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THE INVARIANT SYMPLECTIC ACTION AND DECAY
FOR VORTICES

Fabian Ziltener

The (local) invariant symplectic action functional A is associated
to a Hamiltonian action of a compact connected Lie group G on a
symplectic manifold (M, ω), endowed with a G-invariant Riemannian
metric 〈·, ·〉M . It is defined on the set of pairs of loops (x, ξ) : S1 → M ×
Lie G for which x satisfies some admissibility condition. I prove a sharp
isoperimetric inequality for A if 〈·, ·〉M is induced by some ω-compatible
and G-invariant almost complex structure J , and, as an application, an
optimal result about the decay at ∞ of symplectic vortices on the half-
cylinder [0,∞) × S1.
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1. Motivation and main results

Let (M, ω) be a symplectic manifold without boundary, and G be a compact
connected Lie group with Lie algebra g. Suppose that G acts on M in a
Hamiltonian way, with (equivariant) moment map μ : M → g∗. We denote

357



358 F. ZILTENER

by 〈·, ·〉 : g∗ × g → R the natural contraction. Furthermore, we fix a G-
invariant metric 〈·, ·〉M on M , and denote by |v|, ιx and ιX := infx∈X ιx ≥ 0
the corresponding norm of a vector v ∈ TM and the injectivity radius of
a point x ∈ M and a subset X ⊆ M , respectively. For a smooth loop
x : S1 → M of length �(x) less than 2ιx(S1) we denote by A(x) its (usual)
symplectic action (see Section 2.1). We identify S1 ∼= R/Z and call a loop x ∈
C∞(S1, M) admissible iff there exists a gauge transformation g ∈ C∞(S1, G)
such that �(gx) < 2ιx(S1), and

(1.1) A(g̃x) − A(gx) =
∫ 1

0

〈

μ ◦ x, g̃−1 ˙̃g − g−1ġ
〉

dt,

for every g̃ ∈ C∞(S1, G) satisfying �(g̃x) ≤ �(gx).

Definition 1.1. Let (x, ξ) ∈ C∞(S1, M × g) be a pair of loops, such that x
is admissible. We define the invariant (symplectic) action of (x, ξ) to be

(1.2) A(x, ξ) := A(gx) +
∫ 1

0

〈

μ ◦ x, ξ − g−1ġ
〉

dt,

where g ∈ C∞(S1, G) is chosen as above.

This is a modified version of the “local equivariant symplectic action
functional” introduced by Gaio and Salamon in [GS1]. More precisely, for
x ∈ M we denote by Lx : g → TxM the infinitesimal action of the Lie
algebra on the tangent space to M at x. Furthermore, we fix a G-invariant
inner product 〈·, ·〉g on g and denote |ξ| :=

√

〈ξ, ξ〉g, for ξ ∈ g. The induced
operator norm on g∗ is denoted by | · |op. Gaio and Salamon define the
action for pairs (x, ξ) for which |μ ◦ x|op and the twisted length �(x, ξ) :=
∫ 1
0 |ẋ + Lxξ| dt are small.1 To formulate the first main result of this paper,

we denote by M∗ ⊆ M the subset of all points on which G acts freely, and
by Gx ∈ M∗/G the orbit of a point x ∈ M∗. For a loop x̄ : S1 → M∗/G we
denote by �̄(x̄) its length w.r.t. the Riemannian metric on M∗/G induced
by 〈·, ·〉M . Furthermore, for each subset X ⊆ M we define

(1.3) mX := inf
{

|Lxξ|
∣

∣ x ∈ X, ξ ∈ g : |ξ| = 1
}

.

For p ∈ [1,∞] and smooth loops v : S1 → TM and ϕ : S1 → g∗ we denote
by ||v||p and ||ϕ||p the Lp-norms w.r.t. the Haar measure on S1, the metric
〈·, ·〉M and the norm | · |op on g∗.

Theorem 1.2 (Sharp isoperimetric inequality). Assume that there exists
a G-invariant ω-compatible almost complex structure J such that 〈·, ·〉M =
gω,J = ω(·, J ·). Then for every compact subset K ⊆ M∗ and every constant

1There is a gap in that definition, since the imposed smallness conditions do actually
not guarantee that the action of (x, ξ) is well-defined, see Section 2.1. In that subsection
a more direct way of fixing the gap is also mentioned.
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c > 1
4π there exists a constant δ > 0 with the following property. Suppose

that x ∈ C∞(S1, K) is a loop satisfying �̄(Gx) < δ. Then x is admissible,
and for every loop ξ ∈ C∞(S1, g) and every number 1 ≤ p ≤ 2 we have

(1.4) |A(x, ξ)| ≤ c||ẋ + Lxξ||2p +
π

m2
K

||μ ◦ x||2 p
p−1

.

This result generalizes the isoperimetric inequality for the usual action
(cf. Theorem 4.4.1 in the book [MS] by McDuff and Salamon), which corre-
sponds to the case of the trivial Lie group G := {1}. It is sharp in the sense
that in general, the statement for c < 1/(4π) is wrong. An example illus-
trating this is given by G := {1} and the plane M := R

2 with the standard
symplectic and Riemannian structures ω0 and 〈·, ·〉0. The constant π/m2

K is
also optimal. To see this, consider

M := R
2, ω := ω0, 〈·, ·〉M := 〈·, ·〉0, K := {(2, 0)},

and the action of G := S1 ∼= R/Z on R
2 by rotation, with moment map

(1.5) μ : R
2 → Lie(S1)∗ ∼= R

∗, 〈μ(x), ξ〉 := πξ
(

1 − |x|2
)

.

Let C < π/m2
K = 1/(16π). Then the constant pair (x, ξ) :=

(

(2, 0), 3/8
)

violates inequality (1.4) with π/m2
K replaced by C, for every p, if we choose

c ∈
(

1/(4π), 1/(2π) − 4C
)

.
The proof of Theorem 1.2 is based on the isoperimetric inequality for the

usual symplectic action and on an estimate for the holonomy of a connection
around a loop in terms of the curvature of the connection and the length
of the loop. Note that Gaio and Salamon proved an isoperimetric inequality
for their equivariant action, for p = 2 and a large constant, cf. Lemma 11.3
in [GS1].

To explain the application of Theorem 1.2, let J be a G-invariant and
ω-compatible almost complex structure on M , (Σ, j) be a Riemann surface
equipped with a compatible area form ωΣ, and let P be a principal G-bundle
over Σ. The (symplectic) vortex equations for a pair (u, A) are given by

(1.6)
{

∂̄J,A(u) = 0,
FA + (μ ◦ u)ωΣ = 0.

