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ON THE ALGEBRAIC INDEPENDENCE OF
HAMILTONIAN CHARACTERISTIC CLASSES

Światosław Gal, Jarek Kędra, and Aleksy Tralle

We prove that Hamiltonian characteristic classes defined as fibre
integrals of powers of the coupling class are algebraically independent
for generic coadjoint orbits.

1. Introduction

Let (M, ω) be a closed symplectic manifold of dimension 2n and let

(M, ω) i→ E
π→ B

be a Hamiltonian fibration over a simply connected base. It means that
the structure group of the fibration is contained in the group Ham(M, ω)
of Hamiltonian diffeomorphisms of (M, ω). There exists a cohomology class
Ω ∈ H2(E) that is uniquely defined by the following two conditions:

i∗Ω = [ω],

π!(Ωn+1) = 0.

It is called the coupling class. The existence of the coupling class and its
basic properties are discussed in [1, 5].

Since the fibre integration is functorial the coupling class is natural in the
sense that the coupling class of the pull-back bundle is the pull-back of the
coupling class. One defines the following characteristic classes of Hamiltonian
fibration:

μk(E) := π!(Ωn+k) ∈ H2k(B).

The fundamental question arises if these classes are nontrivial and to
what extent are they algebraically independent in the cohomology ring
H∗(B Ham(M, ω)) of the classifying space of the group of Hamiltonian dif-
feomorphisms.

The first result about the algebraic independence was proved by Reznikov
for CP

n ([10, Section 1.3]) and it states that the classes μk are algebraically
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independent for k = 2, . . . , n + 1. Reznikov also suggested that this result
may be true for any coadjoint orbit of a compact Lie group. The main result
of the present note states that Reznikov’s claim is correct generically.

Theorem 1.1. Let G be a compact semisimple Lie group and let

K := {k ∈ N |π2k(BG) ⊗ Q �= 0}.
There exists a nonempty Zariski open subset A ⊂ g∨ in the dual of the Lie
algebra of G such that for any ξ ∈ A the coadjoint orbit Mξ of ξ satisfies the
following. The classes μk ∈ H2k(B Ham(Mξ)) are algebraically independent
for k ∈ K.

The proof of this theorem amounts to the calculation of the characteristic
classes μk for the universal fibration Mξ → BGξ → BG. Then we use the
fact that the cohomology ring H∗(BG) is a polynomial ring generated by
elements with degrees in K. This follows from results about cohomology of
classifying spaces (see [7]) and basic rational homotopy theory.

Corollary 1.1. Let G be a compact simple Lie group different from SO(4k)
There exists a nonempty Zariski open subset A ⊂ g∨ in the dual of the Lie
algebra of G such that for any ξ ∈ A the coadjoint orbit Mξ of ξ satisfies the
following. The homomorphism H∗(B Ham(Mξ)) → H∗(BG) induced by the
action is surjective and its image is generated by the classes μk.

Remark 1.1. We exclude the orthogonal group SO(4k) because there are
two generators in H4k(BSO(4k)), the Euler class and the kth Pontrya-
gin class [7, Theorem 3.19]. We shall show in Section 3.4 that the Euler
class is a nonzero multiple of the class μ2k for a bundle over S4k with fibre
SO(4k)/U(2k).

Remark 1.2. In order to prove the surjectivity of the homomorphism
H∗(B Ham(M, ω)) → H∗(BG) one can use characteristic classes defined
by integrating products of the equivariant Chern classes [2] or use different
arguments [3].

In Section 3, we provide various examples of coadjoint orbits for which
the algebraic independence does or does not hold. The simplest manifolds
with the class μ3 trivial in H∗(BG) are the complex grassmannian G(2, 4) of
planes in C

4 and the flag manifold SU(3)/T for a certain invariant symplectic
form.

1.1. Conventions. Throughout the paper H∗(X) denotes the cohomology
of X with real coefficients.

When we say that a statement holds for a generic element x ∈ V of an
algebraic variety we mean that there exists a Zariski open subset S ⊂ V such
that for every element x ∈ S the statement holds.
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2. Proof of the main result

2.1. Flag manifolds. If a cohomology class evaluates nontrivially on a
sphere then it is not the sum of the products of classes of lower degree.
This simple observation allows one to prove the algebraic independence of
the characteristic classes for flag manifolds.

