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ON SINGULAR POISSON STERNBERG SPACES

M. Perlmutter and M. Rodriguez-Olmos

We obtain a theory of stratified Sternberg spaces thereby extending
the theory of cotangent bundle reduction for free actions to the singular
case where the action on the base manifold consists of only one orbit
type. We find that the symplectic reduced spaces are stratified topo-
logical fiber bundles over the cotangent bundle of the orbit space. We
also obtain a Poisson stratification of the Sternberg space. To construct
the singular Poisson Sternberg space we develop an appropriate theory
of singular connections for proper group actions on a single orbit type
manifold including a theory of holonomy extending the usual Ambrose–
Singer theorem for principal bundles.

1. Introduction

In this paper we consider the problem of cotangent bundle reduction for a
proper action of a Lie group on a manifold with the simplifying assumption
that the base manifold on which the group acts consists of just one orbit
type. This is a major simplifiying assumption to the more general problem
where there are multiple orbit types on the base manifold. However, the
resulting theory is already interesting and leads to a generalization of the
theory of connections on a principal bundle. We will motivate the theory
with a class of examples generated by homogeneous spaces where a group
G acts on G/H and then on its cotangent bundle by the lifted action. Since
this is a transitive action it is clear that there is just one orbit type. This
example will appear later as a fundamental ingredient of the theory.

After reviewing some preliminary results on cotangent bundle reduction in
Section 2, we begin, in Section 3, with the transitive case of a base manifold
that is a homogeneous space. We consider the quotient of T ∗(G/H) by the
action of the group G. Using commuting reduction by stages, we show that
this is a Poisson stratified space with strata determined by the coadjoint
induced action of H on h◦. If we denote an element of the isotropy lattice
for this action by (K), then the Poisson strata are given by h◦

(K)/H. The
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Poisson bracket on each stratum is induced by the Lie–Poisson structure on
g∗. We also show that the symplectic leaves of each stratum are given by
(Oμ ∩ h◦

(K))/H. Notice that this result is the singular generalization of the
Lie–Poisson structures and coadjoint orbits, in the sense that if the action
is free, then H = e and Poisson and symplectic reduction produce the Lie–
Poisson structure and the Kostant–Kirillov–Souriau (KKS) structure on the
coadjoint orbits, respectively. Furthermore, these homogeneous Lie–Poisson
spaces will appear in the singular Sternberg spaces as fibers over the reduced
cotangent bundle in exactly the way that the Lie–Poisson spaces appear as
fibers in the regular setting (see subsections 2.2 and 2.3).

Significantly, this particular case of singular cotangent bundle reduction
does not require a connection precisely because the action on the base
manifold is transitive so every tangent vector on the G-principal bundle
G/H → {·} is vertical and therefore every non-zero covector has non-zero
momentum, i.e., the splitting of the cotangent bundle into zero momentum
and non-zero momentum covectors is trivial.

Next we consider the non-transitive case. We need to first split the tangent
bundle of the base manifold M into vertical and horizontal distributions.
This can be done with a G-invariant metric, guaranteed by the properness
of the action. The next step, undertaken in Section 4, is to associate a
connection to this splitting. At first glance this cannot be done in the usual
way since a surjective mapping from the tangent space at any point to the
Lie algebra will have kernel with dimension equal to the codimension of the
algebra. On the other hand, the horizontal spaces have codimension equal to
dim g−dim gm where gm is the non-trivial stabilizer algebra at the point m.
The resolution is to form a vector bundle ν → M , thanks to the properness
of the action, whose fibers are isomorphic to g/gm and define a connection,
which we call a singular connection, as a surjective bundle map covering the
identity from TM to ν. This leads to an invariant splitting of the tangent
bundle.

With this in place we study the orbit type stratification of TM and prove,
in Theorem 4.5, that the isotropy lattice is determined by the action of H
on g/h where h is the stabilizer algebra at some point m ∈ M . Relative
to the splitting induced from the connection, we explicitly determine the
stratification of TM and its quotient (TM)/G and we also write down a
stratified version of the Atiyah sequence for a principal bundle.

In 4.3 we introduce the curvature of the singular connection. Since the
singular connection is an Ehresmann connection, we can use the curvature
theory for an Ehresmann connection rather than attempt to define an exte-
rior derivative of a bundle map. Using this as a starting point, we are able
to prove, in Proposition 4.7, that the curvature is a G-equivariant bundle
map ∧2TM → ν that takes values in the stratum of ν that contains the zero
section.
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In addition, in Theorem 4.11 we prove an Ambrose–Singer theorem for the
singular connection which demonstrates that the holonomy group at a point
m ∈ M is contained as a subgroup in N(H)/H where H is the stabilizer of m.
Along the way to doing this, we obtain a one-to-one correspondence between
singular connections on M → M/G and principal connections on the bundle
MH → MH/(N(H)/H). This concludes our study of the geometry of the
singular connection.