Here u is an equivariant map from P to M , and A is a connection one-form
on P . Furthermore, ∂̄J,A(u) denotes the complex anti-linear part of dAu :=
du+LuA, which we think of as a one-form on Σ with values in the complex
vector bundle u∗TM/G → Σ. Similarly, we view the curvature FA of A as
a two-form on Σ with values in the adjoint bundle gP := (P × g)/G → Σ.
Finally, we identify g∗ with g via 〈·, ·〉g, and we view μ ◦ u as a section
of gP . Equations (1.6) were discovered, independently, on the one hand
by Cieliebak et al. [CGS], and on the other hand by Mundet i Riera
[Mu1, Mu2].
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We fix now a number a > 0 and consider the case in which the Riemann
surface is the half-cylinder Σ :=

{

s + it ∈ C
∣

∣ s ≥ 0
}

/aiZ, endowed with
the standard complex structure j := i. We denote Δ := ∂2

s + ∂2
t and define

mμ−1(0) as in (1.3). We call an area form ωΣ = λ2ds ∧ dt on Σ admissible iff

(1.7) λ ≥ 2π

amμ−1(0)
, sup

Σ

(

|d(λ−1)|2 + Δ(λ−2)
)

< 2m2
μ−1(0).

Consider the following hypothesis.

(H) There exists a number ε > 0 such that the set
{

x ∈ M
∣

∣ |μ(x)| ≤ ε
}

is
compact. Furthermore, G acts freely on μ−1(0).

We fix a pair w := (u, A), where u is an equivariant map from P to M
and A is a connection one-form on P . Recall that the (Yang-Mills-Higgs)
energy density and energy of w are defined by

(1.8) ew :=
1
2

(

|dAu|2 + |FA|2 + |μ ◦ u|2
)

, E(w) :=
∫

Σ
ewωΣ,

with the norms taken w.r.t. the metrics gωΣ,j := ωΣ(·, j·) on Σ and gω,J on
M . The application of Theorem 1.2 is the following.

Theorem 1.3 (Optimal decay for vortices on the half-cylinder). Assume
that hypothesis (H) is satisfied. Let Σ be the half-cylinder, ωΣ be an admis-
sible area form on Σ, and p > 2. Assume that w := (u, A) is a locally
W 1,p-solution of equations (1.6), such that E(w) < ∞ and the image of u
has compact closure in M . Then for every ε > 0 there exists a constant C
such that

(1.9) ew(s + it) ≤ Cλ−2e(− 4π
a

+ε)s, ∀s ≥ 1, t ∈ R/aZ.

A consequence of (1.9) is that |dAu|0 decays as e(− 2π
a

+ε)s, for every ε > 0.
Here the point-wise norm | · |0 is taken w.r.t. the standard metric ds2 + dt2

on Σ and the metric gω,J on M . This generalizes a known decay result for
pseudo-holomorphic maps, which corresponds to the case G = {1} (see for
example Chapter 4 in [MS]). In this case, the result is optimal in the sense
that |du|0 does in general not decay faster than e− 2π

a
s. To see this consider

M := CP1 with the Fubini–Studi form, and let u : Σ → CP1 ∼= C ∪ {∞} be
defined by u(z) := e

2π
a

z. On the other hand in some special examples the
energy density ew decays faster than stated in Theorem 1.3, see for example
the book [JT] by Jaffe and Taubes. The overall strategy for the proof of
Theorem 1.3 is taken from the proof of Proposition 11.1 in [GS1]. The proof
relies on an identity relating the energy of a vortex on a compact cylinder
with the actions of its end-loops, and on the isoperimetric inequality of
Theorem 1.2. The next result is an immediate consequence of Theorem 1.3,
setting a := 2π and applying the change of coordinates Σ � z �→ e

2π
a

z ∈ C.
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Corollary 1.4 (Optimal decay for vortices on the complex plane). Assume
that hypothesis (H) is satisfied, that Σ = C, and that ωΣ is the standard area
form on C. Let p > 2 and w := (u, A) be a locally W 1,p-solution of equations
(1.6) such that E(w) < ∞ and u(P ) ⊆ M has compact closure. Then for
every ε > 0 there exists a constant C such that

ew(z) ≤ C|z|−4+ε, ∀z ∈ C \ B1.

2. Invariant symplectic action

2.1. Background. Let (M, ω) be a symplectic manifold without boundary.
We fix a Riemannian metric 〈·, ·〉M on M , and denote by d, exp, |v|, ιx > 0
and ιX := infx∈X ιx ≥ 0 the distance function, the exponential map, the
norm of a vector v ∈ TM , and the injectivity radii of a point x ∈ M and
a subset X ⊆ M, respectively. We define the symplectic action of a loop
x : S1 → M of length �(x) < 2ιx(S1) to be

(2.1) A(x) := −
∫

D

u∗ω.

Here D ⊆ R
2 denotes the (closed) unit disk, and u : D → M is any smooth

map such that

(2.2) u(e2πit) = x(t), ∀t ∈ R/Z ∼= S1, d
(

u(z), u(z′)
)

< ιx(S1), ∀z, z′ ∈ D.

Lemma 2.1. The action A(x) is well-defined, i.e. a map u as above exists,
and A(x) does not depend on the choice of u.

Proof. The lemma follows from an elementary argument, using the expo-
nential map expx(0+Z) : Tx(0+Z)M → M . �

Let now M, ω, G, g, μ and 〈·, ·〉M be as in Section 1. (Hence 〈·, ·〉M is G-
invariant.) The invariant action functional (also denoted by A)

A :
{

(x, ξ) ∈ C∞(S1, M × g)
∣

∣ x admissible
}

→ R

is now defined as in Definition 1.1. Note that if x is admissible then A(x, ξ)
is well defined, i.e., the required gauge transformation g exists and the right-
hand side of (1.2) does not depend on the choice of g. The functional A is
invariant under the action of the gauge group C∞(S1, G) on C∞(S1, M ×g)
given by g∗(x, ξ) :=

(

gx, (gξ−ġ)g−1
)

. To understand the definition of A(x, ξ)
better, note that if both the lenghts �(x) and �(gx) are small then the term
−

∫ 1
0

〈

μ ◦ x, g−1ġ
〉

dt in (1.2) compensates the effect of taking A(gx) rather
than A(x). This is made precise in Lemma 2.4 (ii) below.

Example. Consider M := R
2 endowed with the standard symplectic and

Riemannian structures, and the action of the circle G := S1 ∼= R/Z by
rotation, with moment map μ as in (1.5). Then every x ∈ C∞(

S1, R2 \ {0}
)
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is admissible, and the constant loop x :≡ 0 is inadmissible. If |x| ≡ r > 0
and ξ ≡ 0 then A(x, ξ) = π(1 − r2) deg

(

x/|x| : S1 → S1
)

.
The functional A is a modified version of a functional introduced by Gaio

and Salamon in [GS1, 74]. Their definition is based on the following lemma.
Here for ϕ ∈ g∗ we denote by |ϕ| the norm of ϕ w.r.t. the inner product
on g∗ induced by 〈·, ·〉g. Recall that Lx : g → TxM denotes the infinitesimal
action at x ∈ M .

Lemma 2.2 (Lemma 11.2 in [GS1]). Assume that μ is proper and that G
acts freely on μ−1(0). Then there are positive constants δ and c such that
the following holds. If x : S1 → M and ξ : S1 → g are smooth loops such
that maxS1 |μ ◦ x| < δ, then there is a point x0 ∈ μ−1(0) and a smooth loop
g : S1 → G such that

(2.3) max
S1

∣

∣ξ + ġg−1∣
∣ ≤ c�(x, ξ), d(x(t), g(t)x0) ≤ c

(

|μ ◦ x(t)| + �(x, ξ)
)

,

where �(x, ξ) :=
∫ 1
0 |ẋ + Lxξ| dt denotes the twisted length of (x, ξ).