Lemma 2.1. Let G be a compact and connected semisimple group. Let ω be a
generic homogeneous symplectic form on the flag manifold G/T . Then for a
rationally nontrivial homotopy class f : S2k → BG the induced Hamiltonian
bundle has a nontrivial class μk.

Proof. Consider the following pull-back diagram

G/T
= ��

��

G/T

��
E

f̂ ��

π
��

BT

p

��
S2k

f �� BG

Let σ ∈ H2k(S2k) be a generator and let σ = f∗(α) for some α ∈ H2k(BG).
Notice that this implies that k > 1. Since the cohomology of BT is generated
by classes of degree two the pull back

π∗(σ) = π∗(f∗(α)) = f̂∗(p∗(α))

is a sum of products of classes of degree two. This implies that the cohomol-
ogy ring H∗(E) is generated by degree two classes. Moreover, the inclusion
of the fibre induces an isomorphism H2(E) ∼= H2(G/T ).

Let dim G/T = 2n and hence the dimension of the total space E is equal to
2(n+k). We claim that there exists a Zariski open subset of H2(E) consisting
of classes whose (n + k)th power is nonzero. Since taking the highest power
defines an algebraic map H2(E) → H2(n+k)(E) = R it is enough to find just
one class with nontrivial highest power. Observe that the symmetric map

H2(E)⊗(n+k) � a1 ⊗ · · · ⊗ an+k 	→ a1 · . . . · ak+n ∈ Hn+k(E)

is nontrivial as H∗(E) is generated in dimension 2 and E is closed and
oriented. Since any multilinear symmetric map is determined (via the polar-
isation formula) by a polynomial map, the map

H2(E) � a 	→ an+k ∈ Hn+k(E)

is nontrivial.
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Let ω ∈ Ω2(G/T ) be a generic G-invariant symplectic form. Then the
associated coupling class Ω ∈ H2(E) is such that Ωn+k �= 0 and hence

〈
μk(E),

[
S2k

]〉
=

〈
π!(Ωn+k),

[
S2k

]〉
=

〈
Ωn+k, [E]

〉
�= 0. �

Corollary 2.1. Let K = {k ∈ N |π2k(BG) ⊗ Q �= 0}. For a generic
homogeneous symplectic form on a flag manifold G/T the classes μk ∈
H2k(BHam(G/T )) are algebraically independent for k ∈ K. Moreover, these
classes cannot be generated by classes of smaller degrees.

Proof. Let ξ ∈ g∨ be an element such that its coadjoint orbit Mξ is diffeo-
morphic to a flag manifold G/T. It follows from Lemma 2.1 that for each
k ∈ K the class μk(E) ∈ H∗(S2k) is nonzero for ξ in an open and dense sub-
set of g∨. Taking the intersection of these subsets for all k ∈ K we obtain an
open and dense subset for which the classes are nontrivial for Hamiltonian
fibrations over spheres. Since these classes do not vanish on spheres they can-
not be generated by classes of smaller degrees. The algebraic independence
follows from the fact that H∗(BG) is a free polynomial algebra. �

2.2. The general case. The cohomology ring H∗(BG) is isomorphic to
the ring of the invariants S(g∨)G of the Lie algebra of G and to the ring of
polynomials S(t∨)W on the Lie algebra of the maximal torus T ⊂ G invariant
under the action of the Weyl group. Let Mξ be the coadjoint orbit of ξ ∈ g∨.
Every class μk ∈ H2k(BG) for the orbit Mξ defines an invariant polynomial
pξ,k ∈ S(g∨)G as follows.

Let X ∈ g be an element generating a circle action and let

cX : BS1 = CP
∞ → BG

be the corresponding classifying map. We define

pξ,k(X) := 〈cX
∗(μk), CP

k〉 ∈ R

and extend pξ,k to the whole of g by continuity. Notice that a function
H : Mξ → R given by

H(Ad∨
g (ξ)) =

〈
X, Ad∨

g (ξ)
〉

is the Hamiltonian function for the action generated by X ∈ g. The next
lemma follows from [3, Lemma 3.6] and it shows that pξ,k is indeed an
invariant polynomial.

