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DISCRETE HAMILTON–PONTRYAGIN MECHANICS AND
GENERATING FUNCTIONS ON LIE GROUPOIDS

Ari Stern

We present a discrete analog of the recently introduced Hamilton–
Pontryagin variational principle in Lagrangian mechanics. This unifies
two, previously disparate approaches to discrete Lagrangian mechan-
ics: either using the discrete Lagrangian to define a finite version of
Hamilton’s action principle, or treating it as a symplectic generat-
ing function. This is demonstrated for a discrete Lagrangian defined
on an arbitrary Lie groupoid; the often encountered special case of
the pair groupoid (or Cartesian square) is also given as a worked
example.

1. Introduction

In a recent paper, Yoshimura and Marsden [20] introduced the Hamilton–
Pontryagin variational principle for Lagrangian mechanics. Given a smooth
configuration manifold Q and a Lagrangian L : TQ → R, this principle
defines an action for paths in the so-called Pontryagin bundle TQ ⊕ T ∗Q,
whose elements are written (q, v, p). Critical paths for this action, in addi-
tion to satisfying the usual Euler–Lagrange equations ṗ = ∂L(q, v)/∂q, also
satisfy the the Legendre transform p = ∂L(q, v)/∂v and the second-order
curve condition q̇ = v. This can be seen as a unification of two equivalent,
but previously disparate, approaches to Lagrangian mechanics, where the
Lagrangian is used either (a) to define Hamilton’s action functional, study-
ing its critical paths, or (b) to define the Legendre transform, using it to
pull back the canonical symplectic structure from the cotangent bundle to
the tangent bundle.

There is a similar dilemma in the approach to discrete Lagrangian
mechanics. Given a discrete Lagrangian Lh : Q × Q → R (or more gen-
erally, Lh : G → R, where G ⇒ Q is a Lie groupoid), one can either (a) use
Lh to define a discrete version of Hamilton’s action principle, or (b) treat
Lh as a symplectic generating function. While some progress has been made

225



226 A. STERN

towards combining these approaches into a discrete Hamilton–Pontryagin
principle for certain important special cases — namely, the pair groupoid
Q×Q when Q is either a vector space [5, 6] or a Lie group [1] — this problem
has not yet been resolved for general configuration manifolds Q, nor for the
even more general case of a Lie groupoid G ⇒ Q.

In this paper, we present a discrete Hamilton–Pontryagin principle, which
is shown to unify these two disparate approaches (variational principles vs.
generating functions) for discrete Lagrangian mechanics on arbitrary Lie
groupoids. We begin, in Section 2, by giving a brief review of Lagrangian
mechanics, including the continuous Hamilton–Pontryagin principle, as well
as summarizing the existing frameworks for discrete Lagrangian mechanics
on Q × Q and on Lie groupoids G ⇒ Q. Next, in Section 3, we introduce
the discrete Hamilton–Pontryagin principle, which is defined with respect
to paths in the cotangent groupoid T ∗G ⇒ A∗G beginning at the zero
section; the approach is related to that used by Milinković [11] in study-
ing the Morse homology of generating functions. This variational principle
and its solutions, which imply those of the previous approaches to discrete
Lagrangian mechanics, are derived first in cotangent bundle coordinates
and then given intrinsically. Finally, in Section 4, we work out the spe-
cial case of the pair groupoid Q × Q, in particular showing how this cor-
responds to the formulation of Leok and Ohsawa [6] when Q is a vector
space.

2. Lagrangian mechanics, continuous and discrete

2.1. Lagrangian and Hamilton–Pontryagin mechanics. Let Q be a
smooth configuration manifold, and L : TQ → R be a Lagrangian on its
tangent bundle. There are two theoretically equivalent, but conceptually
distinct, approaches to the Lagrangian mechanics of this system. The first,
which we will call the variational approach, is to study critical paths q :
[a, b] → Q for the action functional

S(q) =
∫ b

a
L (q(t), q̇(t)) dt.

Such a path is critical if and only if it satisfies the Euler–Lagrange equations

d

dt

∂L

∂q̇
=

∂L

∂q
.

The second approach, which we will call the symplectic approach, is to use
the Legendre transform FL : TQ → T ∗Q, which takes (q, v) �→ (q, ∂L/∂v),
to pull back the canonical symplectic structure from T ∗Q to TQ. If ω is
the canonical symplectic 2-form on T ∗Q, then one can define a 2-form
ωL = (FL)∗ ω on TQ. (The form ωL is symplectic when L is a hyperreg-
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ular Lagrangian, and presymplectic more generally.) Next, one defines the
energy function E : TQ → R given by

E (q, v) = FL (q, v) v − L (q, v) .