Let δ and c be as in Lemma 2.2, and suppose that 2cδ < ιM . Assume that
(x, ξ) ∈ C∞(S1, M) is a loop such that maxS1 |μ ◦ x| < δ and �(x, ξ) < δ.
Then Gaio and Salamon define

(2.4) A(x, ξ) := −
∫

[0,1]×S1
u∗ω +

∫ 1

0

〈

μ(x(t)), ξ(t)
〉

dt.

Here u : [0, 1] × S1 → M is defined by u(s, t) := expg(t)x0
sv(t), where x0

and g are as in Lemma 2.2, and v(t) ∈ Tg(t)x0M is the unique small tangent
vector such that x(t) = expg(t)x0

v(t). Under the choices of δ and c above
the right hand side of (2.4) may actually depend on the choice of x0 and
g, as an explicit example based on the S1-action on R

2 by rotation shows.
One can overcome this difficulty by proving that δ can be shrunk such that
the following is satisfied. Namely, let x and ξ be as in the hypothesis of
Lemma 2.2, (x0, g) be as in the statement, (x′

0, g
′) be another such pair,

and let u and u′ be the corresponding maps defined as above. Then the
triples (x0, g, u) and (x′

0, g
′, u′) are smoothly homotopic. One should also

replace the injectivity radius ιM by ιμ−1(0), since the former may be 0. The
details of these modifications are carried out in [GS2]. Note that after these
adjustments the expression A(x, ξ) may depend on the pair (δ, c) (assuming
that it is well-defined).

Remark 2.3. Heuristically, the two expression (1.2) and (2.4) for A(x, ξ)
should be the same, provided that �(x, ξ) + maxS1 |μ ◦ x| is small enough.
The idea how to see this is to choose x0 and g as in Lemma 2.2. Then by
the second inequality in (2.3) the gauge transformed loop x′ := g−1x is close
to the point x0. We define g̃ : [0, 1] × S1 → G by g̃(s, t) := g(t)−1. Let u
be as in definition (2.4) of A(x, ξ). Then the image of the map u′ := g̃u :
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[0, 1] × S1 → M lies inside a small ball around x0. Since u′ maps the left
part of the boundary of [0, 1] × S1 to the point x0, it induces a map from
the disk D to M , whose restriction to the boundary circle agrees with x′. It
follows that

(2.5) A(x′) = −
∫

[0,1]×S1
u′∗ω = −

∫

[0,1]×S1
u∗ω +

∫

[0,1]×S1
d
〈

μ ◦ u, g̃−1dg̃
〉

,

where in the second equality we used Lemma 2.5 below. By Stokes’ Theorem,
the second term on the right-hand side equals
∫

S1

〈

μ◦u, g̃−1dg̃
〉∣

∣

s=1−
∫

S1

〈

μ◦u, g̃−1dg̃
〉∣

∣

s=0 =
∫ 1

0

〈

μ ◦ x, g
d

dt
(g−1)

〉

dt−0.

Here we used the fact that u(0, t) = g(t)x0 ∈ μ−1(0). Combining this equal-
ity with (2.5), it follows that the right hand side of (1.2) with g replaced
by g−1 equals the right-hand side of (2.4). The problem with this “proof”
is that it is not clear how small �(x, ξ) + maxS1 |μ ◦ x| has to be in order for
the arguments to work.

2.2. Key Lemma. Let M, ω, G, μ, 〈·, ·〉M , M∗, � and �̄ be as in Section 1.
We denote by

(2.6) Pr : TM →
{

(x, Lxξ)
∣

∣ x ∈ M, ξ ∈ g
}

⊆ TM

the fiber-wise orthogonal projection to the image of the infinitesimal action.

Lemma 2.4 (Key Lemma). For every compact subset K ⊆ M∗ the following
statements hold.

(i) There exist constants δ > 0 and C with the following property. If s− ≤
s+ are real numbers and u ∈ C∞(

[s−, s+] × S1, K
)

is a map satisfying
�̄(Gu(s, ·)) < δ for every s ∈ [s−, s+] then there exists a map g ∈
C∞(

[s−, s+] × S1, G
)

such that

(2.7)
∣

∣ Pr ∂t(gu)(s, t)
∣

∣ ≤ C�̄(Gu(s, ·))2, ∀(s, t) ∈ [s−, s+] × S1.

(ii) There exists a number 0 < ε ≤ 2ιK such that for every pair (x, g) ∈
C∞(S1, K × G) we have

(2.8) �(x) < ε, �(gx) < ε =⇒ A(gx) − A(x) =
∫ 1

0
〈μ ◦ x, g−1ġ〉 dt.

The following lemma is used in the proof of part (ii) of Lemma 2.4.

Lemma 2.5. Let (M, ω) be a symplectic manifold, G a connected Lie group
acting on M in a Hamiltonian way, with moment map μ : M → g∗, X a
manifold, and u ∈ C∞(X, M) and g ∈ C∞(X, G) be maps. Then

(gu)∗ω = u∗ω − d
〈

μ ◦ u, g−1dg
〉

.
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Proof. Let M, ω, G, μ, X, u and g be as in the hypothesis. Then

(gu)∗ω
= ω

(

gdu·, gdu ·
)

+ ω
(

(dg·)u, (dg·)u
)

+ ω
(

(dg·)u, gdu ·
)

+ ω
(

gdu·, (dg·)u
)

= u∗ω + ω
(

Lug−1dg·, Lug−1dg ·
)

+ ω
(

Lug−1dg·, du ·
)

+ ω
(

du·, Lug−1dg ·
)

= u∗ω + 1
2

〈

μ ◦ u,
[

g−1dg ∧ g−1dg
]〉

−
〈

dμ(u)du ∧ g−1dg
〉

= u∗ω − d
〈

μ ◦ u, g−1dg
〉

.

Here we used the notation ηx := Lgx(ηg−1), gv := d
dt

∣

∣

t=0 gγ(t) ∈ TgxM , for
x ∈ M , g ∈ G, η ∈ TgG and v ∈ TxM , where γ ∈ C∞(R, M) is a curve
satisfying γ(0) = x and γ̇(0) = v. Furthermore, ω

(

(dg·)u, (dg·)u
)

denotes
the two-form TX × TX � (ζ, ζ ′) �→ ω

(

(dg ζ)u, (dg ζ ′)u
)

, and similarly for
the other expressions. This proves Lemma 2.5. �

Proof of Lemma 2.4. Let K ⊆ M∗ be a compact subset. We may assume
w.l.o.g. that M = M∗ and K is G-invariant. We fix an ad-invariant inner
product 〈·, ·〉g on g, and denote by dG and ιG the corresponding distance
function on G and injectivity radius of G.