In Section 5, we apply the singular connection to the construction of a
connection dependent realization of the symplectic structure on the reduced
spaces J−1(Oμ)/G, where Oμ ⊂ g∗ is a chosen coadjoint orbit contained in
the image of the momentum map J : T ∗M → g∗ associated to the cotangent
lifted action of G (given by 〈J(αm), ξ〉 = 〈αm, ξM (m)〉). The construction
follows the one for the Sternberg space when the action is free [7, 12].
This is the content of Theorem 15.6, which shows that the singular reduced
Sternberg space is a bundle over T ∗(M/G) whose symplectic fibers are (Oμ∩
h◦

(K))/H which are shown, in Section 3, to be the symplectic leaves of the
Poisson strata of h◦/H.

Finally, in Section 6 we compute the full Poisson stratification of
(T ∗M)/G in the Sternberg representation. The strata of (T ∗M)/G are
determined by the H-isotropy lattice of h◦. We show in Theorem 6.1 that,
using the singular connection, we can realize each stratum as a bundle
over T ∗(M/G) with fibers isomorphic to the Poisson strata in the homo-
geneous Lie-Poisson problem, that is h◦

(K)/H. We obtain a Poisson bracket
on each such stratum that generalizes the gauge Poisson bracket in the free
theory [6, 7]. The bracket consists of a canonical term associated to the
canonical symplectic structure on T ∗(M/G), a coupling term that involves
the reduced curvature of the singular connection and a term involving the
homogeneous Lie-Poisson structure on the fibers h◦

(K)/H.
The theory developed for the problem with a single orbit type will play

an important role in the solution to the general problem of singular cotan-
gent bundle reduction for base manifolds admitting multiple orbit type
which is the subject of a forthcoming paper [10]. The singular Sternberg
spaces developed in this paper can be used as building blocks in the the-
ory of singular Poisson reduction for manifolds with several orbit types.
In the case when M consists of several orbit types, it is expected that
the final picture will involve the construction developed in this paper over
each orbit type of the base, thought of as an independent manifold, glued
together by other bundles (seams) very much as in the approach taken
in [9] to study the symplectic quotient of a cotangent bundle by a lifted
action.

Finally, we remark that a related approach to the problem studied in this
paper has been carried out in [4], following the alternative realization of
(T ∗M)/G due to Weinstein [13] in the free case.
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2. Background and preliminaries

2.1. Proper actions with single orbit type. Let M be a single orbit
type manifold with respect to the proper action of the Lie group G. Thus
M = M(H) (where M(H) := {m ∈ M : Gm = gHg−1 for some g ∈ G})
for some compact subgroup H ⊂ G. It is well known (see [3]) that the
orbit space M(H)/G is then a smooth manifold. One way to see this is to
consider the smooth submanifold MH of M consisting of the points in M
with stabilizer precisely equal to H. It is easy to see that the subgroup
N(H), the normalizer group of H in G, acts on MH and that every orbit
in M intersects MH on an N(H) orbit. Furthermore, the quotient group
N(H)/H acts freely on MH and generates the same orbit space. Therefore
we have

M(H)/G 	 MH/(N(H)/H)
and the right-hand side is the base space of the principal N(H)/H-bundle,
MH → MH/(N(H)/H). We will see that the subgroup N(H) plays a crucial
role in the geometry of connections that we are going to define.

In general, given a proper group action on a manifold M consisting of not
just one orbit type, a given orbit type M(H) may have multiple connected
components, indeed of different dimension, generally. We will assume in all
the results of the paper that any orbit type manifold is connected. This is
not a loss of generality since the results apply to each connected component
separately.
2.2. The Sternberg space for a free action. Here we recall an important
realization of the Poisson reduced space (T ∗Q)/G obtainable once a principal
connection A on the principal bundle π : Q → Q/G is fixed. (To distinguish
the free case from the singular one, we denote the manifold on which G acts
freely by Q instead of M). We assume that the action of G on Q is both
free and proper, from which it follows that the lifted action of G on T ∗Q is
also free and proper. Therefore the quotient, T ∗Q/G, is a smooth manifold.
The connection allows us to realize the reduced space as a g∗ fiber bundle
over the reduced cotangent bundle T ∗(Q/G). Detailed proofs of the results
in this section are found in [7, 8].

The construction of the Sternberg space proceeds in two steps. First one
pulls back the configuration space bundle π : Q → Q/G by the cotan-
gent bundle projection τQ/G : T ∗(Q/G) → Q/G to obtain the (smooth)
G-principal bundle

Q̃ = {(α[q], q) ∈ T ∗(Q/G) × Q : [q] = π(q), q ∈ Q}
over T ∗(Q/G) with fiber over α[q] diffeomorphic to π−1([q]). Recall that the
G-action on Q̃ is given by g · (α[q], q) := (α[q], g · q) for any g ∈ G and
(α[q], q) ∈ Q̃. The diagram defining this pull back bundle and the associated
maps is given by
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Q̃ Q

T ∗(Q/G) Q/G

� �

�

�

ππ�

τ̃

τQ/G

where π� and τ̃ are the projections onto the first and second factors, respec-
tively. The following fact about Q̃ will be often used in the sequel.

Proposition 2.1. Q̃ is also a vector bundle over Q isomorphic to the anni-
hilator V (Q)◦ ⊂ T ∗Q of the vertical bundle V (Q) ⊂ TQ. The fibers of these
vector subbundles are given by V (Q)q := kerTqπ = {ξQ(q) : ξ ∈ g} ⊂ TqQ
and V (Q)◦

q := {αq ∈ T ∗
q Q : 〈αq, ξQ(q)〉 = 0 ∀ξ ∈ g} ⊂ T ∗

q Q for each q ∈ Q.
Consequently, Q̃ is bundle isomorphic to J−1(0).