Finally, then, one looks for vector fields X ∈ X (TQ) that satisfy

iXωL = dE,

which is essentially the tangent bundle version of Hamilton’s equations on
T ∗Q. (For further background, see [9, Chapter 7].)

Yoshimura and Marsden [20] showed that these two approaches can
be unified through an expanded variational principle, which they call the
Hamilton–Pontryagin principle. Given a path (q, v, p) : [a, b] → TQ ⊕ T ∗Q,
the Hamilton–Pontryagin action is given by

S̃ (q, v, p) =
∫ b

a
[L (q(t), v(t)) + p(t) (q̇(t) − v(t))] dt.

This is essentially the usual action functional — except, rather than sim-
ply prescribing the second-order curve constraint q̇ = v, one treats q and
v as independent variables and then uses p as a Lagrange multiplier to
enforce this constraint. Varying over paths with prescribed endpoints, so
that δq(a) = 0 and δq(b) = 0, the variation of the action is

dS̃ (q, v, p) (δq, δv, δp)

=
∫ b

a

[
∂L

∂q
δq +

∂L

∂v
δv + p (δq̇ − δv) + δp (q̇ − v)

]
dt

=
∫ b

a

[(
∂L

∂q
− ṗ

)
δq +

(
∂L

∂v
− p

)
δv + δp (q̇ − v)

]
dt.

Therefore, (q, v, p) is a critical path if and only if it solves the so-called
implicit Euler–Lagrange equations

ṗ =
∂L

∂q
, p =

∂L

∂v
, q̇ = v,

which combine the Euler–Lagrange equations, the Legendre transform, and
the second-order curve condition into a single set of equations. It should
be noted that this principle is especially useful for studying constrained
and other degenerate systems, and is closely connected with the general-
ized Legendre transform of Tulczyjew [15, 16], the generalized Hamiltonian
dynamics formalism of Skinner and Rusk [13], and the Dirac structures of
Courant [3].
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2.2. Discrete Lagrangian mechanics. The idea of discrete Lagrangian
mechanics was put forward in seminal papers by Suris [14] and Moser and
Veselov [12], among others, and a general theory was developed over the
subsequent decade. (See [10], for a comprehensive survey.) This work was
motivated by the need to develop structure-preserving (e.g., symplectic)
numerical integrators for Lagrangian mechanical systems on general con-
figuration manifolds; the methods developed using this discrete Lagrangian
framework are called variational integrators.

For most of the work in this field, the starting point is to replace the
Lagrangian L : TQ → R by a discrete Lagrangian Lh : Q × Q → R, which
approximates the contribution to the action integral,

Lh (q0, q1) ≈
∫ t1

t0

L (q(t), q̇(t)) dt,

for a time step of size h = t1−t0. As with continuous Lagrangian mechanics,
there are two typical ways to proceed, following either the variational or the
symplectic point of view.

The variational approach to discrete Lagrangian mechanics is as follows.
Suppose that we specify a sequence of time steps a = t0 < t1 < · · · < tN = b,
with equal step size h = tn+1 − tn for n = 0, . . . , N − 1. We then define a
discrete path to be a sequence of configuration points q0, . . . , qN ∈ Q; this
can be thought of as approximating a continuous path q : [a, b] → Q, with
qn ≈ q (tn). Given the discrete Lagrangian Lh : Q × Q → R, the discrete
action sum is defined to be

Sh (q0, . . . , qN ) =
N−1∑
n=0

Lh (qn, qn+1) ≈
∫ b

a
L (q(t), q̇(t)) dt.

Next, taking fixed-endpoint variations of the discrete path, so that δq0 = 0
and δqN = 0, it follows that

dSh (q0, . . . , qN )(δq0, . . . , δqN ) =
N−1∑
n=1

[∂0Lh (qn, qn+1) + ∂1Lh (qn−1, qn)]δqn.

Therefore, a discrete path is critical if and only if it satisfies the discrete
Euler–Lagrange equations

∂0Lh (qn, qn+1) + ∂1Lh (qn−1, qn) = 0, n = 1, . . . , N − 1.