We prove (i). Consider the compact subset in the quotient K̄ := K/G ⊆
M/G. We choose an open neighborhood X ⊆ M/G of K̄ with compact
closure, and we equip it with the Riemannian metric induced by 〈·, ·〉M . We
denote by P ⊆ M the pre-image of X under the canonical projection M →
M/G. This is a principal G-bundle with right-action given by P × G → P,
(x, g) �→ g−1x. Applying Proposition A.1 of Appendix 4 with K replaced by
K̄ ⊆ X there exists a constant C such that the conclusion of this proposition
holds. We define the connection one-form A on P by

(2.9) Axv := −(L∗
xLx)−1 L∗

xv ∈ g,

for x ∈ P and v ∈ TxP . Here L∗
x : TxP → g denotes the adjoint map to

Lx w.r.t. the metric on P and the inner product 〈·, ·〉 on g. It follows from
the assumption M = M∗ that Lx is injective, hence A is well defined. We
choose δ > 0 less than the injectivity radius of the subset K̄ in X and
such that C||FA||L∞(X)δ

2 < ιG. Let s−, s+ and u be as in the hypothesis of
part (i). We choose a smooth t-horizontal lift ũ : [s−, s+] × R → K of the
map Gu : [s−, s+] × S1 → K̄. This means that Gũ(s, t) = Gu(s, t + Z) and
A∂tũ ≡ 0. We fix s ∈ [s−, s+], and define x̃ := x̃s : R → K by x̃(t) := ũ(s, t),
and h := hs ∈ G by the equation x̃(1) =: hx̃(0). It follows that h is the
holonomy of A around the loop Gu(s, ·) with base point x̃(0). Thus by the
assertion of Proposition A.1 and the inequality C||FA||L∞(X)δ

2 < ιG we have

(2.10) dG(1, h) ≤ C||FA||L∞(X)�̄(Gu(s, ·))2 < ιG.

Hence there exists a unique element ξ := ξs ∈ g satisfying

(2.11) exp ξ = h, |ξ| = dG(1, h).
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We define the map ˜h := ˜hs : R → G by ˜h(t) := exp(−tξ), and the map
g̃ := g̃s : R → G by the equation

(2.12) (g̃˜hx̃)(t) = u(s, t + Z).

Claim 1. We have g̃(t + 1) = g̃(t).

Proof. By (2.12) and the equation x̃(1) = hx̃(0) we have g̃(0) = g̃(1). We
show that the maps g̃ and t �→ g̃(t+1) satisfy the same ordinary differential
equation: Using (2.12) again, we get

(2.13) A∂tu(s, · + Z) = A
(

˙̃g˜hx̃ − g̃ξ˜hx̃ + g̃˜h ˙̃x
)

= ˙̃gg̃−1 − g̃ξg̃−1 + 0.

Here we used the notation of the proof of Lemma 2.5. Furthermore, in the
second step we used the fact A∂tũ = 0. A similar calculation shows that
A∂tu(s, ·+Z) =

( ˙̃gg̃−1 − g̃ξg̃−1
)

(·+1). Combining this with (2.13) we obtain
Claim 1. �

Using Claim 1 we may define the map g : [s−, s+]×S1 → G by g(s, t+Z) :=
g̃s(t)−1. Fixing s ∈ [s−, s+], equation (2.12) and the facts Prx = −LxAx (for
x ∈ P ) and A ˙̃x = 0 imply that

Pr ∂t(gu)(s, · + Z) = Pr
(

− ξ˜hx̃ + ˜h ˙̃x
)

= −L(gu)(s,·+Z)ξ.

Defining C ′ := max
{

|Lxη| |x ∈ P , η ∈ g : |η| ≤ 1
}

, we get
∣

∣ Pr ∂t(gu)(s, t + Z)
∣

∣ ≤ C ′|ξs| = C ′dG(1, hs) ≤ C ′C||FA||L∞(X)�̄(Gu(s, ·))2.

Here in the second step we used the second identity in (2.11), and in the
third step we used (2.10). This completes the proof of statement (i).

We prove (ii). We define

C1 := max
{

|Lxξ|
∣

∣ x ∈ M : d(x, K) ≤ ιK/4, ξ ∈ g : |ξ| ≤ 1
}

,

C2 := sup
{

dG(1, g)
d(x, gx)

∣

∣

∣

∣

1 �= g ∈ G, x ∈ K

}

,(2.14)

and we choose a positive number ε satisfying

(2.15) ε < min
{

ιK
2

,
ιK

4C1C2
,
ιG

C2

}

.

Since G and K are compact and by assumption G acts freely on M , it
follows that C2 < ∞. Let (x, g) ∈ C∞(S1, K×G) be a pair of loops satisfying
�(x) < ε and �(gx) < ε. By replacing x and g by g(0+Z)x and g ·g(0+Z)−1,
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we may assume w.l.o.g. that g(0 + Z) = 1. We fix a point t ∈ R/Z. Then

dG(1, g(t)) ≤ C2d
(

x(t), (gx)(t)
)

≤ C2

(

d
(

x(t), x(0 + Z)
)

+ d
(

(gx)(0 + Z), (gx)(t)
)

)

≤ C2

2
(�(x) + �(gx))

< C2ε < ιG.(2.16)

Hence there exists a unique element ξ0(t) ∈ BιG ⊆ g such that

(2.17) exp ξ0(t) = g(t), |ξ0(t)| = dG(1, g(t)).

Since �(x) < ε < ιK
2 , there exists a smooth map u : D → BιK/4(x(0 + Z)) ⊆

M such that u(e2πit) = x(t) for every t ∈ R/Z. We choose a smooth function
ρ : [0, 1] → [0, 1] that vanishes in a neighborhood of 0, and equals 1 in a
neighborhood of 1, and we define h : D → G by h(re2πit) := exp

(

ρ(r)ξ0(t)
)

.
Furthermore, we define u′ : D → M by u′(z) := h(z)u(z).

Claim 2. We have A(gx) = −
∫

D
u′∗ω.

Proof. Using (2.17) and u(e2πit) = x(t), we have u′(e2πit) = g(t)x(t), for
t ∈ R/Z. We fix r ∈ [0, 1] and t ∈ R, and define the path γ : [0, 1] → M by
γ(λ) := exp

(

λρ(r)ξ0(t)
)

u(re2πit). Then

d
(

u(re2πit), u′(re2πit)
)

≤ �(γ) ≤ C1|ξ0(t)| = C1d
G(1, g(t)) < C1C2ε ≤ ιK/4,

where in the third step we used (2.17), in the fourth step (2.16), and in the
last step (2.15). Since u′(1) = u(1), it follows that

d(u′(1), u′(z)) ≤ d(u(1), u(z)) + d
(

u(z), u′(z)
)

< ιK/2,

for z ∈ D. Hence d(u′(z), u′(z′)) < ιK , for z, z′ ∈ D. Claim 2 follows now
from the definition of A(gx). �

By Claim 2 and Lemma 2.5, we get

A(gx) =
∫

D

(

− u∗ω + d
〈

μ ◦ u, h−1dh
〉

)

= A(x) +
∫

∂D

〈

μ ◦ u, h−1dh
〉

.