Lemma 2.2. Let X ∈ g. The following formula holds true:

pξ,k(X) = (−1)k

(
n + k

k

)
·
∫

G

〈
X, Ad∨

g (ξ)
〉k volG .
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Corollary 2.2. Let (M, ω) be a nontrivial coadjoint orbit of a semisimple
Lie group G. Then the class μ2k ∈ H4k(B Ham(M, ω)) is nontrivial for every
positive integer k ∈ N.

2.3. Proof of Theorem 1.1. It follows from Corollary 2.1 that the relevant
classes μk are algebraically independent in H∗(BG) for a generic ξ defining
a flag manifold. Since the algebraic independence is an open condition it
follows that the polynomials pξ,k are algebraically independent for a generic
ξ ∈ g∨ and k ∈ K.

Remark 2.1. Observe that pξ,k(X) defines a bi-invariant polynomial of
degree k on the tensor product g ⊗ g∨. The algebra of G-bi-invariant poly-
nomials on g ⊗ g∨ is isomorphic to the algebra of polynomials on t ⊗ t∨
bi-invariant for the Weyl group of G.

There are two interesting Zariski open subsets of the dual Lie algebra t∨
of the maximal torus T ⊂ G. One consists of those elements giving flag
manifolds as coadjoint orbits. And this is just the union of the interiors of the
Weyl chambers. The other consists of elements such that the characteristic
classes associated with their coadjoint orbits are algebraically independent.
In the next section we discuss examples showing that these two sets do not
contain each other. In particular, the algebraic independence holds not only
for flag manifolds.

3. Examples

3.1. Coadjoint orbits of SU(n). As we mentioned in the Introduc-
tion, Reznikov proved that the classes μk are algebraically independent in
H∗(B Ham(CP

n−1)) for k = 2, . . . , n (see [3, Proposition 1.7] for an alter-
native proof). Hence it follows that these classes are also algebraically inde-
pendent for any coadjoint orbit of SU(n) which is close to CP

n−1.
More precisely, since SU(n) is simple the coadjoint representation is iso-

morphic (via the Killing form) to the adjoint representation. After this iden-
tification the complex projective space CP

n−1 is the adjoint orbit of the
diagonal matrix

ξ = diag[−i,−i, . . . ,−i, (n − 1)i ] ∈ su(n).

By an adjoint orbit close to CP
n−1 we mean the orbit of an element ξ′ from

a suitably small neighbourhood of ξ.

3.2. The failure of the algebraic independence. Checking directly
whether a class μk is a polynomial in lower degree classes seems to be
complicated in general. However, one can make an interesting claim if
dimH2k(BG) = 1. The latter condition is always true for a simple com-
pact Lie group G and k = 2, and for a single odd number k if G has one of
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the groups SU(n), SO(4k + 2) or E6 as a factor. We shall discuss concrete
examples in the next sections.

Proposition 3.1. Let G be a compact Lie group and let m ∈ N be a number
for which π2m(BG)⊗Q = H2m(BG; Q) = Q. Let u ∈ S(g∨)G be a nontrivial
invariant polynomial of degree m. The class μm ∈ H2m(BG) is trivial for
the coadjoint orbit Mξ if and only if u(ξ) = 0.

Proof. It follows from the hypothesis and the isomorphism H∗(BG) =
S(g∨)G that the polynomial u is unique up to a constant. Since the poly-
nomial pξ,m(X) is bi-invariant on the tensor product g ⊗ g∨ there exists a
degree m invariant polynomial v on g such that

pξ,m(X) = u(ξ) · v(X).

Because pξ,m(−) is nontrivial for a generic ξ we get that the polynomial v is
nonzero. Hence pξ,m(X) is trivial if and only if u(ξ) = 0. �
Corollary 3.1. If m in the above proposition is odd then there exists a
coadjoint orbit Mξ for which the class μ2m is trivial in H2m(BG).