This implicitly defines a two-step numerical integrator on Q × Q, which
(given suitable assumptions of nondegeneracy) maps (qn−1, qn) �→ (qn, qn+1).

On the other hand, the symplectic approach to discrete Lagrangian
mechanics is to view Lh : Q × Q → R as the generating function for a
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symplectic map on T ∗Q. To do this, one defines the discrete Legendre trans-
forms F

±Lh : Q × Q → T ∗Q by

F
−Lh (q0, q1) = −∂0Lh (q0, q1) , F

+Lh (q0, q1) = ∂1Lh (q0, q1) .

Therefore, we can implicitly define a map on T ∗Q by

p0 = F
−Lh (q0, q1) , p1 = F

+Lh (q0, q1) ,

and if F
−Lh is invertible, this defines one step of the symplectic integrator

F
+Lh ◦

(
F

−Lh

)−1 : T ∗Q → T ∗Q, (q0, p0) �→ (q1, p1) .

More precisely, the discrete Legendre transforms define the Lagrangian sub-
manifold of (T ∗Q,−ω) × (T ∗Q, ω) generated by Lh. From this perspective,
if the invertibility condition holds, then this submanifold is the graph of a
symplectic map on T ∗Q [see 17, 18].

Note that, if we perform the composition in the opposite order, we get
the previously derived two-step method,

(
F

−Lh

)−1 ◦ F
+Lh : Q × Q → Q × Q, (qn−1, qn) �→ (qn, qn+1) ,

where the discrete Euler–Lagrange equations follow automatically from the
fact that F

−Lh (qn, qn+1) = F
+Lh (qn−1, qn).

2.3. Discrete Lagrangian mechanics and Lie groupoids. Weinstein
[19] observed that both approaches in the previous section can be general-
ized using Lie groupoids. Let G ⇒ Q be a given Lie groupoid, and define
a discrete Lagrangian Lh : G → R. The earlier formulations then coincide
with the special case G = Q×Q, which is called the pair groupoid. This per-
spective has continued to bear fruit in recent years, being further developed
by Marrero et al. [8] and extended to discrete nonholonomic Lagrangian
mechanics by Iglesias et al. [4].

In the variational approach, one begins by taking a fixed element g ∈ G
and considering the space of admissible sequences, which consist of compos-
able elements g1, . . . , gN ∈ G such that g1 · · · gN = g. The discrete action for
an admissible sequence is then taken to be

Sh (g1, . . . , gN ) =
N∑

n=1

Lh (gn) ,

and discrete Euler–Lagrange equations are obtained by finding sequences
that are critical for this action function. In the case of the pair groupoid
Q × Q, fixing an element of the groupoid corresponds simply to fix-
ing the endpoints g = (q0, qN ), while the set of admissible sequences
(q0, q1) , . . . , (qN−1, qN ) ∈ Q × Q can be identified with the sequence of con-
figuration points q0, . . . , qN ∈ Q.
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Marrero et al. [8] showed that the discrete Euler–Lagrange equations
can be expessed in terms of left- and right-invariant vector fields on G,
each of which can be identified with sections of the Lie algebroid AG → Q
associated to G. To describe this, we must first introduce some notation.
Let α, β : G → Q denote the source and target maps, ε : Q → G denote
the identity section, and i : G → G denote the inversion map on G. For any
g ∈ G, define the left- and right-translation maps, respectively, by

�g : α−1 (β(g)) → α−1 (α(g)) rg : β−1 (α(g)) → β−1 (β(g))

g′ �→ gg′ g′ �→ g′g.

Then, given a section X ∈ Γ (AG), the left-invariant vector field
←−
X ∈ X(G) is

defined by
←−
X (g) = Tε(β(g))�g (X (β(g))). Similarly, the right-invariant vector

field
−→
X ∈ X(G) is given by

−→
X (g) = −

(
Tε(α(g)) (rg ◦ i)

)
(X (α(g))). This

implies the following relationship between the brackets [[·, ·]] on Γ (AG) and
[·, ·] on X(G):

←−−−−
[[X, Y ]] =

[←−
X,

←−
Y

]
,

−−−−→
[[X, Y ]] = −

[−→
X,

−→
Y

]
.