The second step is to form the coadjoint bundle of Q̃, that is, the associ-
ated vector bundle to the G-principal bundle π� : Q̃ → T ∗(Q/G) given by
the coadjoint representation of G on g∗. The Sternberg space, denoted by S,
is thus defined by

S := Q̃ ×G g
∗.

Since the action is again free and proper, it follows that S is a smooth
manifold. In the proposition that follows we recall the map that shows it is
a bundle isomorphic to the Poisson reduced space. Abusing notation we will
denote the fiber projection π� : S → T ∗(Q/G) with the same symbol as the
quotient map π� : Q̃ → T ∗(Q/G). Using the connection A we then construct
the bundle isomorphism to the Poisson reduced space (T ∗Q)/G as follows.

Proposition 2.2. The map ϕA : Q̃ × g∗ → T ∗Q given by

ϕA((α[q], q), μ) := T ∗
q π(α[q]) + A(q)∗μ

is a G-equivariant vector bundle isomorphism over Q. It descends to a vector
bundle isomorphism over Q/G

ΦA : S → (T ∗Q)/G.

The gauge Poisson bracket on S is the pull back by ΦA of the the natural
reduced Poisson structure on (T ∗Q)/G. In order to study it we first introduce
the necessary notions of horizontal lifts and covariant derivatives in the
context needed for our purposes. First one constructs the horizontal lift on
the G-bundle Q̃ → T ∗(Q/G) endowed with the connection form Ã := τ̃∗A.
Given a curve α[q](t) in T ∗(Q/G), one has qh(t), the horizontal lift at q of
the curve [q](t) = τQ/G(α[q](t)) relative to A. Then the curve (α[q](t), qh(t))
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lies in Q̃, is horizontal (relative to Ã) and covers α[q](t). Denoting horizontal
lift operators by hor, it follows that

hor(α[q],q)

(
vα[q]

)
=

(
vα[q] , horq

(
Tα[q]τQ/G(vα[q])

))
∈ T(α[q],q)Q̃.

Now, S is an associated bundle to Q̃, therefore, for s = [(α[q], q), μ],

hors(vα[q]) = T((α[q],q),μ)ρ
(
hor(α[q],q) vα[q] , 0

)
∈ TsS,

where ρ : Q̃ × g∗ → S is the orbit projection. Finally, for f ∈ C∞(S) and
s ∈ S define dS

Ãf(s) ∈ T ∗
π�(s)T

∗(Q/G) by

(2.1) dS
Ãf(s)

(
vα[q]

)
:= df(s)

(
hors

(
vα[q]

))
.

Denote the curvature of the connection A by CurvA. The reduced cur-
vature form is a bundle map from ∧2(T (Q/G)) to the adjoint bundle,
g̃ := Q ×G g. Recall that the adjoint bundle g̃ is defined as the quotient
g̃ := (Q×g)/G relative to the diagonal left G-action g · (q, ξ) := (g ·q, Adg ξ)
on Q × g, where g ∈ G, q ∈ Q, ξ ∈ g, and Adg is the adjoint representation
of G on g. The adjoint bundle is a Lie algebra bundle with base Q/G, that
is, each fiber has a Lie algebra bracket depending smoothly on the base. The
reduced curvature is then defined by

(2.2) B([q])(u[q], v[q]) = [q, CurvA(uq, vq)],

where uq, vq ∈ TqQ are arbitrary vectors satisfying Tqπ(uq) = u[q], Tqπ(vq) =
v[q], respectively, and [q, ξ] ∈ g̃ denotes the G-class through (q, ξ).

The (reduced) gauge Poisson bracket is then given by the following result.

Theorem 2.3. Let s = [(α[q], q), μ] ∈ S and v = [q, μ] ∈ g̃∗. The Poisson
bracket of f, g ∈ C∞(S) is given by

{f, g}S(s) = ΩQ/G(α[q])
(
dS

Ãf(s)�,dS
Ãg(s)�

)

+
〈
v, B̃(α[q])

(
dS

Ãf(s)�,dS
Ãg(s)�

)〉
−

〈
μ,

[
δf

δs
,
δg

δs

]〉
,

where ΩQ/G is the canonical symplectic form on T ∗(Q/G), B̃ ∈ Ω2(T ∗(Q/G);
g̃) is the g̃-valued two-form on T ∗(Q/G) given by

B̃ = τ∗
Q/GB,

with B ∈ Ω2(Q/G, g̃) defined in (2.2), 
 : T ∗(T ∗(Q/G)) → T (T ∗(Q/G)) is
the vector bundle isomorphism induced by ΩQ/G, and δf/δs ∈ S∗ = Q̃ ×G g

is the usual fiber derivative of f at the point s ∈ S, that is,〈
s′,

δf

δs

〉
:=

d

dt

∣∣∣∣
t=0

f
(
[(α[q], q), μ + tν]

)

for any s′ := [(α[q], q), ν)] ∈ S.
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2.3. Minimal coupling forms. The symplectic leaves of the Sternberg
space are given by the submanifolds in S of the form Q̃×GOμ, where Oμ ⊂ g∗

is the coadjoint orbit through μ. To describe the symplectic forms on these
spaces we need to recall the minimal coupling form due to Sternberg [12]
which is a functorial construction of a presymplectic manifold associated to
a principal bundle with a connection and a Hamiltonian G-space.