Here the second step follows from (2.1), which holds since u satisfies (2.2).
The equality stated in (2.8) follows now from the fact h(e2πit) = g(t). This
proves part (ii) and completes the proof of Lemma 2.4. �

2.3. Proof of the isoperimetric inequality. Given a pair of loops
(x, ξ) ∈ C∞(S1, K × g), the idea of the proof of Theorem 1.2 is to gauge
transform x to a short loop x′. This is possible by the Key Lemma, under
the assumption that the loop Gx : S1 → M∗/G is short. The equivariant
isoperimetric inequality then follows from the isoperimetric inequality for
the case G = {1}.
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Proof of Theorem 1.2. Let J be a G-invariant ω-compatible almost complex
structure on M such that gω,J = 〈·, ·〉M . The subset M∗ ⊆ M of all points on
which G acts freely is open. Hence we may assume w.l.o.g. that the action
of G on M is free. Let K ⊆ M be a compact subset and c > 1

4π be a
constant. By replacing K by the compact set GK we may assume that K is
G-invariant. We choose a constant c0 ∈

( 1
4π , c

)

. Applying Theorem 4.4.1 of
[MS] (isoperimetric inequality for the usual action) with c replaced by c0,
there exists a constant 0 < δ0 < ιK such that

(2.18) A(x) ≤ c0�(x)2,

for every loop x ∈ C∞(S1, K) of length �(x) < δ0. (Strictly speaking, in
Theorem 4.4.1 in [MS] it is assumed that M is compact. However, the proof
of this theorem carries over to the present situation.) Moreover, let δ1 and
C1 be constants as in Lemma 2.4(i) corresponding to δ and C, and let ε be
as in part (ii) of that lemma. We choose δ > 0 such that

(2.19) δ < min
{

δ0

2
, δ1,

ε

2
,

1
C1

}

,
(

√

1 + C1δ +
√

(1 + 2C1δ)C1δ
)2

<
c

c0
.

Let x ∈ C∞(S1, K) be a loop such that �̄(Gx) < δ. By the assertion of
Lemma 2.4(i) there is a loop g ∈ C∞(S1, G) such that

(2.20)
∣

∣

∣

∣

∣

∣

∣

∣

Pr
d

dt
(gx)

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤ C1�̄(Gx)2.

We define x′ := gx. It follows that

(2.21) �(x′) ≤
∣

∣

∣

∣(id − Pr)ẋ′∣
∣

∣

∣

1 + ||Pr ẋ′||1 ≤ �̄(Gx) + C1�̄(Gx)2 < δ + δ,

where in the third step we used the fact that δ ≤ C−1
1 .

Claim 1. The loop x is admissible.

Proof. By (2.21) and the inequalities 2δ < ε ≤ 2ιK ≤ 2ιx(S1) the condition
�(x′) < 2ιx(S1) is satisfied. Let now g̃ ∈ C∞(S1, G) be a loop such that,
setting x̃ := g̃x, we have �(x̃) ≤ �(x′). Applying Lemma 2.4(ii) with x, g
replaced by x′, g̃g−1, we get

A(x̃) − A(x′) =
∫ 1

0

〈

μ ◦ x′, gg̃−1 d

dt
(g̃g−1)

〉

dt =
∫ 1

0

〈

μ ◦ x, g̃−1 ˙̃g − g−1ġ
〉

dt.

Hence condition (1.1) is satisfied. This proves Claim 1. �

Let ξ ∈ C∞(S1, g) be a loop, and p ∈ [1, 2].

Claim 2. The isoperimetric inequality (1.4) holds.
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Proof. We define ξ′ := (gξ − ġ)g−1 and p′ := p
p−1 ∈ [2,∞]. By (2.21) and

(2.19) we have �(x′) < δ0, hence by (2.18) with x replaced by x′,

|A(x′, ξ′)| ≤ |A(x′)| +
∣

∣

∣

∣

∫ 1

0
〈μ ◦ x′, ξ′〉 dt

∣

∣

∣

∣

≤ c0�(x′)2 + ||ξ′||p ||μ ◦ x′||p′

≤ c0||ẋ′||2p + c0m
2
K ||ξ′||2p +

1
4c0m2

K

||μ ◦ x′||2p′

≤ c0
(

||ẋ′||2p + ||Lx′ξ′||2p
)

+
π

m2
K

||μ ◦ x′||2p′ .(2.22)

Here the constant mK appearing in the third step is defined as in (1.3) with
X := K, and in the fourth step we used the definition of mK and the fact
that c0 > 1

4π . �
Claim 3. The inequality ||ẋ′||2p + ||Lx′ξ′||2p ≤ c

c0

∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

2
p

holds.

Proof. Since p ≤ 2, the map || · || : R
2 → R, ||v|| :=

(

v
2/p
1 + v

2/p
2

)p/2
is a

norm. Hence, defining f :=
(

|ẋ′|p, |Lx′ξ′|p
)

: S1 → R
2, we obtain

||ẋ′||2p + ||Lx′ξ′||2p =
∣

∣

∣

∣

∣

∣

∣

∣

∫

S1
f dt

∣

∣

∣

∣

∣

∣

∣

∣

2
p

≤
(∫

S1
||f || dt

) 2
p

≤
∣

∣

∣

∣

∣

∣

√

|ẋ′|2 + |Lx′ξ′|2
∣

∣

∣

∣

∣

∣

2

p

=
∣

∣

∣

∣

∣

∣

∣

∣

√

∣

∣ẋ′ + Lx′ξ′
∣

∣

2 − 2gω,J

(

ẋ′, Lx′ξ′)
∣

∣

∣

∣

∣

∣

∣

∣

2

p

.(2.23)

Furthermore, we have
∣

∣gω,J

(

ẋ′, Lx′ξ′)∣
∣ =

∣

∣gω,J

(

Pr ẋ′,− Pr ẋ′ + ẋ′ + Lx′ξ′)∣
∣

≤ | Pr ẋ′|2 +
∣

∣gω,J

(

Pr ẋ′, ẋ′ + Lx′ξ′)∣
∣

≤
(

1 +
1

2C1δ

)

| Pr ẋ′|2 +
C1δ

2
|ẋ′ + Lx′ξ′|2,(2.24)

where in the last step we used Young’s inequality. Moreover, inequality (2.20)
and the fact �̄(Gx) < δ imply that

(2.25) | Pr ẋ′| ≤ C1�̄(Gx)2 ≤ C1δ
∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

1 ≤ C1δ
∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

p
.

We define c1 :=
√

1 + C1δ and c2 :=
√

(1 + 2C1δ)C1δ. Combining (2.24)
and (2.25), we obtain

∣

∣ẋ′ + Lx′ξ′∣
∣

2 − 2gω,J

(

ẋ′, Lx′ξ′) ≤ c2
1
∣

∣ẋ′ + Lx′ξ′∣
∣

2 + c2
2
∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

2
p
.