With these definitions, the discrete Euler–Lagrange equations are

←−
X [Lh] (gn) =

−→
X [Lh] (gn+1) , n = 1, . . . , N − 1

for all sections X ∈ Γ (AG). In the pair groupoid case, one sees that

←−
X [Lh] (qn−1, qn) = ∂1Lh(qn−1, qn)X (qn) ,
−→
X [Lh] (qn, qn+1) = −∂0Lh(qn, qn+1)X (qn)

for any X ∈ X(Q), so this formulation agrees with the earlier expression of
the discrete Euler–Lagrange equations on Q × Q.

For the symplectic approach, we begin by defining the cotangent groupoid
T ∗G ⇒ A∗G, where the base A∗G → Q is the dual of the Lie algebroid
AG → Q. This is a symplectic groupoid, with a canonical symplectic struc-
ture on T ∗G and Poisson structure on A∗G; moreover, the source and target
maps are anti-Poisson and Poisson, respectively [2, 7]. Explicitly, the source
map α̃ : T ∗G → A∗G and target map β̃ : T ∗G → A∗G may be defined such
that, taking μ ∈ T ∗

g G,

α̃ (μ)X (α(g)) = μ
−→
X (g), β̃ (μ)X (β(g)) = μ

←−
X (g),

for every section X ∈ Γ (AG). (The multiplicative structure of T ∗G will not
be necessary here, so we omit discussion of it.)
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Now, the discrete Lagrangian Lh : G → R generates a Lagrangian sub-
manifold of the cotangent groupoid, dLh(G) ⊂ T ∗G. If Lh is suitably non-
degenerate, it follows that this submanifold determines a Poisson automor-
phism A∗G → A∗G [19, 8]. Specifically, define the discrete Legendre trans-
forms F

±Lh : G → A∗G by

F
−Lh = α̃ ◦ dLh, F

+Lh = β̃ ◦ dLh.

Therefore, {(F−Lh(g), F+Lh(g)) | g ∈ G} is a coisotropic relation on A∗G,
and if F

−Lh is a diffeomorphism, then this relation is the graph of the
discrete flow map

F
+Lh ◦

(
F

−Lh

)−1 : A∗G → A∗G.

To see that this is compatible with the discrete Euler–Lagrange equations,
observe that for any X ∈ Γ (AG),

(α̃ ◦ dLh) (g)X (α(g)) = dLh(g)
−→
X (g) =

−→
X [Lh] (g)(

β̃ ◦ dLh

)
(g)X (β(g)) = dLh(g)

←−
X (g) =

←−
X [Lh] (g).

Thus, the discrete Euler–Lagrange equations correspond to the condition
F

+Lh (gn) = F
−Lh (gn+1). Equivalently, this means that g1, . . . , gN is a solu-

tion of the discrete Euler–Lagrange equations when dLh (g1) , . . . , dLh (gN )
is a composable sequence in T ∗G.

3. The discrete Hamilton–Pontryagin principle

For the continuous Hamilton–Pontryagin principle, the key idea was to relax
the condition for curves in TQ to be second-order, but to enforce this condi-
tion weakly using Lagrange multipliers in T ∗Q. Analogously, we will develop
a discrete Hamilton–Pontryagin principle by relaxing the requirement that
the sequence g1, . . . , gN ∈ G is admissible — requiring only that it be admis-
sible up to homotopy — and will weakly enforce the condition that this
homotopy is, in fact, constant. To allow for the “Lagrange multipliers,”
these homotopies will be given by paths in T ∗G rather than in G.

To simplify the exposition, we will first sketch this formulation, in Sec-
tion 3.1, using cotangent bundle coordinates (g, μ) ∈ T ∗G. The fully intrinsic
treatment on T ∗G will be given subsequently, in Section 3.2, along with def-
initions and the proof of the main theorem.

3.1. Formulation in cotangent bundle coordinates. Suppose that
(gn, μn) : [0, 1] → T ∗G, for n = 1, . . . , N , is a sequence of paths in
the cotangent groupoid. Furthermore, it is required that the initial point
(gn(0), μn(0)) of each path lie in the zero section, so that μn(0) = 0gn(0), and
that g1(0), . . . , gN (0) be an admissible sequence for a fixed element g ∈ G.
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Given such a sequence of paths, define the discrete Hamilton–Pontryagin
action to be

S̃h (g1, μ1, . . . , gN , μN ) =
N∑

n=1

∫ 1

0

[
Lh (gn(s)) + μn(s)g′

n(s)
]
ds.

