. Global analysis on contact manifolds

In this section, we develop some of the analytical machinery we need to
study the space of contact diffeomorphisms of M . We begin by introducing
the Folland–Stein spaces Γs associated to a compact contact manifold. We
then introduce the notions of horizontal jet of a section of a fibre bundle and
define the notion of contact order of a differential operator. We close this
section with a discussion of Rumin’s Complex [R] and its associated Hodge
theory, which we need in Section 4 to construct a local parameterization of
the group of Γs-contact diffeomorphisms of a compact contact manifold M .
Most of the results in this section are extensions of definitions and theorems
in [Pal] and [E] to the context of contact manifolds.

2.1. Folland–Stein function spaces. Let D be a bounded domain in
R

2n+1. The Folland–Stein space Γs(D,Rm) is the Hilbert space completion
of the set of smooth, R

m-valued functions on D (the closure of D) with
respect to the inner product

(f, g)D,s :=
∑

0≤|I|≤s

∫
D
(XIf XIg) dV0.

The associated norm is written ‖f‖D,s =
√
(f, f)D,s. When no confusion

is likely to arise, we suppress reference to D and write ‖f‖s; and we set
Γs(D) := Γs(D,R1).

Remark 2.1.1. Although we used the contact framing {Xj : 1 ≤ j ≤ 2n}
of H0 and the volume form dV0 = 1

n!η0 ∧ (dη0)n to define the inner product,
an equivalent norm results if the framing is replaced by any smooth framing
of H0 and dV0 is replaced by any smooth volume form on D̄. In particular,
suppose that D′ ⊂ R

2n+1 is another bounded domain and F : D → D
′ is a

smooth diffeomorphism that restricts to a contact diffeomorphism between
D and D′. Then composition with F induces an isomorphism

ΓF :

{
Γs(D′,Rm) → Γs(D,Rm),
f → f ◦ F,

between Banach spaces. To see this, note that because the derivative of F
respects the contact distribution, XI(f ◦F ) is a linear combination of terms
of the form cJ · (XJf) ◦ F , |J | ≤ s, where cJ denotes a smooth function
formed from F and its derivatives. It follows that f ◦ F is of class Γs. We
caution the reader that the condition that F be a contact diffeomorphism
is essential. For if F does not preserve the contact distribution then the
expansion of XI(f ◦ F ) will in general involve terms of the form XJf with
|J | > s, which may not be square integrable.

The next lemma follows immediately from the definition of Γs.
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Lemma 2.1.2. The estimate

‖f‖s ≺
∑
j

‖Xjf‖s−1 + ‖f‖0

is satisfied for all f ∈ Γs(D), s > 0.

We shall repeatedly make use of the following Sobolev Lemma for Folland–
Stein spaces, which is an immediate corollary of [FS, Theorem 21.1].

Lemma 2.1.3. Let D′ � D � R
2n+1, and let s = k + n + 2, k ≥ 0.

Let f ∈ Γs(D,Rm). Then the functions XIf are continuous on D̄′ for all
multi-indices of order |I| ≤ k. Moreover,

max
x∈D̄′

|XIf(x)| ≺ ‖f‖D,s

for all |I| ≤ k. If ‖f‖D,s < ∞ for s = 2k + n + 2, then f is of class Ck

on D̄′. Moreover, the linear map

Γs(D,Rm)→ Ck(D′,Rm)

defined by restriction to D′ is continuous.

2.2. Estimates for algebraic operations. In this section, we prove some
basic estimates. Lemmas 2.2.1 and 2.2.2 are needed for our proof in Section 3
that composition and inverses of contact diffeomorphisms are continuous
operations. Lemma 2.2.3 and Proposition 2.3.5 are fundamental estimates
used throughout the paper.

Lemma 2.2.1. Let s ≥ 2n + 3, k ≤ s and consider open sets D′ � D �
R

2n+1. Then, for any functions f ∈ Γs(D), g ∈ Γk(D),
‖f · g‖D′,k ≺ ‖f‖D,s · ‖g‖D,k.

Consequently, multiplication extends to a smooth bilinear mapping

Γs(D)× Γk(D)→ Γk(D′).

Proof. We need only to prove the estimate for smooth functions f and g on
D. Recall that

‖f · g‖2D′,k =
∑
|I|≤k

∫
D′
|XI(f · g)|2dV0.

Applying the Leibniz rule, we find that

‖f · g‖2D′,k ≺
∑

|J |+|K|≤k

∫
D′
|XJ(f)|2 |XK(g)|2 dV0.



CONTACT DIFFEOMORPHISMS 57

There are two cases to consider: k ≤ (n + 1) and k > n + 1. In the first
case, |J | ≤ n+ 1 for every summand, and we have the estimates∫

D′
|XJf |2 |XKg|2 dV0 ≺

(
sup
x∈D′

|XJf(x)|2
)
‖XKg‖2D′,0

≺ ‖f‖2D,|J |+n+2 ‖g‖2D,k
≺ ‖f‖2D,s ‖g‖2D,k,

where we have used the Sobolev inequality2 (Lemma 2.1.3) at the penulti-
mate inequality.
In the latter case, in each term either |J | ≤ n + 1 or |K| ≤ k − (n + 2).

In the first instance, we bound the term by ‖f‖2D,s ‖g‖2D,k as before; in the
latter case, we have∫

D′
|XJ(f)|2 |XK(g)|2 dV0 ≺ ‖XJf‖2D′,0 sup

x∈D′
|XKg(x)|2

≺ ‖f‖2D,|J | ‖g‖2D,|K|+n+2

≺ ‖f‖2D,s ‖g‖2D,k,
where we have again made use of Lemma 2.1.3. Summing over all terms
gives the final estimate. �

Lemma 2.2.2. Let D′ and D be open sets with D′ � D � R
2n+1, and let f

be a function in Γs(D), where s ≥ 2n+3. Suppose that 1/f is bounded from
above on D̄′ by a positive constant C > 0. Then

‖1/f‖D′,s ≺ (1 + ‖f‖D,s)s .
Consequently, 1/f is contained in Γs(D′). Moreover, if 1/f ′ < C for another
function f ′ ∈ Γs(D) then

‖1/f − 1/f ′‖D′,s ≺ (1 + ‖f‖D,s)s(1 + ‖f ′‖D,s)s ‖f − f ′‖D,s.
Proof. We have to estimate the quantities∫

D′

∣∣∣∣XJ

(
1
f

)∣∣∣∣2 dV0,

for |J | = t ≤ s. Now, by the quotient and product rules, each such term is
bounded by a sum of expressions of the form∫

D′

∣∣∣∣XJ1f ·XJ2f · . . . XJpf

fp+1

∣∣∣∣2 dV0,

2We note here that when |J | = n + 1, |J | + n + 2 = 2n + 3; whence the condition
s ≥ 2n + 3 in the statement of the Lemma.
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where |J1| + |J2| + · · · + |Jp| = t. Notice that |Jj | > s/2 for at most one
multi-index. Hence, computing as in Lemma 2.2.1, we have∫

D′

∣∣∣∣(XJ1f) · (XJ2f) · · · (XJp)f
fp+1

∣∣∣∣2 dV0 ≺ C2(p+1) · (‖f‖2D,s)p−1 ‖f‖2D,s
≺ (1 + ‖f‖D,s)s.

Summing over all terms gives the first estimate.
The second estimate follows immediately by applying the first estimate

and applying Lemma 2.2.1 to the quantity 1/f − 1/f ′ = (f ′ − f)/ff ′. �
A minor modification of the proof of Lemma 2.2.1 gives an estimate for

the product of several functions.

Lemma 2.2.3. Let D′ � D � R
2n+1, with D′ and D open and s ≥ 2n+ 4.

Then
‖f1 · · · fp‖D′,s ≺ ‖f1‖D,s · · · ‖fp‖D,s

for all fj ∈ Γs(D) for j = 1, 2, . . . , p.
Moreover, for s > 2n+ 4,

‖f1 · · · fp‖D′,s

≺
p∑
j=1

‖f1‖D,s−1 · · · ‖fj−1‖D,s−1‖fj‖D,s‖fj+1‖D,s−1 · · · ‖fp‖D,s−1,

for all fj ∈ Γs(D), j = 1, 2, . . . , p.

Proof. The proof is similar to the proof of Lemma 2.2.1. By the product rule,

‖f1 · · · fp‖2D′,s ≺
∑
|J |≤s

∫
D′
|XJ(f1 · · · fp)|2 dV0

≺
∑

|J1|+...+|Jp|≤s

∫
D′
|XJ1f1|2 · · · |XJpfp|2 dV0,

where XIf is defined in Section 2.1. We need only to bound each term in the
right-hand summation. Since s ≥ 2n+ 4, it follows that |Jj | > s/2 ≥ n+ 2
for at most one multi-index, say Jj , in the right-hand sum and that (since
n+ 2 ≤ s/2)

|Ji|+ n+ 2 ≤ s/2 + n+ 2 ≤ s for i �= j.

Hence, by Lemma 2.1.3, XJifi is continuous and supx∈D′ |XJifi| ≺ ‖fi‖D,s.
Consequently,∫

D′
|XJ1f1|2 · · · |XJpfp|2 dV0 ≺

∏
i�=j

sup
x∈D′

|XJifi|2 ·
∫
D′
|XJjfj |2 dV0

≺ ‖f1‖2D,s · · · ‖fp‖2D,s,
from which the first estimate follows.
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Now suppose that s > 2n+4. Then in the previous paragraph |Ji|+n+2 ≤
s− 1; and supx∈D′ |XJifi| ≺ ‖fi‖D,s−1 for i �= j, yielding the estimate

‖f1 · · · fp‖2D′,s

≺
p∑
j=1

‖f1‖2D,s−1 · · · ‖fj−1‖2D,s−1‖fj‖2D,s‖fj+1‖2D,s−1 · · · ‖fp‖2D,s−1

≺
⎛⎝ p∑
j=1

‖f1‖D,s−1 · · · ‖fj−1‖D,s−1‖fj‖D,s‖fj+1‖D,s−1 · · · ‖fp‖D,s−1

⎞⎠2

.

�

2.3. The Folland–Stein space of sections of a vector bundle. In this
section, we define the Folland–Stein of sections of a vector bundle over a
contact manifold.
We begin by extending the definition of the Folland–Stein space Γs(D,Rm)

of functions to the space Γs(M,Rm) of functions on a compact contact man-
ifold. Let (φα, Uα, Dα) be an adapted atlas for M . A function f :M → R

m

is said to be a Γs-function if the functions fα = f ◦ φ−1
α lie in Γs(Dα,R

m)
for all α. The formula

(f, g)M,s =
∑
α

(fα, gα)Dα,s

makes Γs(M,Rm) into a separable Hilbert space. The Sobolev Lemma 2.1.3
clearly extends to this setting:

Lemma 2.3.1. Let s = k + n + 2, and let Yj, j = 1, 2, . . . , k be smooth
sections of H ⊂ TM . Then for any function f ∈ Γs(M,Rm), the functions
Y1Y2 · · ·Ykf are continuous on M . Moreover,

max
x∈M

|Y1Y2 · · ·Ykf(x)| ≺ ‖f‖M,s

If ‖f‖M,s <∞ for s = 2k+n+2, then f is of class Ck on M . In particular
for s = 2k + n+ 2, the linear map

Γs(M,Rm)→ Ck(M,Rm)

is continuous.

Similarly, Lemma 2.2.3 assumes the following global form:

Lemma 2.3.2. If s ≥ 2n+ 4

‖f1 · · · fp‖M,s ≺ ‖f1‖M,s · · · ‖fp‖M,s,
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and if s > 2n+ 4,

‖f1 · · · fp‖M,s ≺
k∑
j=1

‖f1‖M,s−1 · · · ‖fj−1‖M,s−1‖fj‖M,s

× ‖fj+1‖M,s−1 · · · ‖fp‖M,s−1,

for all fj ∈ Γs(M), j = 1, 2, . . . , p.

We define the Hilbert space of Folland–Stein sections Γs(E) for π : E →
M a smooth vector bundle of rank m as follows. View Γs(M,Rr), r ≥ 1, as
the Folland–Stein space of sections of the trivial vector bundleM×R

r →M .
For r sufficiently large, there is a vector bundle injection E

ι
↪→M×R

r. Define
an inner product on C∞(E) by the formula

(f, g)E,s = (f ◦ ι, g ◦ ι)M,s

for f, g ∈ C∞(E), and let Γs(E) be the Hilbert space completion of C∞(E)
with respect to this inner product. It is not difficult to check that, although
the inner product depends on ι, the space Γs(E) does not.

Remark 2.3.3. Because Γs(E) is a closed subset of Γs(M,Rr), the Sobolev
Lemma (2.3.1) extends to this setting,

The next proposition is the analogue of “Axiom B2” of Palais (see [Pal,
p. 10]) in the setting of contact manifolds.

Proposition 2.3.4. Let F : M → N be a smooth contact diffeomorphism
between two compact, contact manifolds. Let E → N be a smooth vector
bundle over N and let F ∗E → M be its pull-back to M . Then the map
σ → σ ◦ F is a Hilbert space isomorphism between Γs(E) and Γs(F ∗E).

Proof. Choose a bundle injection ι : E ↪→ N×R
r, and let {φα : Uα → R

2n+1}
be an adapted atlas for N (see Introduction section). Set U ′α = F−1(Uα) and
φ′α = φα ◦ F . Then {φ′α : U ′α → R

2n+1} is an adapted atlas for M . Use this
atlas to define the inner product on Γs(M,Rr). Then by construction

(f ◦ F, g ◦ F )s,M = (f, g)s,N
for all f, g ∈ Γs(N,Rr). Restricting f and g to sections of E then gives
the result. �
The next proposition shows that Γs satisfies “Axiom B5” of Palais ( [Pal,

p. 39] for all s ≥ 2n+ 4.

Proposition 2.3.5. Let Ej → M , j = 1, 2 be smooth vector bundles over
M and let F : E1 → E2 be a smooth (not necessarily linear) fibre-preserving
map. Then the map

ΓF : Γs(E1)→ Γs(E2) : σ → F ◦ σ
is a C∞ map for all s ≥ 2n+ 4.
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Moreover, if E1 is equipped with norm | · |E1, then for every σ ∈ Γs(E1)
and every c > 0 there is a polynomial Q with non-negative coefficients of
total degree at most s such that

(*) ‖F ◦ σ − F ◦ σ′‖s ≤ ‖σ − σ′‖sQs(‖σ‖s, ‖σ′‖s)
for all σ′ ∈ Γs(E1), with |σ′ − σ| < c.