Let σ : Z → B be a left principal G-bundle over the symplectic manifold
(B,Ω), L ∈ Ω1(Z; g) a connection one-form on Z, (F, ω) a Hamiltonian
G-space with equivariant momentum map φ : F → g∗, and denote by ΠZ :
Z × F → Z and ΠF : Z × F → F the two projections.

It can be shown that the closed two-form d〈Π∗
F φ, Π∗

ZL〉 + Π∗
F ω descends

to a closed two-form ωL ∈ Ω2(Z ×G F ), that is, ωL is characterized by the
relation

ρ∗ωL = d 〈Π∗
F φ, Π∗

ZL〉 + Π∗
F ω,

where ρ : Z × F → Z ×G F is the projection to the orbit space.
Now denote by σF : Z ×G F → B the associated fiber bundle projection

given by σF ([z, f ]) := σ(z). Then σ∗
F Ω is also a closed two-form on Z ×G F

and one gets the minimal coupling presymplectic form ωL+σ∗
F Ω. In general,

this presymplectic form is degenerate, but in the crucial case below it is in
fact a reduced symplectic form.

2.4. Symplectic leaves of the Sternberg space. Let us apply the previ-
ous construction to the situation Z = Q̃, B = T ∗Q, Ω = ΩQ/G = −dΘQ/G

(the canonical symplectic form on the cotangent bundle T ∗(Q/G)), σ =
π� : (α[q], q) ∈ Q̃ �→ α[q] ∈ T ∗Q, and L = Ã as in the previous paragraph.
Choose also (F, ω) = (Oμ, ω−

Oμ
), where ωO−

μ
is the (−) KKS form on Oμ and

φ = JOμ : Oμ → g∗ given by JOμ(μ′) = −μ′ for any μ′ ∈ Oμ its associated
G-equivariant momentum map for the coadjoint representation.

Then π� : Q̃ ×G Oμ → T ∗(Q/G) is given by, π�([(α[q], q), μ]) = α[q].
Denote the two-form ωÃ in this situation by ω̃−

Oμ
and hence it is uniquely

characterized by the relation

(2.3) ρ∗ω̃−
Oμ

= d
〈
Π∗

Oμ
JOμ , Π∗

Q̃
Ã

〉
+ Π∗

Oμ
ω−

Oμ
.

The minimal coupling form in this situation is

(2.4) ω
Oμ

min := ω̃−
Oμ

+ (π�)∗ΩQ/G.

We then have the following theorem that says that the minimal coupling
form coincides with the reduced symplectic form on the leaves of the Stern-
berg spaces.

Theorem 2.4. The symplectic leaves of the Sternberg space (S, {, }S) are
given by (Q̃ ×G Oμ, ω

Oμ

min) where Oμ is a coadjoint orbit through μ ∈ g∗. The
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minimal coupling two-form ω
Oμ

min is the reduced symplectic form on the leaf
obtained by orbit reduction, i.e. ω

Oμ

min given in equation (2.4) is the unique
two-form on Q̃ ×F Oμ that satisfies

ρ∗ω
Oμ

min = ι∗Oμ
Ω − J∗

Oμ
ω+

Oμ
,

where Ω = ϕ∗
AωQ and ιOμ is the inclusion of Q̃ × Oμ into Q̃ × g∗.

3. Homogeneous Lie–Poisson structures

In this section, we consider our most important example of a single orbit type
manifold, a homogeneous space. Here we compute the reduced spaces and
their stratifications “by hand”. We will later see that the reduced symplec-
tic and Poisson stratified structures on homogeneous spaces appear as the
symplectic and Poisson fibers of the Sternberg spaces developed in Sections
5 and 6.

Let g∗ be equipped with the (−) Lie–Poisson structure {·, ·}− and con-
sider the algebra of smooth H-invariant functions in g∗, CH(g∗). Since the
Lie–Poisson bracket is H-invariant, (CH(g∗), {·, ·}−) is a Poisson algebra.
Consider also the action of H on h◦ induced by the coadjoint action. Denote
by (K) an element of the isotropy lattice for this action. We then have the
following,

Lemma 3.1. The Hamiltonian vector fields of functions in CH(g∗) leave
invariant h◦ and its orbit types h◦

(K).

Proof. Let f ∈ CH(g∗). Then its Hamiltonian vector field evaluated at μ ∈
h◦ is ad∗

δf
δμ

μ. Let λ ∈ h. Then

〈ad∗
δf
δμ

μ, λ〉 =
〈

−ad∗
λμ,

δf

δμ

〉
= −df(μ) · (ad∗

λμ) = 0,

since f is H-invariant. Thus ad∗
δf
δμ

μ ∈ h◦ = Tμh◦, so h◦ is left invariant by

the Hamiltonian flow of f . Since this flow is necessarily H-equivariant, each
of its orbits consists of points with the same isotropy, so the orbit types of
h◦ are also preserved. �

By the previous lemma and Lemma 4.9 of [2], the H-invariant functions
vanishing on h◦ and h◦

(K) are Poisson ideals of CH(g∗), denoted by I(h◦) and
I(h◦

(K)), respectively. Hence CH(h◦) = CH(g∗)/I(h◦) is a reduced Poisson
algebra and CH(h◦

(K)) = CH(g∗)/I(h◦
(K)) a reduced Poisson subalgebra.