Variations of this action are

dS̃h (g1, μ1, . . . , gN , μN ) (δg1, δμ1, . . . , δgN , δμN )

=
N∑

n=1

∫ 1

0

[
dLh(gn(s))δgn(s) + μn(s)δg′

n(s) + δμn(s)g′
n(s)

]
ds

=
N∑

n=1

(∫ 1

0

[
(dLh (gn(s)) − μ′

n(s))δgn(s) + δμn(s)g′
n(s)

]
ds

+ μn(1)δgn(1)
)

.

Now, the integral terms vanish when (gn, μn) is a solution of

μ′
n(s) = dLh (gn(s)) , g′

n(s) = 0.

The second equation states that gn(s) = gn is constant, so μn(s) moves
vertically along the fiber T ∗

gn
G, beginning at μn(0) = 0gn . We use this fact

to solve the remaining equation,

μn(s) = μn(0) + s dLh (gn) = s dLh (gn) ,

so in particular, μn(1) = dLh (gn). Additionally, g1, . . . , gN is an admissible
sequence, since gn = gn(0), which was assumed to be admissible. Finally,
restricting to (gn, μn) where these equations are satisfied, the variation of
the action is given by the remaining boundary terms

N∑
n=1

μn(1)δgn(1) =
N∑

n=1

dLh (gn)δgn.

However, the restricted variations δgn are no longer completely arbitrary,
since they must be tangent to the space of admissible sequences g1, . . . , gN .
Therefore, we are back in the case considered by Marrero et al. [8], so these
terms vanish precisely when gn is a solution of the discrete Euler–Lagrange
equations — or equivalently, when μ1(1), . . . , μN (1) ∈ T ∗G is a composable
sequence.

In summary, dS̃h = 0 implies that g1(1), . . . , gN (1) is an admissible
sequence in G, that μn(1) = dLh (gn(1)), and that μ1(1), . . . , μN (1) is a
composable sequence in T ∗G.
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3.2. Intrinsic formulation. We will now make precise the approach
sketched out in the previous section, doing this intrinsically on T ∗G rather
than in cotangent bundle coordinates. Let πG : T ∗G → G be the cotangent
bundle projection, θ̃ be the canonical 1-form on T ∗G, and ω̃ = −dθ̃ be the
canonical symplectic 2-form.

Given a Lie groupoid G ⇒ Q, define the fibration E → G consisting of
paths in T ∗G beginning at the zero section,

E = {γ : [0, 1] → T ∗G | γ(0) ∈ 0G} ,

where the projection is given by γ �→ (πG ◦ γ) (1).

Definition 3.1. Given a fixed g ∈ G, a sequence of paths γ1, . . . , γN ∈ E
is said to be admissible if the initial elements (πG ◦ γ1) (0), . . . , (πG ◦ γN ) (0)
form an admissible sequence in G.

This implies that the projected sequence (πG ◦ γ1) (1), . . . , (πG ◦ γN ) (1) ∈
G is only admissible up to homotopy, which is weaker than the usual assump-
tion that g1, . . . , gN must actually be an admissible sequence.

Definition 3.2. Let Lh : G → R be a discrete Lagrangian, and γ1, . . . , γN ∈
E be an admissible sequence of paths. Then the discrete Hamilton–
Pontryagin action of this sequence is

S̃h (γ1, . . . , γN ) =
N∑

n=1

[∫ 1

0
(Lh ◦ πG) (γn(s)) ds +

∫
γn

θ̃

]
,

The sequence is said to satisfy the discrete Hamilton–Pontragin principle if

dS̃h (γ1, . . . , γN ) = 0.

Theorem 3.1. Let γ1, . . . , γN ∈ E be an admissible sequence of paths, and
denote μn = γn(1) ∈ T ∗G and gn = πG (μn) ∈ G for n = 1, . . . , N . If the
sequence satisfies the Hamilton–Pontryagin principle, then

(i) g1, . . . , gN is an admissible sequence in G,
(ii) μn = dLh (gn) for n = 1, . . . , N ,
(iii) μ1, . . . , μN is a composable sequence in T ∗G.

These properties may be thought of as, respectively, (i) the discrete
second-order curve condition; (ii) the discrete Legendre transform; and (iii)
the discrete Euler–Lagrange equations.