Proof. Our proof follows a similar argument in [Pal, Theorem 11.3]. We first
show that ΓF satisfies the polynomial estimate (*), from which continuity of
ΓF follows. It suffices to work in local coordinates of an adapted atlas forM .
Then Γs sections of Ej can be identified with elements of Γs(D,Rmj ), where
mj is the fibre dimension of Ej . Let f : D → R

m1 be the local coordinate
representation of σ, and choose a constant c > 0. Choose σ′ so that its
local representative g ∈ Γs(D,Rm1) satisfies supx∈D |g(x)− f(x)| < c. Then
in local coordinates F ◦ σ(x) = F (x, f(x)) and F ◦ σ′(x) = F (x, g(x)). By
smoothness of F and compactness of D′, all derivatives of F are bounded
and smooth on the set {(x, y) : x ∈ D′, |y − f(x)| < c. Hence, there is a
fixed constant C > 0 such that

(i) |F (k)(x, y)| < C and |F (k)(x, y)− F (k)(x, z)| < C|y − z|
for all (x, y) and (x, z) with |y−f(x)| ≤ c and |z−g(x)| ≤ c, where F (k)(x, y)
denotes any mixed partial derivative of F of order k ≤ s.
Next recall that ‖F ◦ f − F ◦ g‖2D′,s is a sum of integrals of the form

(ii)
∫
D′
|XI {F (x, f(x))− F (x, g(x))} |2 dV

for |I| ≤ s. By the chain rule, XI {F (x, f(x))− F (x, g(x))} is a finite sum
of terms of the form

F (k)(x, f(x)) ·XI1f(x) · · ·XIkf(x)− F (k)(x, g(x)) ·XI1g(x) · · ·XIkg(x)

(iii)

=
{
F (k)(x, f(x))− F (k)(x, g(x))

}
·XI1f(x) · · ·XIkf(x)

+ (F (k)(x, g(x)) · {XI1f(x) · · ·XIkf(x)−XI1g(x) · · ·XIkg(x)} ,

where 0 ≤ k ≤ s and
∑k

j=1 |Ij | ≤ s. Applying (i) to (iii) gives the estimate

|F (k)(x, f(x)) ·XI1f(x) · · ·XIkf(x)− F (k)(x, g(x)) ·XI1g(x) · · ·XIkg(x)|
(iv)

≤ C |f(x)− g(x)| · |XI1f(x) · · ·XIkf(x)|+ C |XI1f(x) · · ·XIkf(x)

−XI1g(x) · · ·XIkg(x)|
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The right-hand side of (iv) can, in turn, be bounded by a finite sum of
terms form

C|XI0(f(x)− g(x))| · |XI1f(x)| . . . |XIk′f(x)|(v)

· |XIk′+1
g(x)| . . . |XIk′+k′′g(x)|

where 0 ≤ |Ii| and
∑k′+k′′

i=0 |Ii| ≤ s. Substituting (v) into (ii) shows that
‖F ◦ f − F ◦ g‖2D′,s is bounded by a sum of integrals of the form

∫
D
C2|XI0(f(x)− g(x))| · |XI1f(x)| · · · |XIk′f(x)|

(vi)

· |XIk′+1
g(x)| · · · |XIk′+k′′g(x)||XJ0(f(x)− g(x))| · |XJ1f(x)| · · · |XJ�′f(x)|

· |XJ�′+1
g(x)| · · · |XJ�′+�′′g(x)| dV0,

where 0 ≤ |Jj | and
∑�′+�′′

j=0 |Jj | ≤ s.
Notice that |Ii| ≥ s/2 and |Jj | ≥ s/2 for at most one i and at most one

j, and since s ≥ 2n+ 4, the Sobolev Lemma 2.1.3 applies to show that the
remaining factors in the integrand are all continuous, hence bounded on the
compact set {(x, y) : x ∈ D′, |y − f(x)| ≤ c}. It follows that the integral in
(vi) is bounded by an expression of the form

C ′‖f − g‖2D,s‖f‖k
′
D,s‖g‖k

′′
D,s‖f‖�

′
D,s‖g‖�

′′
D,s,

for C ′ a constant depending on s, F , c, and D′. Since k′ + k′′ ≤ s and
′ + ′′ ≤ s, it follows that

‖F ◦ f − F ◦ g‖D′,s ≺ ‖f − g‖D,s Q(‖f‖D,s, ‖g‖D,s),
where Q(u, v) is a polynomial of bidegree at most s in u and v, with non-
negative coefficients. Applying this to each chart in an adapted atlas yields
the global estimate (*).
We now show that ΓF is C1 with derivative given by the formula

dΓF = ΓδF : Γs(E1)× Γs(E1)→ Γs(E2),

where δF : E1 ×M E1 → E2 is the smooth fibre bundle map defined by the
formula

δFx(u, v) =
d

dh

∣∣∣∣
h=0

F (u+ hv), for all x ∈M and u, v ∈ E1,x.

To show that

lim
v→0

‖ΓF (σ + v)− ΓF (σ)− ΓδF (σ, v)‖s
‖v‖s = 0,

first observe that δF can be expressed as a smooth map of the form

δF : E1 → Hom(E1, E2).
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Hence,
Γ(δF ) : Γs(E1)→ Γs (Hom(E1, E2))

is continuous, and for all ε > 0 there is a δ1 such that

‖Γ(δF )(σ + v)− Γ(δF )(σ)‖s < ε, whenever ‖v‖s < δ1.

Using this observation, we compute as follows:

ΓF (σ + v)− ΓF (σ)− ΓδF (σ, v) = F (σ + v)− F (σ)− δFσ · v

=
∫ 1

0
{δFσ+tv · v − δFσ · v} dt

=
∫ 1

0
{ΓδF (σ + tv)(v)− ΓδF (σ)(v)} dt.

Hence, if ‖v‖s < δ1 then

‖ΓF (σ + v)− ΓF (σ)− ΓδF (σ, v)‖s

≤
∫ 1

0
‖ΓδF (σ + tv)(v)− ΓδF (σ)(v)‖s dt < ε‖v‖s.

This show that ΓF is differentiable at σ. That it is continuously differentiable
follows from the identity dΓF = ΓδF and continuity of ΓδF .
That ΓF is smooth follows by induction. For assume that for some k > 0,

ΓF is Ck, for all smooth F : E1 → E2, and all Ej . To show that ΓF is Ck+1,
we need only to show that its derivative dΓF : Γs(E1×E1)→ Γs(E2) is Ck.
But dΓF = ΓδF and δF is a smooth fibre bundle map. Consequently, dΓF is
Ck, completing the induction step. �

2.4. The Folland–Stein space of sections of a fibre bundle. In this
section, we define the Folland–Stein space Γs(E) of sections of E for s ≥
2n+4 in the case where π : E →M is a smooth fibre bundle overM . For this
range of s, Γs(E) is a smooth infinite-dimensional manifold modelled on the
Folland–Stein space of sections of certain vector bundles. The construction
and the proof are due to Palais (see [Pal, Chapters 12 and 13] for details).
We emphasize that this construction depends heavily on Propositions 2.3.4
and 2.3.5 (Palais’ Axioms B2 and B5), which are satisfied for s ≥ 2n+ 4.
Let π : E → M be a fibre bundle, and choose a smooth section σ ∈

C∞(E). The bundle of vertical tangent vectors along σ is the vector bundle
defined by

Tσ(E) = {X ∈ TEσ(x) : x ∈M,dπ(X) = 0}.
Palais shows that there is a smooth fibre bundle isomorphism

(2.4.1) ψσ : Tσ(E)
	−→ Oσ

open⊂ E,
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where Oσ is a neighbourhood of the image of σ. Palais also shows that the
the image of every continuous section of E is contained in a set of the form
Oσ for some smooth section σ.
Consequently, every continuous section of E can be identified with a con-

tinuous section of Tσ(E) for some σ ∈ C∞(E), and C0(E) can we written
as the following union of open sets:

C0(E) =
⋃

σ∈C∞(E)

C0(Tσ(E)).

Since s ≥ 2n+4 ≥ n+2, Lemma 2.3.1 applies to give continuous inclusions
Γs(Tσ(E)) ⊂ C0(Tσ(E)).
We may thus define the Folland–Stein space Γs(E) to be the union

Γs(E) =
⋃

σ∈C∞(E)

Γs(Tσ(E)),

equipped with the weakest topology such that Γψσ
: Γs(Tσ(E)) → Γs(E) is

a continuous open map for all σ ∈ C∞(E).
In fact, Γs(E) is a Hilbert manifold with C∞ atlas given by the charts

Γ(ψ−1
σ ); and as Palais shows, smoothness of the transition functions for this

atlas follows from Proposition 2.3.5.
The above construction is functorial:

Proposition 2.4.2 (Palais, Theorem 13.4). Let Ej → M , j = 1, 2
be smooth fibre bundles over M and let F : E1 → E2 be a smooth fibre-
preserving map. Then the map

Γ(F ) : Γs(E1)→ Γs(E2) : σ → F ◦ σ
is a C∞ map of Hilbert manifolds for all s ≥ 2n+ 4.

Remark 2.4.3. By construction, the Sobolev Lemma 2.3.1 extends to define
a continuous injection Γs(E) ⊂ Ck(E), for s = max(2k + n+ 2, 2n+ 4).

The case where E is the trivial fibre bundle E = M × N → M is an
important special case:

Definition 2.4.4. Let N be a smooth manifold without boundary. For
s ≥ 2n + 4, the Folland–Stein space Γs(M,N) of maps from the contact
manifold M to the manifold N is the Folland–Stein space of sections of the
trivial fibre bundle M ×N →M .

Corollary 2.4.5. Let F : N → N ′ be a C∞ map between C∞ manifolds.
Left composition with F defines a C∞

LsF : Γs(M,N)→ Γs(M,N ′) : G → F ◦G
for all s ≥ 2n + 4. If F : N → N is a diffeomorphism of N then LsF is a
diffeomorphism of Γs(M,N).
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Proof. View composition with F as a smooth bundle map (x, y) → (x, F (y)),
and apply Proposition 2.4.2. If F is a diffeomorphism then RsF−1 is the
smooth inverse of RsF . �

2.5. Horizontal jets and differential operators. The goal of this section
is to extend the framework of [Pal, Chapter 15] to the context of differential
operators on contact manifolds.
Let π : E →M be a smooth fibre bundle over M , and choose an adapted

coordinate chart

ψ : U → φ(V )× R
m : p → (x, y),

as defined in Section 1.1. Two smooth local sections σi, i = 1, 2, of E defined
on V , with local representations fi : φ(V ) → R

m, are said to be contact
equivalent up to order k at a point p ∈ V if and only if

(2.5.1) XIf1(φ(p)) = XIf2(φ(p))

for every multi-index I with 0 ≤ |I| ≤ k. It is easy to check that contact
equivalence is an equivalence relation and that it is independent of coor-
dinates. The horizontal k-jet of σ at p, written jkHσ(p), is the equivalence
class of the local section σ at p ∈M , JkHE denotes the space of all horizontal
k-jets. The map π : JkHE →M defined by

π
(
jkHσ(p)

)
= p

makes the space of horizontal k-jets into a fibre bundle with fibres of dimen-
sion m ·Nk, where Nk is the number of indices A with |A| ≤ k.

Remark 2.5.2. By virtue of the commutation relations among the vector
fields T0, X1,. . .X2n, any differential operator of the form Y1Y2 · · ·Yr, where
Y1, . . . , Yr are arbitrary vector fields on an open set V ⊂M , can be expressed
uniquely in local coordinates as a linear combination of operators of the form

DA := X1 · · ·X1︸ ︷︷ ︸
a1

, X2 · · ·X2︸ ︷︷ ︸
a2

, . . . , X2n · · ·X2n︸ ︷︷ ︸
a2n

T0 · · ·T0︸ ︷︷ ︸
a2n+1

,

where A = (a1, a2, . . . , a2n, a2n+1), 0 ≤ aj . Moreover, if Y1, . . . , Yr are all
horizontal, then a1 + a2 + · · · + a2n + 2a2n+1 = r. The integer |A| = a1 +
· · ·+ a2n + 2a2n+1 is called the contact order of DA. It follows that σ1 and
σ2 are contact equivalent up to order k at p if and only if

DAf1(φ(p)) = DAf2(φ(p))

for all multi-indices A with |A| ≤ k.

Lemma 2.5.3. Let E →M be a smooth fibre bundle with fibre dimension m.
Then JkHE →M is a smooth fibre bundle. Moreover, if σ is a smooth section
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of E then jkHσ : p → jkHσ(p) is a smooth section of JkHE. If F : E1 → E2 is
a smooth map of fibre bundles, then so is the map

JkH(F ) : J
k
HE1 → JkHE2 : jkHσ(p) → jkH(F ◦ σ)(p).

This construction is functorial, i.e., JkH(G ◦ F ) = JkH(G) ◦ JkH(F ), for G :
E2 → E3 a smooth map of fibre bundles.

Proof. We give an outline of the proof, leaving some details to the reader.
To define a coordinate chart for JkHE, choose a point q0 ∈ E and let p0 =
π(q0). Let

ψ : U → φ(V )× R
n : q → (x, y)

be adapted coordinates for E centred at q0 (see Section 1.1); and let Ũ be
the set of horizontal k-jets of sections of E defined on V and with values in
U ⊂ E. Viewing R

m·Nk as the space of m×Nk matrices, we can define local
fibre bundle coordinates

ψ̃ : Ũ → R
2n+1 × R

m·Nk

by the formula

ψ̃(jkHσ(p)) = ((x(p)), (DAfσ(p))) ,

where fσ is the local representation of σ (Section 1.1), DAfσ is the deriv-
ative of fσ with respect to the multi-index A, and we have given the set
{A : |A| ≤ k} the lexicographical ordering. We need only to show that
ψ̃ is a bijection between Ũ and φ(V ) × R

m·Nk for U a sufficiently small
neighbourhood of q0. By the discussion in Remark 2.5.2, ψ̃ is injective.
To prove surjectivity, choose a point S = {SA ∈ R

m : |A| ≤ k} ∈ R
m·Nk ,

and consider the polynomial section

y = σS(x) =
∑
A

1
A!
SA · (x1)a1 · · · (x2n)a2n(x2n+1)a2n+1 ,

where we have adopted the notation A! = a1! · · · a2n!a2n+1!. Now for any
point p = (x1, . . . , x2n+1), the map

S → ψ̃(σS(p)) = (x,DAσS(x))

may be viewed as a linear map Lx : R
m·Nk → R

m·Nk . Note that Lx depends
smoothly on x. To show that Lx is a bijection for x sufficiently near 0, we
need only to verify that L0 is injective. But a straightforward computation
shows that

DA′σS(0) =

{
SA for A′ = A,

0 otherwise,
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i.e., L0 is the identity map. This shows that ψ̃ is surjective on the fibre of
JkHE over all points p sufficiently near p0. Thus, after a possible shrinking
of U , the map

ψ̃ : Ũ → R
2n+1 × R

m·Nk

is a bijection between Ũ and φ(U)× R
m·Nk .

By letting q0 vary over all E, we obtain a smooth atlas for JkHE. We
topologize JkHE by requiring each of the charts ψ̃ to be a homeomorphism.
That these charts form a smooth atlas making JkHE into a smooth manifold
follows from the observation that if ψ̃ and ψ̃′ are two charts then ψ̃′ ◦ ψ̃−1 is
a diffeomorphism between φ̃(Ũ ∩ Ũ ′) and φ̃′(Ũ ∩ Ũ ′). The proof follows by
standard arguments in advanced calculus (i.e., the Inverse Function theorem
and the Chain rule) and is left to the reader.
That JkH(F ) and j

k
Hσ are smooth follows from the Chain Rule, as does

the identity JkH(G ◦ F ) = JkH(G) ◦ JkH(F ). �

Remark 2.5.4. In the special case where E →M is a smooth vector bundle,
then so is JkHE →M , with linear structure induced by the formula

a1j
k
Hσ1(p) + a2j

k
Hσ2(p) = jkH(a1σ1 + a2σ2)(p).

Lemma 2.5.5. Let E → M be a smooth fibre bundle over M . Then the
map

Γ(jH) : Γ
s(E)→ Γs−k(JkHE) : σ → jkHσ

is a smooth map of Hilbert manifolds for all k and s such that s ≥ 2n+4+k.
In the special case where E is a vector bundle, Γ(jH) is a bounded linear
map of Hilbert spaces.