Since the algebra of smooth functions of h◦/H as a singular reduced space is
defined precisely as CH(h◦), we have that there is a reduced Poisson bracket
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on C∞(h◦/H) given by

(3.1) {f, g}([μ]) = −
〈

μ,

[
δF

δμ
,
δG

δμ

]〉
,

where [μ] ∈ h◦/H, f, g ∈ C∞(h◦/H) = CH(h◦) and F, G are smooth H-
invariant extensions to CH(g∗) of f and g, respectively. Then, in view of
Lemma 3.1, and since for any orbit type h◦

(K)/H is smooth, this reduced Pois-
son algebra restricts to a reduced smooth Poisson structure on the smooth
stratum h◦

(K)/H of h◦/H, making it a Poisson manifold.
In the case of a G-homogeneous space M we can identify M = G/H

where H is a closed subgroup of G and we take the quotient to be for
the right action of H on G. Then G acts on the left on G/H according to
g · [g′] = [gg′]. It is clear that the stabilizer group of the point [g] is then
gHg−1 and therefore M = M(H).

We next consider the problem of singular symplectic reduction for the
cotangent lifted action G×T ∗(G/H) → T ∗(G/H). The bulk of this paper is
devoted to obtaining gauge realizations of the singular reduced Poisson and
symplectic spaces for more general single orbit type base manifolds. We will
see that this particular example of a homogeneous space will appear and play
a role analogous to that of a coadjoint orbit in the free case. In this sense
the symplectic reduction of the homogeneous space is precisely the correct
generalization in the singular setting of a coadjoint orbit in the regular case
which, recall, is obtained by the regular symplectic reduction for the action
G × T ∗G → T ∗G, which is the cotangent lift of the left translation of G on
itself.

We can carry out the reduction using the technique of commuting reduc-
tion by stages (see for example [5]). We consider the left action of G×H on
T ∗G which is the cotangent lift of the action on G given by

(g, h) · g′ = gg′h−1.

It is then clear that the restricted actions of the two subgroups of G × H,
G, and H commute. While the total action is not free, the restricted actions
are free actions. Consider reduction at the momentum value (μ, 0) ∈ g∗ ×h∗.
We first reduce by the H-action at zero momentum to obtain T ∗(G/H),
equipped with the canonical symplectic form, by the regular cotangent bun-
dle reduction theorem at zero momentum (see [1]). The remaining action is
then given by G × T ∗(G/H) → T ∗(G/H) precisely as in the starting point
for the original singular reduction problem.

We next reverse the order of reduction which we are allowed to do by
the singular commuting reduction theorem ([11]). Reducing at μ ∈ g∗ the
left G-action on T ∗G we obtain Oμ, the coadjoint orbit through μ, with the
usual (−) KKS symplectic form. We then consider the action H ×Oμ → Oμ.
As this action is the restriction of the coadjoint action of G on Oμ it is a
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Hamiltonian action with momentum map given by JH(μ′) = −ι∗μ′ ∈ h∗

where ι : h ↪→ g is the canonical inclusion and μ′ ∈ Oμ. From this expression
it follows that

J−1
H (0) = Oμ ∩ h

◦.

We know by the Sjamaar–Lerman theory [11] of symplectic stratifications
that the symplectic quotient J−1

H (0)/H is a stratified topological space with
symplectic strata given by (J−1

H (0)(K))/H with (K) ≤ (H) where the K are
the stabilizer subgroups determined from the action H × h◦ → h◦ (which
is just the coadjoint action restricted to the subgroup H) and (K) ≤ (K ′)
means that any representative in the conjugacy class (K) is conjugate to a
subgroup of a representative in (K ′). Therefore we obtain that the symplectic
reduced spaces, for each μ ∈ g∗, for the action of G on T ∗(G/H) have
symplectic strata given by

(Oμ ∩ h
◦
(K))/H (K) ≤ (H).

Notice that if μ is such that Oμ, the coadjoint orbit containing μ, satisfies
Oμ ∩ h◦ = ∅ then J−1(μ) = ∅ where J denotes the momentum map for
the action G × T ∗(G/H) → T ∗(G/H). In other words the image of this
momentum map takes values μ that satisfy Oμ ∩ h◦ 
= ∅.

Remark 3.2. The symplectic structure on the strata, (Oμ ∩ h◦
(K))/H is

given by the quotient of the restriction of the symplectic form of the coad-
joint orbit. Therefore, denoting this structure by ω(K) one has the following
formula

(3.2) π∗
(K)ω(K) = ι∗(K)ω

−
Oμ

where π(K) : Oμ ∩h◦
(K) → (Oμ ∩h◦

(K))/H, ι(K) : Oμ ∩h◦
(K) ↪→ Oμ and ω−

Oμ
is

the (−) KKS symplectic structure on Oμ. From our construction it follows
that these symplectic strata are also the symplectic leaves of h◦

(K)/H for the
smooth Poisson structure induced by the Poisson structure (3.1) in h◦/H.
We will refer to the structures defined by (3.1) and (3.2) by homogeneous
Lie–Poisson bracket and homogeneous KKS form, repectively.