Proof. Take a variation of the Hamilton–Pontryagin action to obtain

dS̃h (γ1, . . . , γN )(δγ1, . . . , δγN ) =
N∑

n=1

[∫ 1

0
(π∗

GdLh)δγn(s) ds +
∫

γn

Lδγn θ̃

]
.
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Applying Cartan’s “magic formula,” the Lie derivative terms become∫
γn

Lδγn θ̃ =
∫

γn

(
iδγndθ̃ + diδγn θ̃

)

= −
∫

γn

iδγnω̃ +
∫

∂γn

θ̃δγn

=
∫ 1

0
iγ′

n(s)ω̃δγn(s) ds + θ̃δγn(1).

Therefore, the variation of the action is

dS̃h (γ1, . . . , γN )(δγ1, . . . , δγN )

=
N∑

n=1

[∫ 1

0

(
π∗

GdLh + iγ′
n(s)ω̃

)
δγn(s) ds + θ̃δγn(1)

]
.

For variations taken along the fibers of E, this is stationary when

iγ′
n(s)ω̃ = −π∗

GdLh, n = 1, . . . , N,

i.e., the paths γn are solutions to Hamilton’s equations for the singular
Hamiltonian H̃ = −Lh ◦ πG : T ∗G → R. However, since H̃ is constant on
fibers of T ∗G (which form a Lagrangian foliation), the Hamiltonian flow is
fiber-preserving, and hence the projection (πG ◦ γn) (s) = gn is constant.
This proves (i), since gn = (πG ◦ γn) (0), which was assumed to be an
admissible sequence in G. Furthermore, the Hamiltonian vector field is con-
stant on fibers of T ∗G, and it follows that γn(s) = s dLh (gn). Therefore,
μn = γn(1) = dLh (gn), which proves (ii).

Finally, restricting the action to these solutions, the integral terms vanish,
and the remaining boundary terms are

N∑
n=1

θ̃δγn(1) =
N∑

n=1

μnδgn =
N∑

n=1

dLh (gn)δgn.

This is precisely the variation of the usual discrete action, so these terms
vanish when the discrete Euler–Lagrange equations are satisfied. Therefore,
β̃ (μn) = α̃ (μn+1) for n = 1, . . . , N − 1, so μ1, . . . , μN is a composable
sequence in T ∗G, which completes the proof of (iii). �

Remark 3.1. For a single time step N = 1, the action

S̃h : E → R, γ �→
∫ 1

0
(Lh ◦ πG) (γ(s))ds +

∫
γ
θ̃

can be understood as a Morse family, which generates the usual Lagrangian
submanifold dLh(G) ⊂ T ∗G. This is closely related to the work of Milinković
[11], who studied a similar action principle on T ∗Q, in connection with the
Morse homology of generating functions for Lagrangian submanifolds. In
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Milinković’s formulation, the Lagrangian submanifold is determined by the
time-1 Hamiltonian isotopy of H̃, which, in this case, takes the zero section
to dLh(G).

4. Example: the pair groupoid

Let G = Q × Q be the pair groupoid, and Lh : Q × Q → R be a discrete
Lagrangian. Fixing the endpoints g = (q0, qN ), suppose that γ1, . . . , γN ∈ E
is an admissible sequence of paths, where γn(s) =

(
q0
n(s), p0

n(s), q1
n(s), p1

n(s)
)
.

Since the sequence is admissible, this implies in particular that q0 = q0
1(0),

q1
n(0) = q0

n+1(0) for n = 1, . . . , N − 1, and q1
N (0) = qN . The discrete

Hamilton–Pontryagin action of this sequence is then

S̃h (γ1, . . . , γN ) =
N∑

n=1

∫ 1

0

[
Lh

(
q0
n(s), q1

n(s)
)

− p0
n(s)q0 ′

n (s) + p1
n(s)q1 ′

n (s)
]
ds.

Taking variations of this action gives

dS̃h (γ1, . . . , γN )(δγ1, . . . , δγN )

=
N∑

n=1

∫ 1

0

[
∂0Lh

(
q0
n(s), q1

n(s)
)
δq0

n(s) + ∂1Lh

(
q0
n(s), q1

n(s)
)
δq1

n(s)

−p0
n(s)δq0 ′

n (s) + p1
n(s)δq1′

n (s) − δp0
n(s)q0 ′

n (s) + δp1
n(s)q1′

n (s)
]
ds,

and integrating by parts, this simplifies to

dS̃h (γ1, . . . , γN )(δγ1, . . . , δγN )

=
N∑

n=1

(∫ 1

0

[(
∂0Lh

(
q0
n(s), q1

n(s)
)

+ p0 ′
n (s)

)
δq0

n(s)

+
(
∂1Lh

(
q0
n(s), q1

n(s)
)

− p1 ′
n (s)

)
δq1

n(s)

−δp0
n(s)q0 ′

n (s) + δp1
n(s)q1 ′

n (s)
]
ds

−p0
n(1)δq0

n(1) + p1
n(1)δq1

n(1)
)

.