Proof. From the discussion in Section 2.1, it suffices to analyse Γ(jH) in the
neighbourhood of a fixed section of E. By definition of the Hilbert manifold
structure of Γs(E), we may, without loss of generality, assume that E is a
vector bundle, and we must only show that the linear map Γ(jH) is bounded.
By definition of the inner product on Γs(E), the result then follows from a
local computation: choose an open set V � M and a trivialization E|V �
V ×R

m. Then a section σ of E over V is given by an R
m-valued function fσ,

and its horizontal k-jet jkHσ : V → JkHM can be identified with the m×Nk

matrix-valued function

jkHσ = (DAfσ)|A|≤Nk
.
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So

‖jkHσ‖2V,s−k =
∑
j

∑
0≤|J |≤s−k

∫
V
|XJ(jkHσ

j)|2dV0

=
∑

0≤|J |≤s−k

∑
|A|≤k

∫
|XJDAfσ|2 dV0

≤
∑

0≤|I|≤s

∫
|XIfσ|2 dV0 ≤ ‖σ‖2V,s.

�

Definition 2.5.6. Let E1 and E2 be smooth fibre bundles over M . A dif-
ferential operator of contact order k from E1 to E2 is a map of the form

D : C∞(E1)
jk
H−→ C∞(JkHE1)

F∗−→ C∞(E2),

where F : JkHE1 → E2 is a smooth fibre bundle map and F∗ is defined by
the formula

F∗(σ̂) = F ◦ σ̂ for σ̂ ∈ C∞(JkHE1).

Proposition 2.5.7. Let D be a differential operator of contact order k as
above. Then D extends to a smooth map

D : Γs(E1)
jk
H−→ Γs−k(JkHE1)

F∗−→ Γs−k(E2),

for all s ≥ 2n+ 4 + k.
In the special case where E1 and E2 are normed vector bundles, for every

section σ ∈ Γs(E1) and every constant c > 0, there is a polynomial Q of
degree at most s− k such that the estimate

‖Dσ −Dσ′‖s−k ≤ ‖σ − σ′‖s ·Q(‖σ‖s, ‖σ′‖s)
holds for every section σ′ ∈ Γs(E1) satisfying |jkHσ′| ≤ c.

Proof. The first part of the proposition is an immediate corollary to Propo-
sitions 2.5.5 and 2.3.5. The second part of the proposition follows from esti-
mate in Proposition 2.3.5. �

Remark 2.5.8. The restriction s ≥ 2n+ 4 + k in Proposition 2.5.7 can be
relaxed to s ≥ k when D is a linear operator, and the estimate assumes the
form ‖Dσ‖s−k ≤ C‖σ‖s. When D is non-linear, the term ‖Dσ‖s−k involves
products of σ and its derivatives, and estimating these expressions uses
Lemma 2.2.3, which assumes s− k ≥ 2n+ 4.

Examples 2.5.9. As examples, we consider the contact order of some basic
operators that we need later. Let M be a contact manifold with contact
form η and characteristic vector field T .
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(i) Lie differentiation with respect to the Reeb vector field LT : Γs(M)→
Γs−2(M) : f → T (f) is a differential operator of contact order 2. To
see this, we work locally, using an adapted coordinate chart φ : U →
R

2n+1 as in Section 1.1. Note that φ∗T = T0 = ∂
∂x2n+1 . But since

T0 = [X1, Xn+1], the Lie bracket of the two horizontal vector fields,
it follows that T has contact order 2.

(ii) The exterior derivative operator d : Γs(ΛpM) → Γs−2(Λp+1M) :
α → dα is a differential operator of contact order 2. We again work
locally. First consider the case p = 0, where α = f , for f a scalar
function on M . In this case,

df =
2n∑
k=1

Xk(f)dxk + T0(f)η0.

Since the term T0(f)η0 has contact order 2, and all other terms depend
only on the horizontal 1-jet of f , we see that dα has contact order 2.
For p > 0, α can be expressed in the form

α =
∑
I

fI dx
I +

∑
K

gK η0 ∧ dxK ,

where dxI = dxi1 ∧ · · · ∧ dxip and η0 ∧ dxK = η0 ∧ dxk1 ∧ · · · ∧ dxkp−1 ,
where summation ranges over indices I and K of the forms i1 < i2 <
· · · < ip < 2n+ 1 and k1 < k2 < · · · < kp−1 < 2n+ 1. Hence,

dα =
∑
I

dfI ∧ dxI +
∑
K

dgK ∧ η0 ∧ dxK +
∑
K

gKdη0 ∧ dxK ,

which is clearly of contact order 2.
(iii) Exterior differentiation followed by projection onto Λ∗H∗ is a differ-

ential operator of contact order 1:

dH : Γs(ΛpM)→ Γs−1(Λp+1H∗) : α → dα− η ∧ (T dα).

To see this, let α be given in local coordinates as in (ii). Then an easy
computation gives

dHα =
∑
I

dHfI ∧ dxI +
∑
K

gKdη0 ∧ dxK .

But dHfI =
∑2n

k=1Xk(fI)dxk, which is of contact order 1.
(iv) Now suppose s ≥ 2n+4, let E →M be a smooth fibre bundle, and let

β be a fixed, smooth p-form on the total space E. The restriction on
s ensures that the Folland–Stein space Γs(E) is well-defined. (Since
ΛpM → M is a vector bundle, the restriction s − 2 ≥ 2n + 4 is not
required to define Γs−2(ΛpM).) We claim that the differential operator

Pβ : Γs(E)→ Γs−2(ΛpM) : σ → σ∗β
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is a differential operator of contact order 2. To see this, we work in
adapted product coordinates (x, y) ∈ R

2n+1 × R
m on E (see Sec-

tion 1.1). A section σ of E is then represented locally by a function
y = fσ(x), which (by the Sobolev lemma) is at least of class C1. The
form β can be written

β =
∑

|I|+|K|=p
AI,K(x, y) dxI ∧ dyK(2.5.10)

+
∑

|I|+|K|=p−1

BI,K(x, y) η0 ∧ dxI ∧ dyK ,

where I and K are the obvious increasing multi-indices. Note that the
pullback σ∗β is obtained by setting y = fσ(x) and expanding. But
for a function fσ, the differential fσ → dfσ is a differential operator
of contact order 2, since it involves derivatives in the T0 direction.
Applying this observation to each term in the above expansion of β
shows that σ → σ∗β has contact order 2.

(v) For s ≥ 2n+ 4, E and β as above,

PH,β : Γs(E)→ Γs−1(ΛpH∗) : σ → πHσ
∗β

is a differential operator of contact order 1. Using the expan-
sion (2.5.10) above, we have the local identity

η ∧ σ∗β =
∑

|I|+|K|=p
AI,K(x, y) η0 ∧ dxI ∧ dfKσ .

Now observe that

dfσ =
n∑
j=1

Xj(fσ)dxj +Xn+j(fσ)dxn+j + T0(fσ)η0.

It follows that the local expression for η ∧ σ∗β only involves first
derivatives of fσ with respect to X1, . . . , X2n. Hence, σ → η∧σ∗β has
contact order 1. To see that σ → πHσ

∗β has contact order 1, note
that by equation (1.1.1), πHσ∗β = T (η ∧ σ∗β). Since α → T α
is a smooth map of vector bundles, it preserves Γs-spaces. Hence, the
composition σ → η ∧ σ∗β → T (η ∧ σ∗β) also has contact order 1.

2.6. Rumin’s complex. In [R], Rumin constructed a novel resolution

0 ↪→ R −→ R0 dR−→ R1 dR−→ · · · dR−→ Rn DR−→ Rn+1 dR−→ Rn+2

dR−→ · · · dR→ R2n+1 −→ 0

of the constants on a contact manifold. In this section, we give a brief sketch
Rumin’s construction.
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For n < p ≤ 2n+ 1, Rp denotes the subbundle of ΛpM given by

Rp := {β ∈ ΛpM : η ∧ β = 0 and dη ∧ β = 0}
and for 0 ≤ p ≤ n, Rp denotes the quotient bundle Rp = Λp(M)/Ip, where
I0 = 0 and

Ip := {η ∧ α+ dη ∧ β : α ∈ Λp−1M,β ∈ Λp−2M} for 0 < p ≤ n.

Also note that for 0 ≤ p ≤ n, Rp can be written as a quotient bundle of
ΛpH∗:

(2.6.1) τ : ΛpH∗ → Rp = ΛpH∗/(dη ∧ Λp−2H∗).

Let Rp = C∞(Rp). Then R0 = Ω0(M), and since we make the identification
H∗ = R1 with the annihilator of T ,

R1 ≡ {α ∈ Ω1(M) : T α = 0}.
The linear differential operators dR and DR are induced by the exterior

derivative operator on forms. Let β ∈ Rp be any section of Rp. There are
three cases to consider:

(i) For p > n, set dRβ = dβ. It is easy to see that dβ is a section of Rp+1.
(ii) For p < n, set dRβ = πR(dβ̃), where β̃ ∈ Ωp(M) is any p-form with

πRβ̃ = β and πR : ΛpM → Rp denotes the quotient map. It is not
difficult to check that dRβ is independent of the choice of β̃.

(iii) For p = n, set DR(β) = dβ̃, where β̃ ∈ Ωn(M) is an n-form satisfying
the conditions πRβ̃ = β and dβ̃ ∈ Rn+1. Rumin shows that a form
β̃ satisfying these conditions exists and that dβ̃ is independent of the
choice of β̃.

Rumin also shows that dR and DR are linear differential operators, with
dR of contact order 1 and DR of contact order 2. Using the star operator,
Rumin proves that Rk is dual to R2n+1−k and that the adjoint operators
satisfy the identities

δR = (−1)k ∗ dR ∗ for k �= (n+ 1) and D∗R = (−1)n+1 ∗DR ∗ .
Thus, δR has contact order 1 and D∗R has contact order 2. The next propo-
sition then follows from Proposition 2.5.7 above.

Proposition 2.6.2 (Rumin). Let (M2n+1, η) be a compact contact man-
ifold with adapted metric g and the associated complex (R∗, dR). Then the
following estimates hold:{

‖dRα‖s−1 ≤ cs‖α‖s, for k �= n

‖DRα‖s−2 ≤ cs‖α‖s, for k = n;
and{

‖δRα‖s−1 ≤ cs‖α‖s, for k �= n+ 1

‖D∗Rα‖s−2 ≤ cs‖α‖s, for k = n+ 1.
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Rumin [R] establishes a Hodge theory for this complex. The Laplace
operators ΔR : Rk →Rk are defined as follows:
(2.6.3)

ΔR =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n− k)dRδR + (n− k + 1)δRdR, for 0 ≤ k ≤ (n− 1),

(dRδR)2 +D∗RDR, for k = n,

DRD
∗
R + (δRdR)2, for k = n+ 1,

(n− k + 1)dRδR + (n− k)δRdR, for (n+ 2) ≤ k ≤ (2n+ 1).

Theorem 2.6.4 (Rumin). Let M be a contact manifold with adapted met-
ric g. The Laplace operators ΔR are maximal hypoelliptic, and the following
estimates are satisfied for α ∈ Rk:{

‖α‖s+2 ≤ cs‖ΔRα‖s + ‖α‖0, for k �= n, (n+ 1),

‖α‖s+4 ≤ cs‖ΔRα‖s + ‖α‖0, for k = n, (n+ 1).

Remark 2.6.5. Rumin only establishes the estimates stated above for the
case s = 0 (see [R, p. 290]). However, standard regularity theory yields
the estimate for general s > 0. For a self-contained proof, one may refer
to [BD2].

In the following corollary, parts (i) and (ii) were explicitly stated in [R];
the commutation relations follow from the definitions; the other parts follow
from the hypoelliptic estimates by standard arguments.

Corollary 2.6.6 (Rumin). Let (M2n+1, η) be a compact contact manifold
with adapted metric g and the associated complex (R∗, dR); let ΔR be the
associated Laplacian.

(i) The cohomology of the complex is finite-dimensional and represented
by ΔR-harmonic forms.

(ii) There exist operators GR, HR : Rk → Rk such that

Id = GRΔR +HR = ΔRGR +HR,

inducing the orthogonal decompositions:

Rk = kerΔR ⊕ range ΔR = kerΔR ⊕ (range dR ⊕ range δR) .

In particular, each α ∈ Rk has a Hodge decomposition

α =

{
HR(α)⊕ (n− k)GRdRδR(α)⊕ (n− k + 1)GRδRdR(α), for k < n,

HR(α)⊕GR(dRδR)2(α)⊕GRD∗RDR(α), for k = n.

(iii) The following commutation relations are satisfied:
For P any of the operators dR, δR, DR or D∗R,

PHR = HRP = 0 ;
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for α ∈ Rk,

dRGR(α) =

⎧⎪⎪⎨⎪⎪⎩
(
n− k − 1
n− k + 1

)
GRdR(α), for k ≤ n− 2,

1
2
GR(dRδRdR)(α), for k = n− 1,

and

δRGR(α) =
(
n− k + 2
n− k

)
GRδR(α), for k ≤ n− 1.

(iv) For α ∈ Rk,

{
‖GRα‖s+2 ≤ cs‖α‖s for k �= n, (n+ 1)

‖GRα‖s+4 ≤ cs‖α‖s for k = n, (n+ 1)
and ‖HR(α)‖s ≤ cs‖α‖s.

Moreover, since the space of harmonic forms is finite-dimensional,
‖α‖s ≤ cs‖α‖0 for all α ∈ kerΔR. In particular, HR(α) is of class
C∞ for all α ∈ Γs(Rk).

2.7. Characterization of contact vector fields. In this section, we
present a characterization of the closed subspace Γscont(TM) ⊂ Γs(TM) of
Γs contact vector fields in terms of the Hodge decomposition of the Rumin
complex. We use this characterization in Section 4 to give a parameteriza-
tion of the space of contact diffeomorphisms near the identity by contact
vector fields near 0.
We begin by recalling a few well-known facts about contact vector fields.

Recall that a smooth vector field X is called a contact vector field if and
only if LX(η) = 0 mod η (or, equivalently, πH(LX(η)) = 0). Write X in the
form X = X0T +XH , where XH ∈ H and T is the Reeb vector field, and
use the identity

LX(η) = X dη + d(X η) = XH dη + dX0

to conclude that X is a contact vector field if and only if it satisfies the
standard identity

−XH dη + T (X0)η = dX0.

Recalling that R1 = H∗ and dRf = πH(df), for f ∈ C∞(M) = R0, we can
express this characterization in terms of the Rumin complex as follows: X
is a contact vector field if and only if it satisfies the identity

(2.7.1) dRX
0 = −XH dη.

Next observe that dη defines a vector bundle map

( )
 : TM → H∗ : X → X
 = X dη,
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whose restriction to H ⊂ TM is an isomorphism between the contact dis-
tribution and its dual space, and let

( )� : H∗ → H : φ → φ�

denote its inverse. The map

C∞(M,R)→ C∞cont : g → Xg = gT − (dRg)�

is an isomorphism between the space of smooth functions onM and the space
of smooth contact vector fields. This map then extends to an isomorphism
between the weighted spaces:

(2.7.2) Γs+1(M)→ Γscont(TM) : g → Xg = gT − (dRg)�.