INVARIANT SYMPLECTIC ACTION AND DECAY FOR VORTICES 369

Combining this with (2.23), we get

||ẋ′||2p + ||Lx′ξ′||2p ≤
∣

∣

∣

∣

∣

∣c1
∣

∣ẋ′ + Lx′ξ′∣
∣ + c2

∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

p

∣

∣

∣

∣

∣

∣

2

p

≤
(

(c1 + c2)
∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

p

)2

≤ c

c0

∣

∣

∣

∣ẋ′ + Lx′ξ′∣
∣

∣

∣

2
p
.

Here in the second step we used Minkowski’s inequality and the fact that
the Haar measure of S1 is 1. Furthermore, in the last step we used (2.19).
This proves Claim 3. �
Claim 2 follows from (2.22), Claim 3 and the equalities

A(x, ξ) = A(x′, ξ′),
∣

∣ẋ′ + Lx′ξ′∣
∣ =

∣

∣ẋ + Lxξ
∣

∣, |μ ◦ x′| = |μ ◦ x|.
This completes the proof of Theorem 1.2. �
Remark 2.6. There is an alternative approach to the isoperimetric inequa-
lity for p = 2. Namely, as pointed out to me by Urs Frauenfelder, we may
interpret the invariant action as a Morse–Bott function f , defined on the
infinite dimensional space X of gauge equivalence classes of loops (x, ξ) ∈
C∞(S1, M∗ × g), for which x is admissible. Assuming that hypothesis (H)
above is satisfied, the set Crit f of critical points of f can be identified with
the symplectic quotient via the map

μ−1(0)/G � Gx �→ [x, 0] ∈ Crit f,

where [x, 0] denotes the equivalence class of the constant map (x, 0). Since
Crit f ⊆ f−1(0), heuristically, for every constant

c >
(

2 min
{

|λ|
∣

∣ λ eigenvalue of H⊥
f (p), p ∈ Crit f

})−1

there exists a neighborhood U of Crit f such that for every p ∈ U we have

(2.26) |f(p)| ≤ c|∇f(p)|2.
Here we fix a Riemannian metric 〈·, ·〉X on X, and denote by |∇f(p)| the
corresponding norm of the gradient of f at a point p = [x, ξ] ∈ X, and
by H⊥

f (p) the Hessian of f at p. Choosing a suitable metric 〈·, ·〉X , the
isoperimetric inequality (1.4) with p := 2 can be derived from (2.26).

3. Symplectic vortices

3.1. Energy action identity and bound on energy density. Let M, ω,
G, g, 〈·, ·〉g, μ and J be as in Section 1, a > 0 be a number, and Σ :=

{

s+it ∈
C

∣

∣ s ≥ 0
}

/aiZ be the half-cylinder, equipped with an i-compatible area
form ωΣ = λ2ds ∧ dt. In this and the next subsection we identify g∗ with
g via 〈·, ·〉g. Furthermore, all norms of vectors in TM, etc. are w.r.t. the
metric gω,J . Let P → Σ be a principal G-bundle. Since by assumption G
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is connected the bundle P is trivial. Hence for the proof of Theorem 1.3 it
suffices to consider the case P = Σ ×G. In this case, an equivariant map from
P to M corresponds in a bijective way to a map u : Σ → M . Furthermore,
a connection one-form A on P bijectively corresponds to a pair of maps
Φ, Ψ : Σ → g, via the formula

(3.1) A(z,g)(ζ1, ζ2, gξ) = ξ + g−1(ζ1Φ(z) + ζ2Ψ(z)
)

g,

for (z, g) ∈ P and (ζ1 + iζ2, gξ) ∈ T(z,g)P = C × g · g. Equations (1.6) are
equivalent to the λ-vortex equations

(3.2)
{

∂su + LuΦ + J
(

∂tu + LuΨ
)

= 0,
(

∂sΨ − ∂tΦ + [Φ, Ψ]
)

+ λ2μ ◦ u = 0.

For simplicity, we restrict now to the case a = 1, and we identify

S1 ∼= R/Z, Σ =
{

s + it ∈ C
∣

∣ s ≥ 0
}

/iZ ∼= R × S1.

Given an open subset U ⊆ Σ and a number p > 2 the energy density and
the energy of a solution w := (u, Φ, Ψ) ∈ W 1,p

loc (U, M ×g×g) of the equations
(3.2), w.r.t. the standard metric ds2 + dt2 on Σ, are given by

(3.3) ẽw = |∂su + LuΦ|2 + λ2|μ ◦ u|2, E(w, U) =
∫

U
ẽw ds ∧ dt.

Proposition 3.1 (Energy action identity). For every compact subset K ⊆
M∗ there exists a constant δ > 0 with the following property. Let s− ≤ s+ be
numbers, Σ := [s−, s+] × S1 be the compact cylinder, λ ∈ C∞(

Σ, (0,∞)
)

be
a function, and w := (u, Φ, Ψ) ∈ C∞(

Σ, K×g×g
)

be a solution of equations
(3.2) satisfying �̄(Gu(s, ·)) < δ for every s ∈ [s−, s+]. Then the loops u(s−, ·)
and u(s+, ·) are admissible, and

(3.4) E(w, Σ) = −A
(

(u, Ψ)(s+, ·)
)

+ A
(

(u, Ψ)(s−, ·)
)

.

For the proof of Proposition 3.1 we need the following lemma. Recall that
by ιx > 0 we denote the injectivity radius of a point x ∈ M .

Lemma 3.2. Let s− ≤ s+ be numbers, Σ := [s−, s+] × S1 be the com-
pact cylinder, λ ∈ C∞(

Σ, (0,∞)
)

be a function, and let w := (u, Φ, Ψ) ∈
C∞(

Σ, M × g × g
)

be a solution of equations (3.2), satisfying

(3.5) �(u(s, ·)) < 2 inf
t∈S1

ιu(s,t), ∀s ∈ [s−, s+].

Then

E
(

w, Σ
)

= −A(u(s+, ·)) + A((u(s−, ·))

+
∫ 1

0

(

−
〈

μ ◦ u, Ψ
〉∣

∣

(s+,t) +
〈

μ ◦ u, Ψ
〉∣

∣

(s−,t)

)

dt.(3.6)
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Proof. As in the proof of Proposition 3.1 in [CGS] we have

ẽw = ω(∂su, ∂tu) − ∂s〈μ ◦ u, Ψ〉 + ∂t〈μ ◦ u, Φ〉.
The lemma follows by integrating this over Σ and using the energy action
identity for the usual action. �

Proof of Proposition 3.1. Let K ⊆ M∗ be a compact subset. We fix con-
stants δ, C, ε as in Lemma 2.4, such that

(3.7) Cδ2 + δ < ε < 2ιK = 2 inf
x∈K

ιx.