For variations taken along the fibers of E, this is stationary when the integral
terms vanish, so

p0 ′
n (s) = −∂0Lh

(
q0
n(s), q1

n(s)
)
, q0 ′

n (s) = 0,

p1 ′
n (s) = ∂1Lh

(
q0
n(s), q1

n(s)
)
, q1 ′

n (s) = 0,

for n = 1, . . . , N . Therefore, q0
n(s) = q0

n and q1
n(s) = q1

n are constant, so

p0
n(1) = −∂0Lh

(
q0
n, q1

n

)
, p1

n(1) = ∂1Lh

(
q0
n, q1

n

)
, n = 1, . . . , N.
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Furthermore, the admissibility assumption implies that q0 = q0
1, q1

n = q0
n+1

for n = 1, . . . , N − 1, and q1
N = qN .

Finally, restricting to these solutions, the restricted variations must then
satisfy δq0

1 = 0, δq1
n = δq0

n+1 = for n = 1, . . . , N −1, and δq1
N = 0. Therefore,

the remaining terms of the action are
N∑

n=1

(
−p0

n(1)δq0
n + p1

n(1)δq1
n

)
=

N−1∑
n=1

(
−p0

n+1(1) + p1
n(1)

)
δq1

n,

which vanish when p1
n(1) = p0

n+1(1) for n = 1, . . . , N − 1.
In summary, if γ1, . . . , γN satisfies the discrete Hamilton–Pontryagin prin-

ciple on Q × Q, then the following is true:
(i) q0 = q0

1, q1
n = q0

n+1 for n = 1, . . . , N − 1, and q1
N = qN ,

(ii) p0
n(1) = −∂0Lh

(
q0
n, q1

n

)
and p1

n(1) = ∂1Lh

(
q0
n, q1

n

)
for n = 1, . . . , N ,

(iii) p1
n(1) = p0

n+1(1) for n = 1, . . . , N − 1.
These are, respectively, the discrete second-order curve condition, the dis-
crete Legendre transform, and the discrete Euler–Lagrange equations for
systems on Q × Q.

Remark 4.1. The cotangent paths p0
n, p1

n can be seen as Lagrange multipli-
ers, which serve to enforce the composability conditions q1

n = q0
n+1, as well as

the endpoint constraints q0
1 = q0 and q1

N = qN . Leok and Ohsawa [6] showed
that, when Q is a vector space (or given a particular local coordinate neigh-
borhood), this can be done even more directly, by simply subtracting these
points rather than taking a path between them. This leads to an alternative
choice of the action sum,

N∑
n=1

Lh

(
q0
n, q1

n

)
+ p0

(
q0
1 − q0

)
+

N−1∑
n=1

pn

(
q0
n+1 − q1

n

)
+ pN

(
q1
N − qN

)
,

whose variations are computed to be
N∑

n=1

[(
∂0Lh

(
q0
n, q1

n

)
+ pn−1

)
δq0

n +
(
∂1Lh

(
q0
n, q1

n

)
− pn

)
δq1

n

]

+ δp0
(
q0
1 − q0

)
+

N−1∑
n=1

δpn

(
q0
n+1 − q1

n

)
+ δpN

(
q1
N − qN

)
.

Therefore, this vanishes when

pn−1 = −∂0Lh

(
q0
n, q1

n

)
, pn = ∂1Lh

(
q0
n, q1

n

)
, n = 1, . . . , N

and when

q0
1 = q0, q1

N = qN , q1
n = q0

n+1, n = 1, . . . , N − 1,

which are consistent with the results obtained in this section.
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Effectively, the Leok–Ohsawa approach can be interpreted as using a
smaller fibration E′ = Q×Q×T ∗Q×T ∗Q, consisting only of the endpoints
of the paths in E, to define a Morse family over Q×Q. However, when Q is
not a vector space, there is no intrinsic, global meaning to subtracting two
points in Q. This action may still be defined locally, in a neighborhood of
the diagonal of Q×Q, given a choice of local coordinates or a retraction. In
general, though, one requires the larger space of paths E in order to define
the discrete Hamilton–Pontryagin principle globally.
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