The only new result here is the gain of one derivative in the Folland–Stein
spaces, which follows easily from the two inclusions g ∈ Γs and dRg ∈ Γs.
We can now express the condition for X to be a contact vector field in

terms of the harmonic decomposition. Note, in particular, the additional
regularity in X0, the Reeb component of X. (The restriction s ≥ 2n + 4
below ensures that X is of class C1.)

Lemma 2.7.3. A vector field X ∈ Γs(TM), s ≥ 2n + 4, is contact if and
only if it satisfies each of the following three conditions

X0 = HR(X0)− (n+ 1)GRδR(X dη),(a)

HR(X dη) = 0,(b) {
dR(X dη) = 0, for n > 1,
DR(X dη) = 0, for n = 1.

(c)

Moreover, if X ∈ Γs(TM) is a contact vector field, then X0 ∈ Γs+1(M).

Proof. Suppose that X ∈ Γs(TM). Applying the Hodge decomposition to
equation (2.7.1) shows thatX is a contact vector field if and only if it satisfies
each of the three conditions

HR(dRX0 +X dη) = 0, δR(dRX0 +X dη) = 0, and{
dR(dRX0 +X dη) = 0 if n > 1,
DR(dRX0 +X dη) = 0 if n = 1.

The middle equation is equivalent to

GRδR(dRX0 +X dη) =
1

(n+ 1)
(GRΔRX

0) +GRδR(X dη) = 0,

from which the conditions (2.7.3) follow. Finally, suppose that X ∈ Γs(TM)
is a contact vector field. By (a) and Corollary 2.6.6, the function X0 is an
element of Γs+1(M). �
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3. The topological group of contact diffeomorphisms

Let Ds(M) ⊂ Γs(M,M), s ≥ 2n + 4 denote the subspace of Γs-
diffeomorphisms ofM . It is well known that the space of C1-diffeomorphisms
is an open subset of the space C1(M,M) of C1-maps. Moreover, since
s ≥ 2n + 4, there is a continuous inclusion Γs(M,M) ⊂ C1(M,M). It fol-
lows that Ds(M) is an open subset of Γs(M,M). It is, therefore, a smooth
infinite-dimensional manifold; but it is not a group because Ds(M) is not
closed under composition (see Remark 2.1.1).
Let D∞cont(M) ⊂ Ds(M) denote the subspace of C∞ contact diffeomor-

phisms. By definition, the space of Γs contact diffeomorphisms of M is the
closed subspace Dscont(M) := D∞cont(M) ⊂ Ds(M). We show in this sec-
tion that Dscont(M) is closed under composition and inversion and that both
operations are continuous. Consequently, Dscont(M) is a topological group
for s ≥ 2n + 4. In Section 4, we prove that Dscont(M) is a smooth Hilbert
manifold (see Theorem 4.4.1). Our approach in this section and in the fol-
lowing section parallels the treatment of the full diffeomorphism group given
by Ebin [E].

3.1. Continuity of composition. To prove that composition is continu-
ous, it is sufficient to work locally. Consider open domains D � R

2n+1 and
D̃ � R

2n+1. By the Sobolev lemma (see Remark 2.4.3), there is a continu-
ous inclusion Γs(D,R2n+1) ⊂ C1(D,R2n+1). Consequently, the topological
subspace Dscont(D, D̃) of C

1 contact diffeomorphisms f with f(D̄) ⊂ D̃ is
well defined.

Proposition 3.1.1. Let s ≥ 2n + 4, and let f ∈ Dscont(D, D̃) and g ∈
Γk(D̃,Rm) for k ≤ s. Let D′ � D be an open set. Then the restriction to D′
of the composition g ◦ f is an element of Γk(D′,Rm). Moreover, the map

μ : Dscont(D, D̃)× Γk(D̃,Rm)→ Γk(D′,Rm) : (f, g) → g ◦ f
is continuous.

Proof. Our proof mimics the proof of Ebin [E, Lemma 3.1] in the case of
diffeomorphisms of a manifold. It proceeds by induction on k.
For k = 0, we first note that ‖g ◦ f‖D′,0 <∞ for any D′ � D. Since f is

a C1 diffeomorphism on D, its Jacobian determinant Jf is continuous and
bounded below on D̄′ by a positive constant; and (by the change of variables
formula for integration)

‖g ◦ f‖D′,0 =
∫
D′
(g ◦ f)2dV0 =

∫
f(D′)

g2 (1/Jf ◦ f−1) dV0 <∞.

To prove continuity at (f, g), choose ε > 0. We will show that ‖g′ ◦ f ′ − g ◦
f‖2D′,0 < 4ε for (f ′, g′) sufficiently near (f, g). To see this, choose δ > 0 such
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that maxD̄′( 1/J(f
′), 1/J(f)) < ε/δ whenever ‖f ′−f‖D,s < δ. Also choose a

smooth function g∞ on the closure of D̃ such that ‖g− g∞‖2
D̃,0

< δ, and set

M =

(
max
x∈D̃

2n+1∑
i=1

∣∣∣∣∂g∞(x)∂xi

∣∣∣∣2
)
.

Then

‖g ◦ f − g′ ◦ f ′‖2D′,0 ≤ ‖g ◦ f − g∞ ◦ f‖2D′,0 + ‖g∞ ◦ f − g∞ ◦ f ′‖2D′,0
+ ‖g∞ ◦ f ′ − g ◦ f ′‖2D′,0 + ‖g ◦ f ′ − g′ ◦ f ′‖2D′,0

≤ ε

δ

∫
D̃
|g − g∞|2dV0 +M · ‖f − f ′‖2D,0

+
ε

δ

∫
D̃
|g − g∞|2dV0 +

ε

δ

∫
D̃
|g − g′|2dV0

≤ 2ε+M · ‖f − f ′‖2D,0 +
( ε
δ

)
‖g − g′‖2

D̃,0
.

Now let δ′ = min
(
δ, ε
M

)
. Then the last line is bounded by 4ε provided that

f ′ and g′ satisfy the inequalities

‖f − f ′‖2D,0 < δ′ and ‖g − g′‖2
D̃,0

< δ′.

Assume that for some k ≥ 0 the proposition holds for all D, D′ � D,
and D̃. We first show that g ◦ f is an element of Γk+1(D′), k + 1 ≤ s, for
all g ∈ Γk+1(D̃,Rm). To do this, we need only to show that Xj(g ◦ f) is in
Γk(D′) for 1 ≤ j ≤ 2n, where Xj are the horizontal vector fields defined in
Section 1.1. Begin by observing that since f is a contact diffeomorphism,
it’s derivative f∗ respects the contact distribution on R

2n+1:

fH,∗ : Hx → Hf(x) : Xj(x) → f∗(Xj(x)) =
2n+1∑
i=1

Aij(x)Xi(f(x)), 1 ≤ j ≤ 2n,

(3.1.2)

where Aij ∈ Γs−1(D,R) depend continuously on f . This permits us to com-
pute as follows using the chain rule:

(3.1.3) Xj(g ◦ f) = dg(f∗(Xj)) =
2n∑
i=1

Aij ·Xi(g) ◦ f.

By the induction hypothesis, Xi(g) ◦ f ∈ Γk(D′′) for any open set D′′ such
that D′ � D′′ � D. Since s− 1 ≥ 2n+ 3, we can apply Lemma 2.2.1 to the
products Aij · (Xi(g) ◦ f) conclude that Aij · (Xi(g) ◦ f) ∈ Γk(D′), which in
turn shows that Xj(g◦f) ∈ Γk(D′). To complete the induction step, we have
to prove continuity of composition. First note that if g′ is near g in Γk+1(D̃)
then Xi(g′) is near Xi(g) in Γk(D̃). Now choose a fixed open set D′′ with
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D′ � D′′ � D. By the induction hypothesis, if f ′ is near f in Γs(D), then
Xi(g′)◦f ′ is nearXi(g)◦f in Γk(D′′). But then by Lemma 2.2.1 it follows that
Xj(g′ ◦ f ′) =

2n∑
i=1

(Aij)
′ · (Xi(g′) ◦ f ′

)
is near Xj(g ◦ f) =

2n∑
i=1

Aij · (Xi(g) ◦ f)

in Γk(D′). �

Corollary 3.1.4. Let M be a compact contact manifold of dimension 2n+1,
and let N be a smooth manifold of dimension m. Then the composition map

μ : Dscont(M)× Γk(M,N)→ Γk(M,N) : (F,G) → G ◦ F
is continuous for 2n + 4 ≤ k ≤ s. In case N = R

m, the map is continuous
for 2n+ 4 ≤ s and 0 ≤ k ≤ s.

Proof. In case N = R
m, choose s ≥ 2n + 4 and 0 ≤ k ≤ s. Continuity of

μ follows easily from the previous proposition. We next consider the case
where N is an arbitrary smooth manifold and the definition of Γk(M,N)
requires that 2n + 4 ≤ k. Fix F ∈ Dscont(M) and G ∈ Γk(M,N). First
note that the restriction 2n + 4 ≤ k ≤ s ensures that the spaces Dscont(M)
and Γk(M,N) are both well defined and that both F and G are of class
C1. Choose adapted atlases {(φα, Uα, Dα)} and {(φ̃α, Ũα, D̃α)} for M , and
charts {ψα, Vα, Bα} for N , such that for all α,

F (Uα) ⊂ Ũα, Fα(Dα) ⊂ D̃α, and G(Ũα) ⊂ Vα,

where Fα = φ̃α ◦F ◦φ−1
α ∈ Γs(Uα, Ũα) and Gα = ψα ◦G◦ φ̃−1

α ∈ Γk(Ũα,Rm).
SetHα = Gα◦Fα(= ψα◦G◦F ◦φ−1

α ). By Proposition 3.1.1,Hα ∈ Γk(Ũα,Rm)
for all α, showing that G◦F is an element of Γk(M,N). To prove continuity
of μ, consider the open neighbourhoods of F , G, and H = G ◦ F = μ(F,G)

O(F, ε, {Uα})
= {F ′ ∈ Dscont(M) : F ′(Uα) ⊂ Ũα for all α,max

α
‖F ′α − Fα‖Uσ ,s < ε},

O(G, ε, {Ũα})
= {G′ ∈ Γk(M,N) : G′(Ũα) ⊂ Vα for all α,max

α
‖G′α −Gα‖Ũσ,k

< ε},
O(H, ε, {Uα})

= {H ′ ∈ Γk(M,N) : G′(Uα) ⊂ Vα for all α,max
α
‖H ′α −Hα‖Uα,k < ε}.

By definition of the topology of Γk(M,N), every open neighbourhood of H
contains a set of the form O(H, ε, {Uα}) for sufficiently small ε. Moreover,
by Proposition 3.1.1, for every ε > 0 there exists a δ > 0 such that

H ′ = G′ ◦ F ′ ∈ O(H, ε, {Uα})
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for all F ′ ∈ O(F, δ, {Uα}) and G′ ∈ O(G, δ, {Ũα}). Therefore,

μ
(
O(F, δ, {Dα})×O(G, δ, {D̃α})

)
⊂ O(G ◦ F, ε, {Uα}).

This completes the proof of continuity of μ. �

3.2. Continuity of inversion. The proof of continuity of inversion relies
on the next lemma.

Lemma 3.2.1. Let f ∈ Dscont(D, D̃), s ≥ 2n + 4 be a contact diffeomor-
phism with f(D) � D̃, and let D̃′ � f(D). Then f−1 ∈ Dscont(M)(D̃′, D).
Moreover, the map ι : f ′ → f ′−1, f ′ ∈ {g ∈ Dscont(D, D̃) : D̃′ ⊂ g(D)} is
continuous at f ′ = f .

Proof. Since s ≥ 2n + 4, f is a C1 contact diffeomorphism on every com-
pact subset of D. Hence, f−1 is a C1 contact diffeomorphism on every open,
compactly contained, subset of f(D). Let A : D → GL(2n) be the matrix
valued function defined by Aij , where A

i
j ∈ Γs−1(D) are defined as in the

proof of Proposition 3.1.1. Because the process of inverting A only involves
multiplication, addition, and division of functions in Γs−1, and because
s − 1 > 2n + 3, we can invoke Lemmas 2.2.1 and 2.2.2 to conclude that
A−1 ∈ Γs−1(D′, GL(2n)) for all D′ � D.
Next observe that equation (3.1.3) with g replaced by g ◦f−1 assumes the

form

Xj(g) =
2n∑
i=1

Aij ·Xi(g ◦ f−1) ◦ f.

Multiplying by B = A−1 and composing with f−1 then yields the formula

(3.2.2) Xk(g ◦ f−1) =
∑
j

(Bj
k ·Xj(g)) ◦ f−1.

To show that f−1 ∈ Γs(D̃′,R2n+1) for every open set D̃′ � f(D), it suffices
to show that XI(f−1) ∈ Γs−k(D̃′) for every multi-index I with |I| = k
(see Section 1.1). Following the argument on [E, page 17], we proceed by
induction on k to show that, for all I with |I| = k,

(3.2.3) XI(f−1) = gI ◦ f−1 with gI ∈ Γs−k.
To see that (3.2.3) holds for k = 1, let g = idR2n+1 in (3.2.2) to get

Xi(f−1) =

⎛⎝∑
j

(Bj
i ·Xj(idR2n+1)

⎞⎠ ◦ f−1 := gi ◦ f−1,
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and recall that B ∈ Γs−1 to conclude that gi ∈ Γs−1. Now assume that
(3.2.3) holds for s > k > 0, and let I = (i, J), for J a multi-index with
|J | = k. Then applying (3.2.2) gives

(3.2.4) XI(f−1) = Xi(gJ ◦ f−1) =

⎛⎝∑
j

(Bj
i ·Xj(gJ))

⎞⎠ ◦ f−1 := gI ◦ f−1.

Since Bj
i ∈ Γs−1, s − 1 ≥ 2n + 3, and Xj(gJ) ∈ Γs−k−1, we can invoke

Lemma 2.2.1 to conclude that XI(f−1) is of the form gI ◦ f−1, for gI ∈
Γs−k−1. This completes the induction step. We now know that XI(f−1) =
gI ◦ f−1 with gI ∈ Γs−k ⊂ Γ0, for all I with |I| ≤ s. But since f−1 is of class
C1, the composition XI(f−1) = gI ◦ f−1 is also in Γ0 for all I with |I| ≤ s.
Hence, f−1 is in Γs(D̃′, D) for all D̃′ � f(D).
To prove continuity of the map ι : f ′ → f ′−1, we first show by finite

induction that the map

f ′ → g′I := XI(f ′
−1) ◦ f ′ ∈ Γ0(D̃′, D)

depends continuously on f ′ ∈ Dscont for all I with |I| ≤ s. Let k = 1, and note
that by definition of A (see equation (3.1.2)), the assignment f ′ → A′ →
B′ = A′−1 ∈ Γs−1 depends continuously on f ′ ∈ Dscont. Hence, g

′
i ∈ Γs−1

depends continuously on f ′ ∈ Dscont. Now assume that f ′ → g′J ∈ Γs−k
depends continuously on f ′ for all J , |J | = k. Set I = (i, J). Then Xi(g′J) ∈
Γs−k−1 depends continuously on f ′. Hence by (3.2.4), g′I ∈ Γs−k−1 depends
continuously on f ′, completing the induction step.
Thus, for any multi-index I with |I| ≤ s,

‖XI(f ′
−1 − f−1)‖

D̃′,0

= ‖g′I ◦ f ′−1 − gI ◦ f−1)‖
D̃′,0

≤ ‖g′I ◦ f ′−1 − gI ◦ f ′−1‖
D̃′,0 + ‖gI ◦ f ′

−1 − gI ◦ f−1‖
D̃′,0.