3.3. Coadjoint orbits of SU(n) again.

Proposition 3.2. The μ3 class in H6(BSU(n)) is trivial for the adjoint orbit
of the diagonal matrix diag[X1, . . . , Xn] ∈ su(n) if and only if

∑
X3

i = 0. In
particular, the class μ3 is trivial for the grassmannian G(m, 2m) of m-planes
in C

2m and certain flag manifolds.

Proof. The algebra S(su(n))SU(n) of invariant polynomials is generated by
the polynomials of the form

su(n) � X 	→
∑

Xk
i ,

where Xi ∈ C are the eigenvalues of the matrix X. Hence any invariant
polynomial of degree three is up to a constant equal to

∑
X3

i .
It follows from Proposition 3.1 that the orbit of a vector for which

the above polynomial is trivial has vanishing class μ3. This include grass-
mannians G(m, 2m) since it is (up to a scalar) the adjoint orbit of the
diagonal matrix X = diag[i, . . . , i,−i, . . . ,−i]. Taking a generic zero of
the above polynomial we obtain flag manifolds for which the class μ3 is
trivial. �

3.4. Coadjoint orbits of SO(2n). Let SO(2n) → SO(2n + 1) → S2n be
the bundle of the orthonormal frames with respect to the standard round
metric. The associated bundle

SO(2n)/U(n) → E → S2n

admits a fibrewise symplectic form due to [9] (see also [4] for a more
general statement). This symplectic form restricts to the symplectic form
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on the fibres and it represents the coupling class. Since it is nondegene-
rate the fibre integral of its top power is nonzero in H2n(S2n). Thus the
class μn(E) is a nonzero multiple of the Euler class of the tangent bundle
of S2n.

It follows that the class μn is also nontrivial for an orbit in a neighbour-
hood of SO(2n)/U(n). In particular, for every subgroup H =

∏
U(ni), with∑

ni = n, there is an SO(2n)-invariant form on SO(2n)/H such that the
class μn is nonzero.

Example 3.1. Let M = SO(8)/U(4). The above argument shows that the
class μ4 ∈ H8(B Ham(M)) is indecomposable. Moreover, the class μ2 is
nontrivial, due to Corollary 2.2. Hence these classes are algebraically inde-
pendent.

3.5. Coadjoint orbits of SO(4n + 2). Let t ⊂ so(4n + 2) be the Lie
algebra of the maximal torus given by the skew symmetric matrices with
2× 2-blocks on the diagonal. Hence an element ξ ∈ t may be represented by
an (2n + 1)-tuple [t1, . . . , t2n+1] of real numbers.

We have dim π4n+2(BSO(4n+2))⊗Q = 1 and the corresponding charac-
teristic class is defined by the Pfaffian. When restricted to the Lie algebra t,
the Pfaffian is, up to a constant, equal to the product of coordinates. This
proves the following.

Proposition 3.3. Let ξ = [t1, t2, . . . , t2n+1] ∈ t ⊂ so(4n + 2). The class
μ2n+1 ∈ H4n+2(BSO(4n + 2)) is trivial for the coadjoint orbit Mξ if and
only if

∏
ti = 0.

4. An application to lattices in semisimple groups

Let G be a semisimple Lie group, K ⊂ G a maximal compact subgroup and
Γ ⊂ G an irreducible cocompact lattice trivially intersecting K. Let M ⊂ Gc

be a maximal compact subgroup of the complexification of G. Let H ⊂ K
be the isotropy subgroup of ξ ∈ k∨. We have a Hamiltonian bundle

K/H → Γ\G/H → Γ\G/K = BΓ

classified by a map Γ\G/K → BK. It was observed by Okun [8] that this
classifying map lifts to a map Γ\G/K → M/K after passing to a sublat-
tice of finite index if necessary. Let us call this lift the Okun map. The
homomorphism H∗(M/K) → H∗(Γ ) induced by the Okun map is called
the Matsushima homomorphism and it is known to be injective. It is also
surjective in degrees smaller than the rank of G. This result was proved by
Matsushima in [6].
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We obtain the following diagram of Hamiltonian fibrations in which the
columns (but not the rows) are fibrations.