Let s− ≤ s+, λ and w := (u, Φ, Ψ) be as in the hypothesis of Proposition 3.1.
By the assertion of Lemma 2.4(i) there exists a map g ∈ C∞(

[s−, s+]×S1, G
)

such that inequality (2.7) holds, where the projection Pr is defined as in (2.6).
Hence fixing s ∈ [s−, s+], we may estimate

�
(

(gu)(s, ·)
)

≤
∫ 1

0

∣

∣ Pr ∂t(gu)(s, t)
∣

∣ dt +
∫ 1

0

∣

∣(id − Pr)∂t(gu)(s, t)
∣

∣ dt

≤ C�̄(Gu(s, ·))2 + �̄(Gu(s, ·))
≤ Cδ2 + δ.(3.8)

Combining this with (3.7) we get �
(

(gu)(s, ·)
)

< 2ιK ≤ 2 inft∈S1 ιu(s,t). Fur-
thermore, let g̃ ∈ C∞(S1, G) be a loop such that �

(

g̃u(s, ·)
)

≤ �
(

(gu)(s, ·)
)

.
Since �

(

(gu)(s, ·)
)

< ε, Lemma 2.4(ii) implies that equality (1.1) holds with
x and g replaced by u(s, ·) and g(s, ·). It follows that u(s, ·) is admissible.
Equality (3.4) follows now from Lemma 3.2 with w replaced by the gauge
transformed map g∗w. This proves Proposition 3.1. �

Lemma 3.3 (Point-wise bound on ẽw). Assume that hypothesis (H) of
Section 1 holds. Let Σ =

{

s + it ∈ C
∣

∣ s ≥ 0
}

/iZ be the half-cylinder,
ωΣ = λ2ds ∧ dt be an area form on Σ that satisfies the second inequality in
(1.7), and let w := (u, Φ, Ψ) be a smooth solution of equations (3.2) on Σ,
of finite energy E(w, Σ), such that u(Σ) ⊆ M is compact. Then there exists
a number s0 ≥ 1

2 such that for z ∈
(

[s0,∞) + iR
)

/iZ we have

ẽw(z) ≤ 32
π

E
(

w, B 1
2
(z)

)

.

The proof of Lemma 3.3 uses the following two lemmas. For r > 0 we denote
by Br ⊆ R

2 the open ball of radius r around 0.

Lemma 3.4 (Mean value). Let r > 0, C ≥ 0 and f ∈ C2(Br, R). Then

f ≥ 0, Δf ≥ −Cf2,

∫

Br

f <
π

8C
=⇒ f(0) ≤ 8

πr2

∫

Br

f.

Proof. This is Lemma 4.3.2. in [MS]. �
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Recall definition (1.3) of mX . For δ > 0 we denote by B̄δ ⊆ g the closed ball
of radius δ around the origin.

Lemma 3.5. Assume that hypothesis (H) holds. Then for every c < mμ−1(0)
there exists a number δ > 0 such that G acts freely on μ−1(B̄δ), and

|Lxξ| ≥ c|ξ|, ∀x ∈ μ−1(B̄δ), ξ ∈ g.

Proof. This follows from an elementary argument involving the sequence
Kν := μ−1

(

B̄1/ν

)

⊆ M , for ν ∈ N. �

Proof of Lemma 3.3. Let Σ, ωΣ = λ2ds ∧ dt and w be as in the hypothesis.

Claim 1. There exists a constant C such that Δẽw ≥ −Cẽ2
w.

Proof. We abbreviate vs := ∂su + LuΦ and vt := ∂tu + LuΨ, and define

I := 2λ4|Luμ ◦ u|2 + 4λ2|L∗
uvs|2 + 4λ2|L∗

uvt|2,
II := 6∂t(λ2)〈μ ◦ u, L∗

uvs〉 − 6∂s(λ2)〈μ ◦ u, L∗
uvt〉 + Δ(λ2)|μ ◦ u|2.

Let a > 0. Then it follows from formula (90) on page 63 in the article
[GS1] by Gaio and Salamon, with ε := 1, that there exists a constant b > 0
(depending on the compact set u(Σ) ⊆ M) such that

(3.9) III := Δẽw − I − II ≥ −aλ4∣
∣μ ◦ u

∣

∣

2 − b|vs|4.

We define C := supΣ
(

|d(λ−1)|2 + Δ(λ−2)
)

. Then by the second condition
in (1.7) we may choose a constant c < mμ−1(0) such that C < 2c2. We set
a := 2c2 − C and choose a constant b as above. By Young’s inequality with
exponent 2, we have

6∂t(λ2)〈μ ◦ u, L∗
uvs〉 ≥ −

9
(

∂t(λ2)|μ ◦ u|
)2

4λ2 − 4λ2|L∗
uvs|2

= −9(∂tλ)2
∣

∣μ ◦ u
∣

∣

2 − 4λ2|L∗
uvs|2,(3.10)

(3.11) −6∂s(λ2)〈μ ◦ u, L∗
uJvs〉 ≥ . . . = −9(∂sλ)2

∣

∣μ ◦ u
∣

∣

2 − 4λ2|L∗
uJvs|2.

Furthermore, a short calculation shows that

−9|dλ|2 + Δ(λ2) = −λ4(|d(λ−1)|2 + Δ(λ−2)
)

≥ −Cλ4.

Combining estimates (3.9–3.11), we get

(3.12) Δẽw ≥ 2λ4( − c2|μ ◦ u|2 + |Luμ ◦ u|2
)

− bẽ2
w.

We fix a number δ > 0 as in Lemma 3.5, depending on c. Let z ∈ Σ be a
point. If |μ ◦ u(z)| ≤ δ then inequality (3.12) implies Δẽw(z) ≥ −bẽ2

w(z).
Suppose now that |μ ◦ u(z)| > δ. Then inequality (3.12) implies that

Δẽw(z) ≥ −2c2δ−2λ4|μ ◦ u(z)|4 − bẽ2
w(z) ≥ −C ′ẽ2

w(z),
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where C ′ := 2c2δ−2 +b. This proves Claim 1. Lemma 3.3 follows from Claim
1 and Lemma 3.4. �

3.2. Proof of optimal decay

Proof of Theorem 1.3. Assume that hypothesis (H) of Section 1 is satisfied.
Let Σ, ωΣ and w be as in the hypothesis of Theorem 1.3. We may assume
w.l.o.g. that a = 1, i.e., identifying S1 ∼= R/Z,

Σ =
{

s + it ∈ C
∣

∣ s ≥ 0
}

/iZ ∼= [0,∞) × S1.

A standard argument as in the proof of Proposition D.2 in [Zi] shows
that w is gauge equivalent to a smooth vortex, via a locally W 2,p-gauge
transformation defined on (0,∞) × S1. (See also [CGMS].) Hence we may
assume w.l.o.g. that w is smooth. We define the function E : [0,∞) → R by
E(s) := E

(

w, [s,∞) × S1
)

. Let ε > 0.

Claim 1. There exists a number s0 ≥ 1 such that for every s ≥ s0 we have

(3.13)
d

ds
E(s) ≤ −(4π − ε)E(s).