Because the map f ′ → f ′−1 is continuous in the C1-topology, by making
making ‖f ′−f‖

D̃′,s sufficiently small, we ensure that ‖XI(f ′
−1−f−1)‖

D̃′,0 is
arbitrarily small for all I with |I| ≤ s. This concludes the proof of continuity
of ι. �

Theorem 3.2.5. Let s ≥ 2n+4. Then Dscont(M) is a topological group with
group multiplication

μ : Dscont(M)×Dscont(M)→ Dscont(M) : (F,G) → G ◦ F
and group inverse

ι : Dscont(M)→ Dscont(M) : F → F−1.
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Proof. Continuity of μ is contained in Corollary 3.1.4. Continuity of ι follows
from Lemma 3.2.1 by an argument similar to the one used in the proof of
Corollary 3.1.4. In brief, for fixed F , choose adapted atlases {(φα, Uα, Dα)},
and {(φ′α, U ′α, D′α)} such that D′α ⊂ Fα(Dα) for all α. Then by Lemma 3.2.1,
for all ε > 0 there there is a δ > 0 such that for all G ∈ O(F, δ) we have
G−1 ∈ O(F−1, ε). �

4. The smooth manifold of contact diffeomorphisms

In this section, we obtain a local coordinate chart for the set of contact diffeo-
morphisms in a neighbourhood of the identity. As a corollary, we show that
for s ≥ 2n+ 4, the topological manifold Dscont(M) is a smooth submanifold
of the smooth manifold Ds(M) of Γs diffeomorphisms of M .

4.1. The smooth manifold of contact diffeomorphisms. We begin by
constructing a smooth atlas for Ds(M). Our construction is based on the
following well known parameterization of smooth diffeomorphisms near the
identity diffeomorphism by smooth vector fields. Fix a C∞ metric adapted
to the contact structure (see Section 1.1), and let exp : TM → M denote
its exponential map. Recall that exp is the C∞ map defined by the formula

exp(X) := γx,X(1)

where γx,X : R →M is the unique geodesic curve with γx,X(0) = x, γ′(0) =
X ∈ TxM . Also recall that for |X| sufficiently small, |X| is equal to the
Riemannian distance between x and exp(X). Next consider the map χ from
the space of C1-vector fields to the space of C1-maps

χ : C1(TM)→ C1(M,M) : X → FX ,

where FX is the C1 map defined by composition

(4.1.1) FX :M X−→ TM
exp−→M.

By compactness of M , there is a number r > 0 such that any two points at
distance less then r apart are joined by a unique length minimizing geodesic.
Let BrM ⊂ TM denote the bundle over M of tangent vectors of length less
than r. It is a well-known theorem in Riemannian geometry that χ restricts
to a diffeomorphism between the space C1(BrM) of C1-vector fields of length
less than r and the open set

{F ∈ C1(M,M) : distM (x, F (x)) < r, for all x ∈M},
where distM denotes Riemannian distance.

Proposition 4.1.2. For s ≥ 2n+ 4, the map χ restricts to a smooth map

χs : Γs(TM)→ Γs(M,M) : X → FX = exp ◦X
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on the space of Γs-vector fields. Moreover, there is an open neighbourhood
U ⊂ Γ2n+4(TM) of the zero section, such that for all s ≥ 2n+4, χs restricts
to a diffeomorphism

χs : Us ≡ U ∩ Γs(TM)→ Ds(M)

between Us and a neighbourhood of the identity idM ∈ Ds(M).

Proof. First observe that a map F : M → M can be viewed as a section
of the trivial fibre bundle πM : M ×M → M : (x, y) → x and that exp
defines a smooth map of fibre bundles

ẽxp : TM →M ×M : X → (π(X), exp(X)),

where π : TM →M is projection onto the base point. Smoothness of χs then
follows from Proposition 2.3.5. Let UrM = {(x, y) ∈M×M : distM (x, y) <
r}. Then ẽxp : BrM → UrM is a smooth fibre bundle isomorphism. By
Proposition 2.4.2, the restriction of χ to Γs-spaces

χs : Γs(BrM)→ Γs(UrM)

is therefore a diffeomorphism. To complete the proof, let U denote the preim-
age of the open set Γ2n+4(UrM) ∩ D2n+4(M) under χ2n+4. �

Remark 4.1.3. We can use χs to construct a smooth atlas for smooth man-
ifold Ds(M). Let G be a smooth diffeomorphism of M . By Corollary 3.1.4,
that composition on the left with G gives a smooth diffeomorphism of
Ds(M). Consequently, the map

χsG := LG ◦ χs : Us → Ds(M) : X → G ◦ FX
is a local diffeomorphism. Since the set of C∞ diffeomorphisms ofM is dense
in Ds(M), letting G range over all diffeomorphisms gives a smooth atlas.
Since composition of smooth maps is smooth, smoothness of the transition
functions is automatic.

Remark 4.1.4. We recall the standard construction of the tangent bun-
dle πD(M) : TDs(M) → Ds(M) (see [Ham, Pal] for background). To get
a tangent vector to Ds(M) at F0 ∈ Ds(M), let t → Ft be a smooth curve
in Ds(M) passing through F0. Then Ft is a smooth family of C1 diffeomor-
phisms, so we can differentiate pointwise with respect to t to obtain the
vector field

X :M → TM : x → Ḟ0(x) ∈ TMF0(x)

over F0, where we have used the notation Ḟ0(x) :=
dFt(x)
dt

∣∣∣
t=0

. Conversely,

given a vector field X ∈ Γs(M,TM) with π ◦X = F0, observe that for small
t the composition

Ft :M
tX−→ TM

exp−→M
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is a smooth family in Ds(M) and that X = Ḟ0. An easy way to obtain the
manifold structure on the total space TDs(M) is to note that, by Corol-
lary 2.4.5, composition with the projection map π : TM → M induces a
smooth map Lsπ : Γ

s(M,TM) → Γs(M,M). Let TDs(M) be the preimage
of Ds(M) under Lsπ and let πD(M) = Lsπ.

4.2. Characterization of contact diffeomorphisms. Recall that a dif-
feomorphism F is a contact diffeomorphism if and only if the pullback
F ∗η is a multiple of η. Since this condition is equivalent to the equation
πH(F ∗η) = 0, where πH : T ∗M → H∗ is the quotient map, the space of Γs-
contact diffeomorphisms near the identity is parameterized by the subspace

(4.2.1) Vs ≡ {X ∈ Us : πH(F ∗Xη) = 0} ⊂ Γs(TM).

It is convenient to view the equation πH(F ∗Xη) = 0 in terms of the Rumin
complex. Note that R1 ≡ H∗; hence FX ∈ Us is a contact diffeomorphism if
and only if it satisfies the equation

πR(F ∗Xη) = 0.

This suggests studying the non-linear differential operator

X → πR(F ∗Xη)

in more detail. Our goal is to show that

(4.2.2) πR(F ∗Xη) = πRLXη + πR ◦Qη(X),
where LX denotes Lie differentiation with respect to the vector field X and
Qη(X) is a smooth differential operator that vanishes to second order as
X → 0. Part (ii) of the next proposition shows that X → πR(F ∗Xη) is
a smooth differential operator of contact order 1; that it has the form of
equation (4.2.2) is a corollary to Lemma 4.2.7.

Proposition 4.2.3. The following maps are smooth (non-linear) differential
operators for all s ≥ 2n+ 4:

(i) Γs(TM)→ Γs−2(T ∗M) : X → F ∗Xη,
(ii) Γs(TM)→ Γs−1(R1) : X → πRF

∗
Xη,

(iii) Γs(TM) → Γs−1(R2) : X → dR (πRF ∗Xη) = πR(dF ∗Xη) = πRF
∗
X(dη),

for n > 1.

Proof. View FX : M → M as a section of the trivial bundle M ×M → M .
Since s ≥ 2n+4, Example 2.5.9 parts (iv) and (v) apply to yield (i) and (ii).
To prove (iii), apply Example 2.5.9 (v) to the smooth 2-form dη to conclude
that the map

X → πH(F ∗Xdη)
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is a smooth differential operator of contact order 1. Next observe that πR =
τ ◦ πH , where τ is the quotient map given by (2.6.1). Finally, since dRβ =
πR(dβ), the composition

X → πH(F ∗X(dη)) → τ(πH(F ∗Xdη)) = πRF
∗
X(dη) = πRd(F ∗Xη)

is also a smooth differential operator of contact order 1. �
To show that πH(F ∗Xη) has the form of equation (4.2.2), we work locally,

choosing an adapted atlas φα : Uα → R
2n+1 for M and a collection of open

sets Wα � Uα covering M as in Section 1.1. By compactness of M , there is
a constant c > 0 such that exp(x,X) ∈ Uα for all x ∈ Wα, all X ∈ TMx,
with |X| < c, and all α.
Let X be a C1 vector field with |X| < c. Fix a chart, say φα, and set U =

Uα and W = Wα. To simplify notation, we adopt the Einstein summation
conventions, letting Roman indices range from 1 to 2n+1. Then there exist
smooth functions Bk

ij(x,X) (locally defined) on TM such that

(4.2.4) expk(x,X) = xk +Xk +Bk
ij(x,X)X

iXj .

This follows simply from the second-order Taylor’s formula with integral
remainder for the exponential map. Indeed, for fixed X ∈ TxM , let γ(t) =
exp(x, tX) be a geodesic. Then

(4.2.5) γk(1) = γk(0) + γ̇k(0)−
∫ 1

0
(1− t)Γkij(γ(t))γ̇i(t)γ̇j(t) dt,

where Γkij are the Christoffel symbols, and we have used the geodesic equa-
tion γ̈k+Γkij γ̇

iγ̇j = 0. Let y = exp(x,X). Since γ(t) = exp(x, tX) = y(x, tX),
then

γ̇i(t) = ẏi(x, tX) =
∂yi(x, tX)
∂Xj

Xj ,

and this becomes

γk(1) = γk(0) + γ̇k(0)−
∫ 1

0
(1− t)Γkab(exp(x, tX))

∂ya

∂Xi
(x, tX)

× ∂yb

∂Xj
(x, tX)XiXj dt,

when

(4.2.6) Bk
ij(x,X) = −

∫ 1

0
(1− t)Γkab(exp(x, tX))

∂ya

∂Xi
(x, tX)

∂yb

∂Xj
(x, tX)dt .

Lemma 4.2.7. Let ψ be a smooth q-form on M and choose a coordinate
patch U = Uα, with W =Wα � U . Let c > 0 be chosen so that exp(x,X) ∈
U for all x ∈ W and all X ∈ TxM with |X| < c. Then there are (locally
defined) smooth fibre bundle maps

Q1
ij : BM |W → ΛqM |W and Q2

ij : BM |W → Λq−1M
∣∣
W
,
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where BM = {X ∈ TM : |X| < c}, such that for any C1 vector field
X :M → BM ⊂ TM the equation

F ∗Xψ = ψ + LXψ +Q1
ij(X)X

iXj +Q2
ij(X) ∧XidXj

is satisfied on all of W .

Proof. Begin with the special case of a 0-form u ∈ C∞(M,R). Then
F ∗Xu(x) = u◦exp(x,X), and applying Taylor’s formula with integral remain-
der to the function f(t) = u(x+ tX + t2Bij(x, tX)XiXj) and setting t = 1
yields the formula

(u ◦ exp)(x,X) = u(x) + LXu(x) +Qij(x,X)XiXj ,

for Qij(x,X) smooth functions on BM |W , such that Qij = Qji. Next con-
sider the special case ψ = dxk, and compute as follows, using what we have
just proved:

F ∗X(dx
k) = d

(
exp∗X x

k
)

= d
(
xk + LX(xk) +Qij(x,X)XiXj

)
= dxk + LXdxk + d

(
Qij(x,X)XiXj

)
= dxk + LXdxk + d (Qij(x,X))XiXj + 2Qij(x,X)XidXj

= dxk + LXdxk +Q1
ijX

iXj +Q2
ij(x,X)X

idXj

for Q1
ij =

∂Qij

∂xk dx
k, Q2

ij =
∂Qik

∂Xj X
k + 2Qij =

∂(QikX
k)

∂Xj + Qij . Because every
p-form can be expressed as a linear combination of products of terms as
above, the general result follows easily by induction. �

Remark 4.2.8. Henceforth, we will use the notation

Qψ(X) := F ∗X(ψ)− ψ − LXψ
to denote the non-linear part of the pull-back F ∗Xψ. The lemma states that
in local coordinates

Qψ(X) = Q1
ij(X)X

iXj +Q2
ij(X) ∧ XidXj ,

where Q1
ij and Q

2
ij are smooth functions on BM |W ⊂ TM , which depend

on the smooth form ψ.

4.3. Parameterization of contact diffeomorphisms. The condition for
FX to be a contact diffeomorphism is the vanishing of the one-form F ∗Xη mod
η. Remark 4.2.8 applied to ψ = η and the identity πRη = 0 show that FX is
a contact diffeomorphism if and only if

πRLXη + πRQη(X) = 0.
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Since Qη(X) vanishes to second order at X = 0, the linearization of this
equation is

πRLXη = 0,

i.e., the condition that X be a contact vector field. This suggests using the
implicit function theorem in Banach spaces to construct a parameteriza-
tion of the space of contact diffeomorphisms near the identity by the space
contact vector fields near zero.
We are going to construct a smooth map between Hilbert spaces of

the form
Φ : Γs(TM)→ Γs+1(M)×Hs : X → gX ⊕ γX ,

where Hs is a second Hilbert space (to be determined), such that

(i) FX is a contact diffeomorphism if and only if γX = 0,
(ii) the derivative of Φ is invertible at the origin.

By the inverse function theorem, Φ is locally invertible and the map

g → χs
(
Φ−1(g, 0)

)
gives a smooth parameterization of the contact diffeomorphisms in Dscont(M)
near the identity by real valued functions in Γs+1(M) near zero.
A natural guess for the map Φ is

(4.3.1) X = X0 T +XH → (X0, πRF
∗
Xη),

for, as we have already observed, FX is contact if and only if πRF ∗Xη = 0,
and X0 parameterizes contact vector fields (see Section 2.7). Unfortunately,
this map is not invertible. Indeed, its linearization at the origin involves a
differential operator that loses too many derivatives.
The trick to circumventing this difficulty is to exploit some hidden

smoothness in the Hodge decomposition of one-forms in the Rumin com-
plex. For smooth data, choose Φ to be of the form

Φ :

⎧⎪⎨⎪⎩
C∞(TM) → C∞(M,R)⊕ range(δR)⊕ ker(δR)

⊂ C∞(M,R)⊕ C∞(M,R)⊕R1,

X → gX ⊕ αX ⊕ ωX .
When n > 1, the Hodge theory shows that the projection πRα ∈ R1 of a
general one-form α ∈ Ω1 has the decomposition

πRα = GR {(n− 1) dRδR + n δRdR}πRα+HRπRα

= (n− 1)GRdRδRπRα+ nGRδRπRdα+HRπRα.

Applying the commutation relations of Corollary 2.6.6(iii), gives

πRα = (n+ 1) dRGRδRπRα+ nGRδRπRdα+HRπRα.
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This, together with the identity dF ∗Xη = F ∗Xdη give the following decompo-
sition of πRF ∗Xη:

πRF
∗
Xη = (n+ 1) dRGRδR(πRF ∗Xη) + nGRδR(πRF ∗Xdη) +HR(πRF ∗Xη).