4. Singular connections

We wish to extend the concept of a principal connection to the setting of a
single orbit type manifold. In the rest of the paper we will have M = M(H).
Let G × M → M be a proper action. Then each m ∈ M has isotropy group
Gm conjugate to H in G with Lie algebra gm. We first need to generalize the
target space for a connection in this singular setting as we no longer have a
fixed Lie algebra, but rather a family of spaces g/gm for each m ∈ M onto
which the connection must project.
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We denote by m :=
⋃

m∈M gm. Because we assume the action is proper,
we can prove that this space is a vector bundle as follows.

Proposition 4.1. The set m is a smooth vector bundle over M . We call it
the stabilizer bundle over M .

Proof. This is a simple application of the tube theorem. We must show that
m is locally trivializable. Fix m ∈ M . Without loss of generality we can
assume that Gm = H. Let Sm = Tm(G · m)⊥ with respect to some G-
invariant metric on M (available by the properness of the action). Then Sm

is then a linear slice for the G-action at m and expm is an H-equivariant
diffeomorphism from an open ball B containing the origin in Sm to an H-
invariant submanifold transverse to G·m at m. We have that φ : G×HB → U
given by

φ([g, v]) = g · expm v.

is a G-equivariant local diffeomorphism onto a G-invariant neighborhood of
the orbit G · m. Note that φ([e, 0]) = x. Choose now a H-invariant Rie-
mannian metric on G and split g = TeG as g = h ⊕ k. Then k := h⊥ is a
slice at the identity for the free H-action on G, and therefore we can use
again the tube theorem to construct a local H-diffeomorphism H × O → G
onto a neighborhood of H in G. Here O is a sufficiently small open ball
around 0 in k. This diffeomorphism is explicitly given by (h, k) �→ h · expe k,
where expe is the associated Riemannian exponential on G, for which O lies
inside its domain of injectivity. This diffeomorphism drops to a diffeomor-
phism (H × O)/H = O → O′ ⊂ G/H where O′ is a neighborhood in G/H
containing [e]. We can therefore identify each element [g] of O′ with expe k
for a unique k ∈ O. Shrink O′ if necessary so that it becomes a trivializ-
ing neighborhood for the associated bundle G ×H B over O′ and call the
induced trivial bundle chart Ψ : O′ × B → U ⊂ M . This map is given by
Ψ(expe k, v) = expe k · expm v. Thus U ⊂ M is a (not invariant) neighbor-
hood of x. Finally, we can construct a trivialization of m over U , as follows:
f : U × h → mU is given by

f(expe k · expm s, ξ) := (expe k · expm s,Adexpe kξ). �

Next, we form the bundle that will play the role of the Lie algebra in
the standard theory of connections on principal bundles. The fibers of this
bundle, over each point in M , should be isomorphic to the tangent space
of the group orbit at that point. The natural candidate for this fiber, over
m ∈ M is simply g/gm. Consider the trivial bundle over M , M ×g. We then
have the following injective inclusion of vector bundles over M covering the
identity on the base

m ↪→ M × g.
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Denote then by ν the quotient bundle,

ν :=
M × g

m
.

Note that the fiber over m ∈ M is simply

νm = g/gm.

We then have the following properties of the vector bundle ν.

Proposition 4.2. The vector bundle ν satisfies:
1) ν|MH

= MH × g/h, i.e., the restriction of ν to the constant stabilizer
manifold MH is a trivial bundle.

2) There is a smooth action of the group G on ν which is linear on the
fibers and covers the G-action on M . This action is defined by

(4.1) g · [ξ]m = [Adg ξ]g·m.

3) With respect to this action, ν is a saturated vector bundle, i.e.,

ν = G · ν|MH
.

Proof. For (1), because the isotropy algebra for any point m ∈ MH is just
h, the stabilizer bundle m restricted to MH is the trivial bundle, m|MH

=
MH × h, and therefore

ν|MH
=

MH × g

m|MH

= MH × g/h.

For (2), it is clear that if equation (4.1) is well defined, then it is an action.
To see that it is well defined, choose another representative ξ′ of the class
[ξ]m, so that ξ′ = ξ + λ where λ ∈ gm. Then Adg ξ′ = Adg ξ + Adg λ. But,
Adg λ ∈ gg·m and therefore [Adg ξ′]g·m = [Adg ξ]g·m as required. To prove
(3), it is clear that since M = G · MH , any point m′ ∈ M can be written as
m′ = g ·m for some m ∈ MH and therefore since gm′ = Adg h it follows that
g · νm = νm′ . �

Remark 4.3. When the action is free, h = 0, the stabilizer bundle m is
0 so that ν = M × g and therefore its quotient ν/G is the adjoint bundle
g̃ = M×g

G .

We next define the main object of this section, a singular connection for
single orbit type manifolds.