K/H ��

��

K/H ��

��

K/H

��
Γ\G/H ��

��

M/H ��

��

BH

��
BΓ

b �� M/K
f �� BK

Theorem 4.1. Let ξ ∈ k∨ be a generic element such that its isotropy sub-
group H ⊂ K is a maximal torus. If π2k(M/K) ⊗ Q → π2k(BK) ⊗ Q is
nontrivial then the characteristic class

μk(Γ\G/H) ∈ H2k(BΓ )

is nonzero.

Proof. Let σ ∈ π2k(M/K)⊗Q be an element such that f∗(σ) �= 0. According
to Lemma 2.1 we have that the class μk(BH) ∈ H2k(BK) evaluates non
trivially on f∗(σ) hence the corresponding characteristic class μk(M/H) class
is nonzero in H2k(M/K). Since the Matsushima homomorphism is injective
we obtain the statement. �
Theorem 4.2. Let K be a simple compact group different from SO(4n).
Suppose it is of maximal rank in G. Let ξ ∈ k∨ be a generic element. Denote
its isotropy subgroup by H ⊂ K. Then the image of the Matsushima homo-
morphism H∗(M/K) → H∗(BΓ ) is generated by the characteristic classes
μk(Γ\G/H).

Proof. It follows from Corollary 1.1 that the classes μk generate the coho-
mology ring H∗(BK). Since K and M have equal rank the homomorphism
H∗(BK) → H∗(M/K) is surjective hence the ring H∗(M/K) is also gener-
ated by the classes μk and so is its image in H∗(Γ ). �

References

[1] V. Guillemin, E. Lerman and S. Sternberg, Symplectic fibrations and multiplicity
diagrams, Cambridge University Press, Cambridge, 1996.

[2] T. Januszkiewicz and J. Kędra, Characteristic classes of smooth fibrations,
(math.SG/0209288).

[3] J. Kędra and D. McDuff, Homotopy properties of Hamiltonian group actions, Geom.
Topol. 9 (2005), 121–162 (electronic).

[4] J. Kędra, A. Tralle and A. Woike, On nondegenerate coupling forms, J. Geometry
and Physics, to appear, http://arxiv.org/abs/1004.3699, 2010.

[5] F. Lalonde and D. McDuff, Symplectic structures on fiber bundles, Topology 42(2)
(2003), 309–347.



HAMILTONIAN CHARACTERISTIC CLASSES 9

[6] Y. Matsushima, On Betti numbers of compact, locally sysmmetric Riemannian man-
ifolds. Osaka Math. J. 14 (1962), 1–20.

[7] M. Mimura and H. Toda, Topology of Lie groups. I, II, Translations of Mathematical
Monographs, 91, American Mathematical Society, Providence, RI, 1991, translated
from the 1978 Japanese edition by the authors.

[8] B. Okun, Nonzero degree tangential maps between dual symmetric spaces, Algebr.
Geom. Topol. 1 (2001), 709–718 (electronic).

[9] A.G. Reznikov, Symplectic twistor spaces. Ann. Global Anal. Geom. 11(2) (1993),
109–118.

[10] A.G. Reznikov, Characteristic classes in symplectic topology, Selecta Math. (N.S.),
3(4) (1997), 601–642, Appendix D by Ludmil Katzarkov.

Mathematical Institute, University of Wrocław
pl Grunwaldzki 2/4, 50-384 Wrocław, Poland
E-mail address: sgal@math.uni.wroc.pl

Mathematical Sciences, University of Aberdeen,
Aberdeen AB243UE, Scotland, UK, and
Institute of Mathematics, University of Szczecin
Wielkopolska 15, 70-451 Szczecin, Poland
E-mail address: kedra@abdn.ac.uk

Mathematical Sciences, University of Warmia and Mazury,
Żołnierska 14A, 10-561 Olsztyn, Poland
E-mail address: tralle@matman.uwm.edu.pl

Received 05/28/2010, accepted 06/23/2010

Ś.G. is partially supported by the mnisw grant N N201 541738. J.K. would like to thank
Ran Levi for useful conversations which led to the proof of Lemma 2.1. A.T. would like
to thank ihes and the Max-Planck-Institut for hospitality during the work on this paper.