(4.3.2)

Referring now to our natural guess (4.3.1), we reassemble it using equa-
tion (2.7.3)(a) for X0 and the identity (4.3.2) to define the map Φ by the for-
mulas

(4.3.3)

⎧⎪⎨⎪⎩
gX = −(n+ 1)GRδR(XH dη) +HR(X0),

αX = (n+ 1)GRδR(πRF ∗Xη),
ωX = nGRδRdR(πRF ∗Xη) +HR(πRF ∗Xη).

Indeed, we observe that πRF ∗Xη = dRαX+ωX by equation (4.3.2), and in the
case where X is a contact vector field, then gX = X0 by Lemma 2.7.3. In the
case n = 1, we have to adjust the map Φ to reflect the Hodge decomposition
at Rn = R1:

πRF
∗
Xη = GR(dRδR)2(πRF ∗Xη) +GRD

∗
RDR(πRF ∗Xη) +HR(πRF ∗Xη).

Applying the commutation relation 2.6.6(iii) to the 0-form δR(πRF ∗Xη),
yields the identity

πRF
∗
Xη = 2dRGRδR(πRF ∗Xη) +GRD

∗
RDR(πRF ∗Xη) +HR(πRF ∗Xη).

Because n+ 1 = 2, the formulas for g, α, and ω become

(4.3.4)

⎧⎪⎨⎪⎩
gX = −(n+ 1)GRδR(XH dη) +HR(X0),

αX = (n+ 1)GRδR(πRF ∗Xη),
ωX = GRD

∗
RDR(πRF ∗Xη) +HR(πRF ∗Xη),

and only the formula for ωX has changed.

Remark 4.3.5. Observe that by construction πRF ∗Xη = dRαX +ωX . Since
dR is injective on range(δR), αX = 0 if and only if dRαX = 0. Consequently,
FX is a contact diffeomorphism if and only if γX = αX ⊕ ωX = 0⊕ 0.

Remark 4.3.6. In the case n = 1, the map Φ is, roughly speaking, the same
as the map defined in [B]; however, in that paper, the use of the complex
Laplacian and complex operators necessitated an additional splitting into
real and imaginary parts — roughly doubling the number of terms.

Proposition 4.3.7. Let Φ be the map defined above and let

Hs := Γs(range(δR))⊕ Γs(ker(δR)) ⊂ Γs(M)⊕ Γs(R1).

Then for s ≥ 2n+ 4, the map Φ extends to a smooth map

Φ :

{
Γs(TM) → Γs+1(M)⊕Hs

X → gX ⊕ γX := gX ⊕ (αX ⊕ ωX)
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The linearization of Φ at the zero vector field is given by

dΦ(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{−(n+ 1)GRδR(XH dη) +HR(X0)}
⊕ {(n+ 1)GRδR(dRX0 +XH dη)⊕ (nGRδRdR(XH dη)

+ HR(XH dη))}, for n > 1,

{−(n+ 1)GRδR(XH dη) +HR(X0)}
⊕ {(n+ 1)GRδR(dRX0 +XH dη)⊕ (GRD∗RDR(XH dη)

+ HR(XH dη))}, for n = 1.

Moreover, the linearization of Φ is invertible with inverse given by

g ⊕ (α⊕ ω) → (g + α)T + (−dRg + ω)�,

where � is the isomorphism from horizontal one-forms to horizontal vector
fields induced by the two-form dη.

The proof relies on two lemmas.

Lemma 4.3.8. Let F ∈ Γs(M,M), s ≥ 2n+4, be a diffeomorphism, and let
β ∈ Ωk be a smooth k-form, k ≤ n. Then the form πRF

∗β lies in Γs−1(Rk).

Proof. This is an immediate corollary to Example 2.5.9 (v) and the obser-
vation that for q ≤ n, πR = τ ◦ πH where τ is the quotient map (2.6.1). �

Lemma 4.3.9. Let n = 1, and let F :M →M be a Γs (possibly not contact)
diffeomorphism, and let s ≥ 6(= 2n+ 4). Then DRπRF

∗η is in Γs−2(R2).

Proof. Recall the definition of the operator DR (see Section 2.6). For any
α ∈ R1 ⊂ Ω1(M),DRα = d(α̃+fη), where α̃ ∈ Ω1(M) is any form such that
πR(α̃) = α and f ∈ R0 is the unique function such that η ∧ d(α̃+ fη) = 0.
Let Λ be the linear isomorphism

Λ : R0 → R3 = Ω3(M) : h → hη ∧ dη.
Note that Λ is defined by a smooth vector bundle isomorphism; it, therefore,
extends to an isomorphism between the spaces Γs(M) and Γs(Λ3M) for all
s. Consider now the case α = πRF

∗η. The condition defining f is

η ∧ (F ∗dη + fdη) = 0.

By Example 2.5.9(v), η ∧ F ∗dη is in Γs−1(R3), forcing f to be in Γs−1(R0).
Compute as follows

DR(πRF ∗η) = dF ∗η + d(fη) = F ∗dη + df ∧ η + fdη.

Since wedging with η kills all terms in df ∧ η involving differentiation in
directions transverse to the contact distribution, it follows that d(fη) is in
Γs−2(Λ2M). Thus, DRα is in Γs−2, concluding the proof of the lemma. �
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Remark 4.3.10. The result of Lemma 4.3.9 is somewhat surprising.
Because πRF ∗η is in Γs−1 and DR is an operator of contact order 2, one
would expect DRπRF

∗η only to lie in Γs−3.

Proof of Proposition 4.3.7. By Proposition 4.1.2, the map χs : X → FX is
smooth; and for sufficiently small X, FX is a Γs-diffeomorphism. Recall that
πRF

∗η is in Γs−1(R1). The linear operators dR, δR, DR, D∗R, HR and πR are
all bounded as maps as follows:

dR, δR : Γs → Γs−1, HR : Γs−1 → Γs, and πR : Γs → Γs,

GR : Γs(Rk)→ Γs+2(Rk), for k < n,

DR, D
∗
R : Γs → Γs−2, GR : Γs(Rk)→ Γs+4(Rk), for k = n.

and the individual terms have the following regularity properties:

GRδR(πRF ∗Xη) ∈ Γs, GRδRdR(πRF ∗Xη) ∈ Γs, HR(πRF ∗Xη) ∈ C∞,
for n > 1; and for n = 1:

GRδR(πRF ∗Xη) ∈ Γs, GRD
∗
RDR(πRF ∗Xdη) ∈ Γs, HR(πRF ∗Xη) ∈ C∞.

Thus, Φ is smooth and maps between the spaces as indicated.
The only non-linear terms in the map Φ arise from the presence of F ∗Xη.

The linearization of this term at the zero vector field is LXη = dX0 +
XH dη. When we substitute this into the map Φ, we obtain easily the
linearization and its inverse. �

Let U ⊂ Γ2n+4(TM) be an open neighbourhood of the zero section such
that FX is a Γs-diffeomorphism for all X ∈ Us := U ∩ Γs(TM), s ≥ 2n+ 4.
The next theorem shows that the subset Vs ⊂ Us on which FX is a contact
diffeomorphism is a smooth submanifold which is smoothly parameterized
by the space of Γs-contact vector fields near zero.

Theorem 4.3.11. For U sufficiently small, for all s ≥ 2n+ 4, the set

Vs = {X ∈ Us : Φ(X) = (gX , 0, 0)}
is a smooth submanifold of Us := U ∩ Γscont(TM), smoothly parameterized
by the map

Ψ : Γscont(TM) ∩ Us → Vs : X → Φ−1(gX ⊕ 0).

Moreover, the map Ψ is of the form

Ψ(X) = X +B(X)(X,X),

where B : (Γscont(TM)∩U)×Γscont(TM)×Γscont(TM)→ Γs(TM) is smooth
and bilinear in the last two factors.
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Proof. It suffices to prove the theorem for s = 2n + 4. That Vs ⊂ Us is a
smooth submanifold follows from Proposition 4.3.7 and the inverse function
theorem in Banach spaces. To define Ψ, let π denote the projection

(4.3.12) π(g, γ) = (g, 0),

in the notation in the statement of Proposition 4.3.7, and let Ψ =(
Φ−1 ◦ π ◦ Φ) |Γs

cont(TM)∩U . The smoothness of Ψ follows from the smooth-
ness of Φ. A simple calculation shows that dΨ|0(X) = X, for all X ∈
Γscont(TM), which (together with the inverse function theorem) shows that
Ψ parameterizes Vs. The form of the operator B is given by Taylor’s formula
with integral remainder for smooth operators on Banach spaces:

B(X) =
∫ 1

0
(1− t)D2Ψ(tX) dt.

(See, e.g. [Ham, Theorem 3.5.6].) �
Remark 4.3.13. In view of the isomorphism Γs+1(M) � Γscont(TM) given
by (2.7.2), the map g → Ψ(Xg) defines a smooth parameterization of Vs by
Γs+1-functions in a neighbourhood of 0 ∈ Γs+1(M,R).

4.4. The smooth structure on the space of contact diffeomor-
phisms. The map Ψ of Theorem 4.3.7 gives a parameterization of the sub-
space Vs ⊂ Us. We now show that this parameterization in turn induces a
smooth structure on the space Dscont(M) of all Γs-contact diffeomorphisms.

Theorem 4.4.1. Let (M,η) be a compact contact manifold. For s ≥ 2n+4,
the space of Γs contact diffeomorphisms is a smooth Hilbert manifold.

Proof. We first show that the intersection of Dscont(M) with a neighbourhood
of the identity is a smooth submanifold of Ds(M). To see this, let χs :
Us → Ds(M) be the diffeomorphism onto a neighbourhood of the identity
given in Proposition 4.1.2. By Theorem 4.3.11, we can shrink Us if necessary
so that Vs is a smooth submanifold of Us. Now set OsId = χs(Us). Since
χs : Us → OsId is a diffeomorphism and

Dscont(M) ∩ OsId = χs(Vs),
it follows that Dscont(M) ∩ OsId is a smooth submanifold of Ds(M).
Next consider the open set OsF = F (OsId) ⊂ Ds(M), where F is an arbi-

trary C∞ contact diffeomorphism. Noting that G ∈ Ds(M) is a contact
diffeomorphism if and only if F−1 ◦ G is a contact diffeomorphism shows
that the equality

OsF ∩ Dscont(M) = F (Vs)
holds. Finally, recall that composition on left with F is a smooth diffeomor-
phism of Ds(M) (see Remark (4.1.3)) to conclude that OsF ∩ Dscont(M) is a
smooth submanifold of Ds(M).
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It remains only to show that every element of Dscont(M) is contained in
OsF for some smooth contact diffeomorphism F . To see this, choose any
G ∈ Dscont(M) and let Fk be a sequence of smooth contact diffeomor-
phisms converging to G. Because composition and inversion are continuous
operations, F−1

k ◦ G → idM as k → ∞. Therefore, F−1
k ◦ G ∈ OsId for k

sufficiently large. Consequently, G is contained in OsFk
= Fk(OsidM

) for k
sufficiently large. �

Remark 4.4.2. We can construct a smooth atlas for Dscont(M) as follows.
By Theorem 4.3.11 and Remark 4.3.13, there is an open neighbourhood
Os+1 of 0 ∈ Γs+1(M,R) such that

(4.4.3) χs+1
cont : Os+1 → Dscont(M) : g → χs ◦Ψs(Xg)

is a homeomorphism onto OsId ∩ Dscont(M). Its inverse is a coordinate chart
centred at the identity diffeomorphism. Composition with a smooth contact
diffeomorphism G then yields the map

χs+1
cont,G : Os+1 → Dscont(M) : g → G ◦ χs+1

cont(g),

whose inverse is a coordinate chart centred at G. The argument in the last
paragraph of the proof of Theorem 4.4.1 shows that the set of all such charts
forms a smooth atlas for Dscont(M).

We next address the global topology of TDscont(M). Because Dscont(M) is
a closed submanifold of Ds(M), there is a smooth inclusion TDscont(M) ⊂
TDs(M). Using the fact that Ds(M) is an open subset of Γs(M,M), and
letting Γs(M, |TM |) denote the space of Γs-maps from M into the total
space of TM (i.e., forgetting the vector bundle structure on TM), one sees
immediately that the tangent bundle of Ds(M) is the open subset

TDs(M) = {X ∈ Γs(M, |TM |) : π ◦X ∈ Ds(M)}
with bundle projection TDs(M) → Ds(M) : X → π ◦ X. A standard
computation with Lie derivatives applied to a one-parameter family of con-
tact diffeomorphisms then shows that a Γs-vector field X :M → |TM | is in
TDscont(M) if and only if F = π ◦X is Dscont(M) and X ◦ F−1 ∈ Γs(TM) is
a contact vector field. As the next proposition shows, TDscont(M) is a trivial
vector bundle:

Proposition 4.4.4. Let Xg denote the contact vector field associated to the
generating function g. The map

Dscont(M)× Γs(M,R) −→ TDscont(M) : (g, F ) → Xg ◦ F,
is a continuous vector bundle isomorphism.

Remark 4.4.5. Composition with a Γs-contact diffeomorphism is a contin-
uous, but not differentiable, operation. Consequently, the trivialization in
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Proposition 4.4.4 is not smooth. We discuss the smoothness of composition
in Section 4.5.

Proposition 4.4.4 is a corollary to a more general construction. Let
π : E → M be a smooth vector bundle over M , and let |E| denote the
total space of E, viewed as a smooth manifold, forgetting its vector bundle
structure. Recall that Γs(M, |E|) denotes the space of Γs-maps from M into
|E|. Because π is smooth, Corollary 2.4.5 applies to show that the map

Lsπ : Γ
s(M, |E|)→ Γs(M,M) : G → π ◦G.

is smooth. Let ΓsDcont
(M,E) = (Lsπ)

−1(Dscont(M)) ⊂ Γs(M, |E|) and let
(4.4.6) πD : ΓsDcont

(M,E) −→ Dscont(M)

be the restriction of Lsπ to Γ
s
Dcont

(M,E). Note that the vector bundle struc-
ture on E induces a vector space structure on the the fibres of πD, and we
call πD : ΓsDcont

(M,E) → Dscont(M) the (vector) bundle of Γs-sections of E
over contact diffeomorphisms.

Lemma 4.4.7. Let π : E →M be a smooth vector bundle over M . Then for
s ≥ 2n+4, the map ΦE : Dscont(M)×Γs(E)→ ΓsDcont

(M,E) : (F, σ) → σ◦F
is a continuous, vector bundle isomorphism between ΓsDcont

(M,E) and the
trivial vector bundle.

Proof. Consider first the special case where E → M is the trivial bundle
M×R

r →M . The diffeomorphism Γs(M, |M×R
r|) � Γs(M,M)×Γs(M,Rr)

restricts to a diffeomorphism

ΓsDcont
(M,M × R

r) � Dscont(M)× Γs(M,Rr)

with respect to which ΦM×Rr assumes the form

ΦM×Rr :Dscont(M)× Γs(M,Rr)→ ΓsDcont
(M,M × R

r) : (F, σ) → (F, σ ◦ F ),
with inverse

Φ−1
M×Rr :ΓsDcont

(M,M×R
r)→ Dscont(M)×Γs(M,Rr) : (F, σ) → (F, σ◦F−1).