Proof. By the discussion at the beginning of Section 3.1 we may assume
w.l.o.g. that P = Σ × G is the trivial bundle, and we may view u as a map
from Σ to M . Furthermore, we define (Φ, Ψ) : Σ → g by formula (3.1).
It follows from hypothesis (H) and Lemma 3.5 that there exists a number
δ0 > 0 such that K := μ−1(B̄δ0) is compact, G acts freely on K, and

(3.14) m := mμ−1(B̄δ0 ) ≥
√

4π − ε

4π
mμ−1(0),

where mX is as in (1.3), for X ⊆ M . We fix a number δ > 0 as in Theorem
1.2 (Sharp isoperimetric inequality), corresponding to the set K := μ−1(B̄δ0)
and the constant c := 1

4π−ε . Shrinking δ we may assume that it also satisfies
the condition of Proposition 3.1 (Energy action identity) with the same K.
Using the first inequality in (1.7) with a = 1, Lemma 3.3 implies that there
exists a number s0 > 0 such that for s ≥ s0

u(s, t) ∈ K, ∀t ∈ S1, �̄(Gu(s, ·)) ≤
∫ 1

0
|∂tu + LuΨ|(s, t) dt < δ.

Hence by the assertion of Theorem 1.2 with p := 2, we have for s ≥ s0,

(3.15)
∣

∣A
(

(u, Ψ)(s, ·)
)∣

∣ ≤ 1
4π − ε

∣

∣

∣

∣

(

∂tu + LuΨ
)

(s, ·)
∣

∣

∣

∣

2
2 +

π

m2

∣

∣

∣

∣μ ◦ u(s, ·)
∣

∣

∣

∣

2
2.

We fix two numbers s′ ≥ s ≥ s0. By the assertion of Proposition 3.1 the
loops u(s, ·) and u(s′, ·) are admissible, and

(3.16) E
(

w, [s, s′] × S1) = −A
(

(u, Ψ)(s′, ·)
)

+ A
(

(u, Ψ)(s, ·)
)

.
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It follows from inequality (3.15), the first inequality in (1.7) and Lemma 3.3
that

∣

∣A
(

(u, Ψ)(s′, ·)
)∣

∣ → 0, as s′ → ∞. Combining this with equality (3.16),
inequalities (3.15) and (3.14), and the fact |ϕ|op ≤ |ϕ|, for ϕ ∈ g∗, we get

E(s) = E
(

w, [s,∞) × S1)

= A
(

(u, Ψ)(s, ·)
)

≤ 1
4π − ε

∫ 1

0

(

|∂tu + LuΨ|2 +
4π2

m2
μ−1(0)

|μ ◦ u|2
)

∣

∣

∣

∣

(s,t)
dt

≤ − 1
4π − ε

d

ds

∫ ∞

s

∫ 1

0
ẽw(s, t) dt ds

= − 1
4π − ε

d

ds
E(s).

Here in the fourth step we used the first inequality in (1.7) with a = 1 and
definition (3.3) of ẽw. Claim 1 follows from this.

By Claim 1 the derivative of the function [s0,∞) � s �→ E(s)e(4π−ε)s

is non-positive, and hence this function is non-increasing. Combining this
with Lemma 3.3, and recalling definitions (1.8) and (3.3) of ew and ẽw, it
follows that there exists a constant C such that inequality (1.9) holds. This
completes the proof of Theorem 1.3. �

4. Appendix A: Inequality for the holonomy of a connection

Let G be a compact Lie group, X be a (smooth) manifold without boundary,
π : P → X be a (smooth) principal G-bundle over X, x ∈ C∞(S1, X) be a
loop, and let p0 ∈ π−1(x(0 + Z)). Here we identify S1 ∼= R/Z. We denote by
A(P ) the space of (smooth) connection one-forms on P , and fix A ∈ A(P ).
Recall that the holonomy h ∈ G of A around the loop x, with base point
p0, is defined by the condition p(1) = p0h, where p ∈ C∞([0, 1], P ) is the
unique horizontal lift of x starting at the point p0. This means that π◦p = x,
Apṗ = 0 and p(0) = p0. We choose a Riemannian metric gX on X and a
distance function d on G that is induced by some Riemannian metric 〈·, ·〉G

on G.

Proposition A.1. Let G, d, X, gX and P be as above, and let K ⊆ X be
a compact subset. Then there exists a constant C satisfying the following
condition. If A ∈ A(P ), x ∈ C∞(S1, K) is a loop of length �(x) less than the
injectivity radius ιK of K in X, and p0 ∈ π−1(x(0+ Z)), then the holonomy
h ∈ G of A around x, with base point p0, satisfies the inequality

(A.1) d(1, h) ≤ C||FA||L∞(X)�(x)2.

Proof. Let G, d, P, X, gX and K be as in the hypothesis. Since G is compact,
we may assume w.l.o.g. that 〈·, ·〉G is induced by an invariant inner product



INVARIANT SYMPLECTIC ACTION AND DECAY FOR VORTICES 375

on g. Let A ∈ A(P ), x ∈ C∞(S1, K) be a loop of length less than ιK , and
let p0 ∈ π−1(x(0 + Z)). For t ∈ R/Z ∼= S1 we define v(t) ∈ Tx0X to be the
unique vector such that

(A.2) expx0
v(t) = x(t), ||v(t)|| < ιK/2.

We define u : [0, 1] × [0, 1] → X by u(s, t) := expx0
sv(t). There exists a

unique smooth map p : [0, 1] × [0, 1] → P satisfying

(A.3) π ◦ p = u, p(0, t) ≡ p0, ∀t ∈ [0, 1], A(∂sp) ≡ 0.

We define Ψ := A(∂tp) : [0, 1] × [0, 1] → g. Let g : [0, 1] → G be the unique
smooth solution of the ordinary differential equation

(A.4) ġ = −Ψ(1, ·)g, g(0) = 1.

Inequality (A.1) will now be a consequence of the following two claims. The
proof of the first one is straight-forward.

Claim 1. g(1) ∈ G equals the holonomy of A around x, with base point p0.

Claim 2. There exists a constant C depending only on the Riemannian
manifold (X, gX) and on the compact subset K ⊆ X, such that

d(1, g(1)) ≤ C�(x)2||FA||L∞(X).

Proof. It follows from (A.4) that

(A.5) d(1, g(1)) ≤
∫ 1

0
|Ψ(1, t)| dt ≤

∫ 1

0

∫ 1

0
|∂sΨ(s, t)| ds dt.

Furthermore, by the definition of Ψ and the last equality in (A.3) we have

p∗FA = d(p∗A) + (1/2)[p∗A ∧ p∗A] = ∂sΨ ds ∧ dt + 0,

and hence

(A.6) |∂sΨ| ≤ |∂su| |∂tu|
(

|FA| ◦ u
)

.

Furthermore, by the definition of u and (A.2) we have

(A.7) |∂su| = |v| ≤ �(x)/2,

(A.8) |∂tu(s, t)| =
∣

∣d expx0
(sv(t))sv̇(t)

∣

∣ ≤ C1|v̇(t)| ≤ C2|ẋ(t)|.
Here C1 and C2 are constants depending only on X, gX and K, and in
the third step we used the fact that v̇(t) = d expx0

(v(t))−1ẋ(t). Inserting
inequalities (A.7) and (A.8) into (A.6), we obtain

|∂sΨ| ≤ (C2/2)�(x)|ẋ| ||FA||L∞(X).

Claim 2 follows by plugging this into (A.5). This completes the proof of
Proposition A.1. �
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