Definition 4.4. A singular connection A for the single orbit type manifold
M is a smooth surjective vector bundle map A : TM → ν, covering the
identity, with the properties:

(i) A is G-equivariant: A(g · vm) = g · A(vm) for any vm ∈ TM .
(ii) For all ξ ∈ g, A(ξM (m)) = [ξ]m.
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Consequently for each m ∈ M , kerA(m) is a complement to g · m 	 νm

in TmM and, taking the union over m ∈ M , forms a G-invariant subbun-
dle H(M) of TM . Such connections always exist with our assumptions of
a proper action, since it is well known (see [3]) that, assuming the action
is proper, there exists a G-invariant Riemannian metric on M . Using this
metric, we can simply declare the horizontal space at a point m ∈ M
to be Hm := (g · m)⊥. It is clear that these spaces form a subbundle of
TM invariant under the G-action, and satisfy TM = H(M) ⊕ V (M) 	
H(M) ⊕ ν.

4.1. Stratification of TM . In this section, we use the singular connection
to determine the orbit type stratification for the tangent lifted action G ×
TM → TM . We will obtain an analogous result when we dualize the action
for the cotangent bundle. In studying the strata of the tangent lifted action
we can use the connection to reduce the problem to studying the strata for
the G-action on ν. We obtain the following result.

Theorem 4.5. The isotropy lattice for the action of G on TM is in one-
to-one correspondence with the lattice determined by the Ad-induced action

H × g/h → g/h.

Let A be a singular connection on M . Then we have a connection dependent
G-equivariant diffeomorphism ϕA : TM → H(M) × ν such that, for each
(K) ≤ (H) in the previous isotropy lattice it restricts to an equivariant
diffeomorphism

ϕA|(TM)(K)
: (TM)(K) → H(M) × ν(K),

where H(M) is the horizontal subbundle in TM determined by KerA and
(K) refers to the conjugacy class of K in G.

Since A is G-equivariant, then A : TM → ν is a stratified morphism
respecting the orbit type strata of TM and ν. Also, ν(K)/G is a smooth
fiber bundle over M/G with typical fiber isomorphic to (g/h)(K)/H. Finally,
(TM)/G has the structure of a stratified vector bundle over M/G with
smooth strata (TM)(K)/G isomorphic to

T (M/G) × ν(K)/G.

Proof. First notice that the connection establishes a G-equivariant bundle
isomorphism ϕA : TM → H(M) ⊕ ν given by vm �→ (Hor vm,A(vm)) where
Hor is the projection onto H(M) given by Hor vm = vm − (A(vm))M (m).
The inverse of this map is then simply (vm, [ξ]m) �→ vm + ξM (m) which is
clearly well defined. Next, observe that each of these bundles is a saturated
bundle over MH . That is, we have

TM = G · TM |MH
	 G · (H(M)|MH

⊕ ν|MH
)
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since G acts on TM by tangent lifts and the base action satisfies G · MH =
M . Because of these saturations, it is enough to study the strata of the
fiber over some m ∈ MH since the strata over any other fiber will be g-
translations. So, we first fix m ∈ MH and consider the diagonal H-action
on H(M)m ⊕ νm. Notice that H(M)m is isomorphic to a linear slice for the
G-action on M at the point m. Since M is a single orbit type manifold the
H-action on the linear slice can only have one orbit type, and therefore the
entire space must be fixed by H since H fixes 0. Therefore, since the H-action
is diagonal, we have reduced the study of the stratification of TM to the
study of the strata of the H-action on νm. Recall that ν|MH

= MH ×g/h and
the action is given by, from equation (4.1), h · [ξ] = [Adh ξ] since H fixes the
base point. It follows that if we denote by (K), ((K) ≤ (H)), the elements
of the isotropy lattice for the action H × g/h → g/h, then this lattice is
in one-to-one correspondence with the isotropy lattice for the G-action on
H(M) ⊕ ν. Furthermore, since ϕA : TM → H(M) ⊕ ν is a G-equivariant
bundle isomorphism, the isotropy lattice for the G-action on TM is identical
to that of H(M) ⊕ ν and ϕA restricts to a smooth isomorphism,

(TM)(K) 	 H(M) × ν(K).

From this isomorphism, it is now clear that the map A : TM → ν is a
stratified morphism mapping each orbit type stratum (TM)(K) onto the
orbit type stratum ν(K) and covering the identity map on the base.

Denote the quotient map for the G-action on M by π : M → M/G. Of
course M/G is a smooth manifold since M is a single orbit type manifold,
and is in fact diffeomorphic to the orbit space for the free and proper action of
N(H)/H on MH . Consider the restriction of the G-action to the subbundle
H(M). The quotient by this action is a manifold since H(M) has just one
orbit type. Furthermore, the quotient is a bundle over M/G since the action
covers the action of G on M . The fiber of this bundle over a point [m] ∈ M/G
with m ∈ MH is Hm(M)/H 	 TmH(M) since the H-action fixes every
point in Hm(M) (by the argument given earlier). Therefore, the isomorphism
Tmπ : Hm(M) → T[m](M/G) (since Ker Tmπ 	 νm) induces a bundle
isomorphism H(M)/G 	 T (M/G). Similarly, the bundle ν(K) is a single
orbit type space and its quotient is then a smooth manifold which is also a
fiber bundle over M/G. The fiber of this bundle over a point [m] ∈ M/G
such that m ∈ MH is just the quotient by the H-action on (ν(K))m which is
(g/h)(K)/H.