Continuity of Φ−1
M×Rr follows from continuity of composition with F (see

Corollary 3.1.4); and continuity of Φ−1
M×Rr follows from continuity of inver-

sion (see Theorem 3.2.5).
Now consider the general case. By construction, ΦE is bijective, preserves

basepoint, and is linear on each fibre. To see that ΦE is continuous, note that
since the map E →M ×E : e → (π(e), e) is smooth, so is the induced map

ι : Γs(E) ↪→ Γs(M × E)
defined by the formula ι(σ) : x → (x, σ(x)). This observation, together with
Corollary 2.4.5 implies continuity of ΦE . It remains only to show that Φ−1

E
is continuous. Let j : E → M × R

r be a smooth vector bundle inclusion
into a trivial bundle, and let s : M × R

r → E be a smooth vector bundle
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map with s ◦ j = idE . Continuity of Φ−1
E is proved by expressing Φ−1

E as the
following composition of continuous maps:

ΓsDcont
(M,E)

Ls
j−→ ΓsDcont

(M,M × R
r) � Dscont(M)× Γs(M,Rr)

Φ−1
M×Rr−→ Dscont(M)× Γs(M,Rr)

idDs
cont(M)×Ls

s−→ Dscont(M)× Γs(M,E),

concluding the proof of the lemma. �

We close this section with a formula for the derivative of χscont, which
we need in Section 4.5. For g ∈ Os+1, we denote by TFgDscont(M) the
tangent space to Dscont(M) at the contact diffeomorphism Fg, and for
h ∈ Γs+1(M,R), we set

Y(g,h) = Dχs+1
contg(h) :M → TM,

where Y(g,h) ∈ TFgDscont(M); and we set X(g,h) = Y(g,h) ◦ F−1
g ∈ Γscont(TM).

Lemma 4.4.8. For s ≥ 2n+ 4, the map

Os+1 × Γs+2(M,R)→ Γscont(TM) : (g, h) → X(g,h)

is continuous. Moreover, for every g ∈ Os+1 and ε > 0, there is a δ > 0
such that

‖X(g1,h) −X(g,h)‖s < ε‖h‖s+1

for all g1 ∈ Os+1 such that ‖g1 − g‖s+1 < δ and all h ∈ Γs+2(M,R).

Proof. Continuity of the map is clear. The estimate is the restatement of
the fact that the derivative Dχscont,g depends continuously on g. �

4.5. Differentiability of composition. We showed in Section 3 that com-
position

μ : Dscont(M)× Γk(M,R)→ Γk(M,R) : (F, u) → u ◦ F
is a continuous operation for 2n + 4 ≤ k ≤ s, but composition is not C1,
as the following counterexample shows. Choose u ∈ Γk(M,R) with T (u) /∈
Γk(M R), where T is the Reeb vector field on M . Then the one-parameter
family Ft of contact diffeomorphisms given by the flow of the Reeb vector
field T is a smooth curve in Dscont(M); and differentiability of μ would imply
that the limit

lim
t→0

μ(u, Ft)− μ(u, F0)
t

= T (u)

would be an element of Γk(M,R). But this contradicts our choice of u. The
next theorem shows that we can recover smoothness by strengthening the
regularity assumption on u.
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Theorem 4.5.1. Let M be a compact contact manifold of dimension 2n+1
and let N be a smooth manifold. Then the map

μ : Dscont(M)× Γk+2(M,N)→ Γk(M,N) : (F,G) → G ◦ F
is continuously differentiable for 2n + 4 ≤ k ≤ s. In case N = R

m, μ is
continuously differentiable for 0 ≤ k ≤ s, 2n+ 4 ≤ s.

Proof. Assume that the theorem holds in the special case where N = R
m,

with m arbitrary. Let ι : N ↪→ R
m be a closed embedding, and let U ⊂ R

m

be a tubular neighbourhood of N , with projection map π : U → N . By
Corollary 2.4.5, the maps ι and π induce smooth maps

ι̃ : Γk(M,N)→ Γk(M,U) and π̃ : Γk(M,U)→ Γk(M,N)

for all k ≥ 2n + 4. Because Γk(M,U) is an open subset of Γk(M,Rm) by
assumption, we know that

μ : Dscont(M)× Γk+2(M,U)→ Γk(M,U) : (F, u) → u ◦ F
is a C1 map. It follows that the composition

Dscont(M)× Γk+2(M,N) id×ι̃−→ Dscont(M)× Γk+2(M,U)
μ−→ Γk(M,U)

π̃−→ Γk(M,N)

is a C1 map.
It remains to prove the theorem in the case N = R

m. Because Γk(M,Rm)
is the mth fold product of Γk(M,R), we need only to prove it for m = 1;
and by Remark 4.4.2, it suffices to restrict to an open neighbourhood of
the identity in Dscont(M). Now for Os+1 ⊂ Γs+1(M) a sufficiently small
neighbourhood of 0, the map

χs+1
cont : Os+1 −→ Dscont(M) : g → Fg

is a smooth parameterization of a neighbourhood of the identity contact
diffeomorphism. (Here and in the following we set Fg = FΨ(Xg), where Xg

denotes the contact vector field with generating function g.) With this nota-
tion, the proof reduces to proving that the map

μ : Γk+2(M,R)×Os+1 −→ Γk(M,R) : (u, g) → u ◦ Fg
is C1. The next proposition completes the proof. �
Proposition 4.5.2. For s ≥ 2n + 4 and s ≥ k ≥ 0 and for Os+1 ⊂
Γs+1(M,R) a sufficiently small neighbourhood of 0, the map

μ : Γk+2(M,R)×Os+1 −→ Γk(M,R) : (u, g) → u ◦ Fg.
is C1 with derivative at (u, g) given by the formula

Dμ(u,g) : (v, h) → v ◦ Fg + (X(g,h) du) ◦ Fg,
for (v, h) ∈ Γk+2(M,R)× Γs+1(M,R).
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Proof. Because μ is a map between Banach spaces, to show that it is C1,
we need only to show that the two partial derivatives of μ with respect to
the first and second variables

D1μ : Γk+2(M,R)×Os+1 → L
(
Γk+2(M,R),Γk(M,R)

)
,

D2μ : Γk+2(M,R)×Os+1 → L
(
Γs+1(M,R),Γk(M,R)

)
exist and are continuous3. We shall obtain formulas for D1μ and D2μ.
The formula for Dμ(u,g)(v, h) then follows immediately from the well-known
identity

Dμ(u,g)(v, h) = D1μ(u,g)(v) +D2μ(u,g)(h).
To see that D1μ exists, note that by Corollary 3.1.4, μ is continuous.

The map μ is linear in the first variable and, therefore, differentiable with
respect to the first variable, with derivative given by D1μ(u,g)(v) = v ◦ Fg.
Continuity of D1μ is proved in Lemma 4.5.4 below.
We next claim that

D2μ(u,g)(h) = (X(g,h) du) ◦ Fg.
To prove the claim, first note that because s ≥ 2n + 4, the functions g, h,
u, as well as the map Fg, are of class at least C1. Moreover, because χs+1

cont

is smooth, the family t → Fg+th of contact diffeomorphisms is a smooth
family. Consequently, we can compute pointwise at x ∈ M , employing the
chain rule as follows:

D2μ(u,g)(h)(x) = lim
t→0

u(Fg+th(x))− u(Fg(x))
t

=
du (Fg+th(x))

dt

∣∣∣∣
t=0

(4.5.3)

= du
(
Dχs+1

cont,g(h)(x)
)
= Y(g,h)(x) duFg(x)

= (X(g,h) du) ◦ Fg(x).
To prove that μ is differentiable with respect to the second variable, we need
to verify the formula

lim
h→0

‖u ◦ Fg+h − u ◦ Fg − (X(g,h) du) ◦ Fg‖k
‖h‖s+1

= 0

and we need to prove continuity of D2μ. We do this in Lemma 4.5.10. �
Lemma 4.5.4. D1μ : Γk+2(M,R) × Os+1 → L

(
Γk+2(M,R),Γk(M,R)

)
is

continuous for s ≥ 2n+ 4 and all k ≥ 0.

Proof. By definition of continuity, we must show that for any g0 ∈ Os+1 and
any ε > 0, there is a δ > 0, such that the condition

‖v ◦ Fg − v ◦ Fg0‖k < ε‖v‖k+2

3We use the notation L(H1,H2) to denote the Banach space of bounded linear maps
between Hilbert spaces H1 and H2.
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is satisfied for all v ∈ Γk(M,R) and all g ∈ Os+1 with ‖g − g0‖s+1 < δ. We
need only to prove the estimate for v a smooth test function.
Set h = g − g0. Because the map g → Fg is smooth, and v is smooth,

for fixed x ∈ M , the function γx : t → v(Fg0+th(x)) is a C1 function of t.
Consequently, we can compute as follows using the chain rule:

v ◦ Fg(x)− v ◦ Fg0(x) =
∫ 1

0

d

dt
v(Fg0+th(x)) dt

=
∫ 1

0
(X(g0+th,h) dv) ◦ Fg0+th(x) dt.

Viewing t → (X(g0+th,h) dv) ◦ Fg0+th as a continuous curve in the Hilbert
space Γk(M,R) yields the inequality

‖v ◦ Fg(x)− v ◦ Fg0(x)‖k ≤
∫ 1

0

∥∥(X(g0+th,h) dv) ◦ Fg0+th

∥∥
k
dt.

Hence, to prove the lemma it suffices to show that, for δ > 0 sufficiently
small, the estimate

(4.5.5) ‖(Xg,h dv) ◦ Fg‖k < ε‖v‖k+2

holds for all g ∈ Os+1 and h ∈ Γs+1(M,R) with ‖g − g0‖s+1 < δ and
‖h‖s+1 < δ. To obtain (4.5.5), first observe that since interior evaluation

Γs(TM)× Γk(T ∗M)→ Γk(M,R) : (X,β) → X β

is a smooth bilinear map (see Proposition 2.4.2), the estimate

(4.5.6) ‖X β‖k ≺ ‖X‖s‖β‖k
holds. Note also that by continuity of composition (see Corollary 3.1.4) and
linearity in v,

(4.5.7) ‖v ◦ Fg0‖k ≺ ‖v‖k
for all v. Continuity also shows that we can choose δ > 0 small, so that

‖v ◦ Fg − v ◦ Fg0‖k < 1

holds, provided ‖v‖k < δ and ‖g − g0‖s+1 < δ. By linearity in v, setting
C2 = 1/δ, we get the estimate

(4.5.8) ‖v ◦ Fg − v ◦ Fg0‖k < C2‖v‖k,
provided ‖g − g0‖s+1 < δ. Finally, note that because χs+1

cont is smooth, its
derivative Dχs+1

cont is continuous in the operator norm. We can therefore
choose δ > 0 so small that

(4.5.9) ‖X(g,h) −X(g0,h)‖s < ε‖h‖s+1
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for all h, provided ‖g− g0‖s+1 < δ. Choosing δ > 0, so that all of the above
estimates hold and choosing g so that ‖g−g0‖s+1 < δ, we can then estimate
as follows:

‖(X(g,h) dv) ◦ Fg‖k
≤ ‖(X(g,h) dv)◦Fg0‖k + ‖(X(g,h) dv)◦Fg − (X(g,h) dv) ◦ Fg0‖k
≺ ‖(X(g,h) dv) ◦ Fg0‖k+‖X(g,h) dv‖k≺‖X(g,h) dv‖k+‖X(g,h) dv‖k
≺ ‖X(g,h) dv‖k ≺ ‖X(g,h)‖s · ‖v‖k+2

≺ (‖(X(g0,h) dv)‖s + ε‖h‖s+1) · ‖v‖k+2

≺ ‖h‖s+1 · ‖v‖k+2.

The estimate (4.5.5) follows by decreasing δ, if necessary, and requiring
‖h‖s+1 < δ. �
Lemma 4.5.10. For 2n + 4 ≤ s, k ≤ s, and Os+1 as in Lemma 4.5.4, the
derivative D2μ : Γk+2(M,R)×Os+1 → L

(
Γs+1(M,R),Γk(M,R)

)
exists, is

continuous, and given by the formula

D2μ(u,g)(h) = Y(g,h) (du ◦ Fg),
for g ∈ Os+1, u ∈ Γk(M,R), and h ∈ Γs+1(M,R).

Proof. To prove that D2μ exists, choose (u, g0) ∈ Γk+2(M,R) × Os+1. We
need to show that

(4.5.11) lim
h→0

‖u ◦ Fg0+h − u ◦ Fg0 − (X(g0,h) du) ◦ Fg0‖k
‖h‖s+1

= 0.

Choose ε > 0. We need to find δ > 0 such that

(4.5.12) ‖u◦Fg0+h−u◦Fg0−(X(g0,h) du)◦Fg0‖k < ε‖h‖s+1 for ‖h‖s+1 < δ.

To this end, compute as follows for g ∈ Os+1 near g0, setting h = g − g0:
‖u ◦ Fg0+h − u ◦ Fg0 − (X(g0,h) du) ◦ Fg‖k

=
∥∥∥∥∫ 1

0

{
d(u ◦ Fg0+th)

dt
− (X(g0,h) du) ◦ Fg0

}
dt

∥∥∥∥
k

≤
∫ 1

0

∥∥∥∥{d(u ◦ Fg0+th)
dt

− (X(g0,h) du) ◦ Fg0
}∥∥∥∥

k

dt

=
∫ 1

0

∥∥(X(g0+th,h) du) ◦ Fg0+th − (X(g0,h) du) ◦ Fg0
∥∥
k
dt.

Consequently, to prove (4.5.12), it suffices to find δ > 0 so that the inequality

(4.5.13)
∥∥(X(g,h) du) ◦ Fg − (X(g0,h) du) ◦ Fg0

∥∥
k
< ε‖h‖s+1

holds for all ‖g− g0‖s+1 < δ. But by Proposition 4.5.2, we can choose δ > 0
so that



CONTACT DIFFEOMORPHISMS 97

‖v ◦ Fg − v ◦ Fg0‖k < ε‖v‖k+2 for all v ∈ Γk(M,R); and with this choice of
δ, we can estimate as follows:∥∥(X(g,h) du) ◦ Fg − (X(g0,h) du) ◦ Fg0

∥∥
k

≤ |(X(g,h) du) ◦ Fg − (Xg,h du) ◦ Fg0‖k + ‖(X(g,h) du) ◦ Fg0
− (X(g0,h) du) ◦ Fg0‖k

≺ ε‖X(g,h) du‖k + ‖
(
X(g,h) −X(g0,h)

)
du‖k

≺ ε‖X(g,h) du‖k + ‖X(g,h) −X(g0,h)‖s · ‖du‖k.
Finally, using smoothness of χs+1

cont as we did in equation (4.5.9) above we
can bound the last term as follows, for δ sufficiently small:

≺ ε‖X(g,h) du‖k + (ε‖h‖s+1)‖du‖k ≺ ε‖h‖s+1.

This concludes the proof of (4.5.12). Continuity of D2μ follows from the
following estimate:

‖D2μ(g,u)(h)−D2μ(g0,u0)(h)‖k
= ‖(X(g,h) du) ◦ Fg − (X(g0,h) du0) ◦ Fg0‖k
≺ ‖(X(g,h) du) ◦ Fg − (X(g0,h) du) ◦ Fg0‖k + ‖(X(g0,h) du) ◦ Fg0
− (X(g0,h) du0) ◦ Fg0‖k

≺ ε‖du‖k‖h‖s+1 + C‖d(u− u0)‖‖h‖s+1 ≺ ε‖h‖s+1,

which holds for all (g, u) with ‖g − g0‖s+1 < δ, ‖u− u0‖k+1 < δ. �

4.6. Some a priori estimates. Theorems 4.3.11 and 4.4.1 state that the
non-linear space of Γs contact diffeomorphisms is a Hilbert manifold mod-
elled on the linear space of Γs contact vector fields. In typical applications,
one would like to study the action of the space of contact diffeomorphisms
on some set of structures by comparing it with the linearized action of con-
tact vector fields. For this strategy to work, it is necessary to show that
the error incurred in the linearization is quadratically small in an appropri-
ate sense. This is the content of the next proposition, which gives a priori
estimates for the quadratic error Ψ(X) − X = B(X)(X,X). We require
this result in [BD3] to obtain normal forms for CR structures on compact
three-dimensional contact manifolds.

Proposition 4.6.1. For X ∈ Γscont(TM) ∩ Us,
(i) ‖Ψ(X)−X‖s ≺ ‖X‖s‖X‖s−1 .

Moreover, for all X1, X2 ∈ Γscont(TM) ∩ Us,

‖(Ψ(X2)−X2)− (Ψ(X1)−X1)‖s ≺ ‖X2 −X1‖s−1(‖X2‖s + ‖X1‖s)
(ii)

+ ‖X2 −X1‖s(‖X2‖s−1 + ‖X1‖s−1).
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Our proof relies on the next two lemmas. The first is a corollary to
Lemma 4.2.7 and compactness of M . (See Remark 4.2.8 for the definition
of Q.)

Lemma 4.6.2. For c > 0 sufficiently small, the following estimates hold
for ψ a fixed smooth q form. For all X ∈ Γs+2

cont(TM), s ≥ 2n+ 4, such that
|X| < c:

‖F ∗Xψ‖s ≺ ‖ψ‖s + ‖LXψ‖s + ‖X‖s ‖X‖s+2,(i)

‖(F ∗Xψ) ∧ η‖s ≺ ‖ψ ∧ η‖s + ‖LXψ ∧ η‖s + ‖X‖s ‖X‖s+1,(ii)

and, for q ≤ n,

‖πR(F ∗Xψ)‖s ≺ ‖πRψ‖s + ‖πR(LXψ)‖s + ‖X‖s ‖X‖s+1.(iii)

Moreover, for q ≤ n,

‖πR (Qψ(X1)−Qψ(X2)) ‖s ≺ ‖X1 −X2‖s (‖X1‖s+1 + ‖X2‖s+1)

+ ‖X1 −X2‖s+1 (‖X1‖s + ‖X2‖s)(iv)

holds for any two vector fields Xi, i = 1, 2 such that |Xi| < c.

Proof. Choose an adapted atlas and a constant c > 0 as in the discussion
above Lemma 4.2.7. The inequalities (i) and (ii) follow from the definition of
Qψ. To prove (iii), note that by Lemma 4.2.7, πR◦Qψ is a smooth differential
operator of contact order 1; the inequality then follows. The inequality (iv)
follows from the smooth dependence of Qψ(X) on X. �

Lemma 4.6.3. Choose c > 0 as in the previous lemma. The following
estimates are satisfied for any Γs+2 vector fields X, Xi, i = 1, 2 with |X| < c,
|Xi| < c, s ≥ 2n+ 4. If n = 1 then

‖DRπR(F ∗Xη − η − LXη)‖s−2 = ‖DRπR(Qη(X))‖s−2 ≺ ‖X‖s ‖X‖s−1

and

‖DRπR(Qη(X1)−Qη(X2))‖s−2 ≺ (‖X1‖s + ‖X2‖s) · ‖X1 −X2‖s−1

+ (‖X1‖s−1 + ‖X2‖s−1) · ‖X1 −X2‖s.
If n > 1 then

‖dRπR(F ∗Xη − η − LXη)‖s−1 = ‖dRπR(Qη(X))‖s−1 ≺ ‖X‖s ‖X‖s−1

and

‖dRπR(Qη(X1)−Qη(X2))‖s−1,loc ≺ (‖X1‖s + ‖X2‖s) · ‖X1 −X2‖s−1

+ (‖X1‖s−1 + ‖X2‖s−1) · ‖X1 −X2‖s.
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Proof. Let φ = F ∗Xη − η − LXη ∈ Γs(Λ1(M). By compactness of M , it
suffices to obtain local estimates on a coordinate patch W � U chosen as in
Lemma 4.2.7. In the notation of Lemma 4.2.7, the one form φ can be written

φ = Q1
ij(X)X

iXj +Q2
ij(X)X

idXj

= Qij,k(x,X(x))Xi(x)Xj(x)dxk +Qij(x,X(x))Xi(x)dXj(x),

where Qij,k and Qij are smooth functions on BM |W .
Suppose that n = 1. Recall that DR(πRφ) is defined as

DRπRφ := d(φ+ fη) = dφ+ dRf ∧ η + f ∧ dη.
where f ∈ Γs−1(M) is the unique function with η∧ (dφ+ fdη) = 0. Because
the map h → hη∧dη is a smooth linear isomorphism, ‖f‖s−1 ≺ ‖fη∧dη‖s−1.
We can, therefore, estimate as follows:

‖DRπRφ‖s−2 ≺ ‖dφ‖s−2 + ‖f‖s−1 ≺ ‖dφ‖s−2 + ‖dφ ∧ η‖s−1.

Thus, we need only to estimate ‖dφ‖s−2 and ‖dφ ∧ η‖s−1:

‖dφ‖W,s−2 = ‖d(Qij,k(x,X)XiXj dxk +Qij(x,X)Xi dXj)‖W,s−2

≺ ‖X‖W,s−1‖X‖W,s,
‖(dφ ∧ η)‖W,s−1 ≺ ‖d(Qij,k(x,X)XiXjdxk +Qij(x,X)XidXj) ∧ η‖W,s−1

≺ ‖X‖W,s−1‖X‖W,s.
The proof of the second inequality follows by similar reasoning.
Now suppose that n > 1. Then

‖dRπR(F ∗Xη − η − LX)‖W,s−1

= ‖πRdφ‖W,s−1

= ‖dR(Qij,k(x,X)XiXj dxk) + dR(Qij(x,X)Xi) ∧ dRX
j)‖W,s−1

≺ ‖X‖W,s ‖X‖W,s−1.

The proof of the last inequality in the statement of the lemma follows by
similar reasoning. �

Proof of Proposition 4.6.1. Recall the definition of Ψ,

(4.6.4) Ψ(X)−X = Φ−1 ◦ π ◦Φ(X)−X = Φ−1 ◦ π ◦Φ(X)−Φ−1 ◦Φ(X),
where Ψ is the map defined in Theorem 4.3.7 and where π(g ⊕ α⊕ ω) = g.
Because Φ−1 is smooth (and thus of class C1), equation (4.6.4) implies the
inequality

‖Ψ(X)−X‖s ≺ |||π ◦ Φ(X)− Φ(X)|||s = ‖π⊥Φ(X)‖s,
where π⊥(g ⊕ α ⊕ ω) := α ⊕ ω and |||g ⊕ α ⊕ ω|||s := ‖g‖s+1 + ‖α ⊕ ω‖s.
Consequently, to prove the estimate (i), we need only to estimate the terms
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in the expansion
(4.6.5)

π⊥Φ(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n+ 1)GRδR(πRF ∗Xη)
⊕ (GRD∗RDR(πRF ∗Xη)⊕HR(πRF ∗Xη)), for n = 1,

(n+ 1)GRδR(πRF ∗Xη)
⊕ (nGRδRdR(πRF ∗Xη)⊕HR(πRF ∗Xη)), for n > 1

given in Theorem 4.3.7. By Lemma 4.2.7 we have the local formula

F ∗Xη = η + LXη +Q1
ij(x,X)X

iXj +Q2
ij(x,X)X

idXj .

Therefore, because X is contact and so πR(LXη) = 0, Lemma 4.6.2 implies
the estimate

‖πR(F ∗Xη)‖s−1 ≺ ‖πRη‖s−1+‖πR(LXη)‖s−1+‖X‖s ‖X‖s−1 = ‖X‖s ‖X‖s−1.

Taking into account the orders of the various operators in equation (4.6.5)
and recalling Lemma 4.6.3, we can estimate as follows:

For n ≥ 1,

‖GRδRπR(F ∗Xη)‖s ≺ ‖πR(F ∗Xη)‖s−1 ≺ ‖X‖s ‖X‖s−1

‖HRπR(F ∗Xη)‖s ≺ ‖πR(F ∗Xη)‖s−1 ≺ ‖X‖s ‖X‖s−1 ;

for n = 1,

‖GRD∗RDRπR(F ∗Xη)‖s ≺ ‖DRπR(F ∗Xη)‖s−2 ≺ ‖X‖s ‖X‖s−1 ;

and for n > 1,

‖GRδRdRπR(F ∗Xη)‖s ≺ ‖dRπR(F ∗Xη)‖s−1 ≺ ‖X‖s ‖X‖s−1.

This concludes the proof of (i).
We now show that

‖ (Ψ(X2)−X2)− (Ψ(X1)−X1) ‖s ≺ ‖X2 −X1‖s−1(‖X2‖s + ‖X1‖s)
+ ‖X2 −X1‖s(‖X2‖s−1 + ‖X1‖s−1).

Set Yi := Ψ(Xi)−Xi, i = 1, 2. Differentiability of the map Φ−1 implies the
inequality

‖Y2 − Y1‖s = ‖ (Ψ(X2)−X2)− (Ψ(X1)−X1) ‖s ≺ ‖|Φ(Y2 − Y1)‖|s ;
which, by adding and subtracting a term and applying the triangle inequal-
ity, implies the inequality

‖Y2 − Y1‖s ≺ |||(π⊥ ◦ Φ(X2)− π⊥ ◦ Φ(X1))|||s(4.6.6)

+ |||Φ(Y2 − Y1) + (π⊥ ◦ Φ(X2)− π⊥ ◦ Φ(X1))|||s.
To conclude the proof, we need only to estimate each term on the right-hand
side of (4.6.6).
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To estimate the first term, note that by Lemma 4.2.7 applied to the
contact vector fields Xi, we have the local formula

πRF
∗
Xi
η = πR(η + LXiη +Qη(Xi)) = πR(Qη(Xi)).

This and equation (4.6.5) imply the inequalities

‖|π⊥ ◦ Φ(X2)− π⊥ ◦ Φ(X1)‖|s
≺ ‖πR(Qη(X2)−Qη(X1))‖s−1

+ ‖DRπR (Qη(X2)−Qη(X1)) ‖s−2 for n = 1

and

≺ ‖πR(Qη(X2)−Qη(X1))‖s−1

+ ‖dRπR (Qη(X2)−Qη(X1)) ‖s−1 for n > 1.

Evoking Lemmas 4.6.2 and 4.6.3 then yields the estimate of the first term
we need:

‖|(π⊥ ◦ Φ(X2)− π⊥ ◦ Φ(X1))‖|s ≺ ‖(X2 −X1)‖s−1(‖X2‖s + ‖X1‖s)
+ ‖(X2 −X1)‖s(‖X2‖s−1 + ‖X1‖s−1).

We estimate the second term in (4.6.6) as follows. We first claim that
Φ(Y2 − Y1) = π⊥ ◦ Φ(Y2 − Y1). To see this, use the definition Ψ(X) =
Φ−1 ◦ π ◦Φ(X) for any vector field X and the linearity of the map π ◦Φ to
write π ◦ Φ(Yi) in the form
π ◦ Φ(Yi) = π ◦ Φ(Ψ(Xi)−Xi) = π ◦ Φ(Φ−1 ◦ π ◦ Φ(Xi))− π ◦ Φ(Xi) = 0.

It follows that π ◦ Φ(Y2 − Y1) = 0; hence, π⊥ ◦ Φ(Y2 − Y1) = Φ(Y2 − Y1).
Next, since Ψ(X) = Φ−1 ◦ π ◦ Φ(X), we have

π⊥ ◦ Φ ◦Ψ(Xi) = π⊥π ◦ Φ(Xi) = 0.

Combining these two identities shows the second term in (4.6.6) can be
written

Φ(Y2 − Y1) + (π⊥ ◦ Φ(X2)− π⊥ ◦ Φ(X1))

= π⊥ {Φ(Y2 − Y1) + (Φ(X2)− Φ(Ψ(X2))− Φ(X1) + Φ(Ψ(X1))} .
We now show that

π⊥ {Φ(Y2 − Y1) + (Φ(X2)− Φ(Ψ(X2))− Φ(X1) + Φ(Ψ(X1))}
(4.6.7)

= L (Qη(Y2 − Y1)− (Qη(Ψ(X2))−Qη(Ψ(X1))) + (Qη(X2)−Qη(X1))) ,

where L is the linear operator defined by

L(φ) :=

{
{(n+ 1)GRδR ⊕ (GRD∗RDR +HR)} ◦ πR(φ), for n = 1,
{(n+ 1)GRδR ⊕ (nGRδRdR +HR)} ◦ πR(φ), for n > 1.
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To see this, apply Lemma 4.2.7 with φ = η to the vector fields Y2 − Y1, Xi,
and Ψ(Xi) to obtain the three expansions

F ∗Xi
η = η + LXiη +Qη(Xi),

F ∗Ψ(Xi)
η = η + LΨ(Xi)η +Qη(Ψ(Xi)),

F ∗(Y2−Y1)η = LY2η − LY1η +Qη(Y2 − Y1).

Substituting these expressions into Equation (4.6.5) and collecting terms
reveals that the terms involving the Lie derivative of η cancel to yield the
identity (4.6.7). Thus, by the triangle inequality, to estimate the second term
in (4.6.6), we need only to estimate each term in the sum

|||L(Qη(Y2 − Y1))|||s + |||L(Qη(Ψ(X2))−Qη(Ψ(X1)))|||s
+ |||L(Qη(X2)−Qη(X1))|||s.

For each term, we use the estimates

|||L(φ)|||s ≺
{
‖πRφ‖s−1 + ‖DRπRφ‖s−2 + ‖HRπRφ‖s, for n = 1,
‖πRφ‖s−1 + ‖dRπRφ‖s−1 + ‖HRπRφ‖s, for n > 1.

Noting the degree of the various linear operators in the definition of L and
employing Lemmas 4.6.2 and 4.6.3 shows that

|||L(Qη(Y2 − Y1))|||s ≺ (‖Y2 − Y1‖s)‖Y2 − Y1‖s−1,

|||L(Qη(Ψ(X2))−Qη(Ψ(X1)))|||s ≺ (‖Ψ(X1)‖s + ‖Ψ(X2)‖s) · ‖Ψ(X2)

−Ψ(X1)‖s−1 + (‖Ψ(X1)‖s−1

+ ‖Ψ(X2)‖s−1) · ‖Ψ(X2)−Ψ(X1)‖s,
and

|||L(Qη(X2)−Qη(X1))|||s ≺ (‖X1‖s + ‖X2‖s) · ‖X2 −X1‖s−1

+ (‖X1‖s−1 + ‖X2‖s−1) · ‖X2 −X1‖s.

To conclude the estimate of (4.6.6), note that since Ψ is C1, we can replace
Ψ(Xi) by Xi and Y2 − Y1 by X2 − X1 everywhere in the first two of the
previous three inequalities. �
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