Next, since the G-action on the direct product bundle H(M) × ν(K) is
diagonal, the product bundle has fixed orbit type which is (K) and the
quotient is therefore a manifold. Furthermore, since the action is by lifts,
this quotient is a bundle over M/G and its fiber over a point [m] ∈ M/G
with m ∈ MH is given by the quotient of the H-action on the fiber
Hm(M) ×m ν(K). Since H acts diagonally and fixes Hm(M), the quotient
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is just Hm(M) ×m (g/h)(K)/H 	 T[m](M/G) ×m (ν(K)/G)m. It follows that
the quotient, (H(M) × ν(K))/G is isomorphic to the direct product bundle
over M/G given by T (M/G) × ν(K)/G. �

4.2. Singular Atiyah sequence. It is useful to describe a singular version
of the standard Atiyah sequence for a principal bundle. In this singular case,
i.e., of a single orbit type manifold, the analogous sequence is no longer a
sequence of vector bundles over the quotient space, but rather a sequence
of stratified vector bundles and each arrow corresponds to a stratified mor-
phism. The singular connection establishes a splitting of the sequence of
vector bundles over M ,

(4.2) 0 → ν → TM
ϕA−−→ H(M) ⊕ ν

pr−→ π∗T (M/G) → 0

where π∗T (M/G) is the pull back bundle of M → M/G with respect to the
tangent projection τM/G : T (M/G) → M/G. That is,

π∗T (M/G) = {(m, v[m]) : π(m) = τM/G(v[m])},

and pr(vm) = (m, Tmπ(vm)). Notice that π∗T (M/G) is a fiber bundle over
M with fiber over m ∈ M , T[m](M/G), and a fiber bundle over T (M/G)
with fiber over v[m], the orbit G · m where π(m) = τM/G(v[m]). Furthermore
π∗T (M/G) carries a proper G-action given by g · (m, v[m]) = (g · m, v[m]). It
is easy to see that this space has only a single orbit type, (H), identical to
the one for the action of G on M . Now, as in the regular case, the singular
connection A determines an injective horizontal lift map for each m ∈ M ,
horm : T[m](M/G) → TmM which takes values in H(M)m. Consequently
there is an injective bundle map π∗T (M/G) → TM which takes values in
H(M) and establishes a G-equivariant isomorphism of bundles π∗T (M/G) 	
H(M) given by (m, v[m]) �→ horm(v[m]). Notice that the splitting of the
sequence is identical for all the strata and this fact depends crucially on
the property that the stratification of TM is along the vertical part of the
Whitney sum in (4.2), the bundle ν. Each stratified sequence, with smooth
morphisms is just

0 → ν(K) → (TM)(K)
ϕA−−→ H(M) × ν(K) → π∗T (M/G) → 0.

Following the construction in the regular case, we consider the quotient
of the stratified sequence (4.2) to obtain a stratified split Atiyah sequence,

0 → ν/G → (TM)/G 	 T (M/G) × ν/G → T (M/G) → 0

with smooth strata and morphisms given by

0 → ν(K)/G → (TM)(K)/G 	 T (M/G) × ν(K)/G → T (M/G) → 0
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4.3. Curvature. Recall that the usual theory of curvature begins with the
definition of the covariant differential of a connection

DA(u, v) := dA(Horu, Hor v)

often denoted B = DA and subsequent proof that this is a tensor, and that
it verifies the identity

B(X, Y ) = −A([HorX, HorY ])

for vector fields X and Y . This last identity gives the curvature the inter-
pretation as the measure of non-integrability of the horizontal distribution
of the connection A. In our case the singular connection is a bundle map
from TM to ν. Rather than define a covariant differential for this object, we
make the following definition of its curvature form. In Remark 4.8 we take
an alternative approach of defining the covariant differential by realizing the
singular connection as an Ehresmann connection.

Definition 4.6. The curvature of A : TM → ν is defined to be

(4.3) B(um, vm) := −A([HorX, HorY ])(m).

where X is a vector field extending um and Y is a vector field extending vm.
Recall that Hor : TM → H(M) is the projection relative to the singular
connection.

Proposition 4.7. The curvature B given in the previous definition is well
defined. Also, B is a G-equivariant bundle map B : ∧2TM → ν and it takes
values in the stratum of ν containing the zero section, ν(H). Furthermore,
B uniquely determines a reduced curvature form B : ∧2T (M/G) → ν(H)/G
which is a bundle map covering the identity in M/G.

Proof. We demonstrate that equation (4.3) uniquely determines a well
defined ν-valued two-form on M by showing that it is tensorial, i.e., that
B(fX, Y ) = fB(X, Y ). Recall that [fX, Y ] = f [X, Y ] − Y (f)X so that

B(fX, Y ) = −A ([fHorX, HorY ])

= −A (f [HorX, HorY ] − HorY (f)HorX)

= −fA ([HorX, HorY ]) = fB(X, Y ),

as required.
Denote by ϕh the diffeomorphism on M corresponding to the group ele-

ment h ∈ G. To check G-equivariance of B, given X and Y vector fields
extending um, vm ∈ TmM , note that (ϕ∗

g−1X)(g ·m) = Tmϕg(X(m)) = g ·um
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and similarly for ϕ∗
g−1Y . Therefore,

(ϕ∗
gB)(um, vm) = B(g · um, g · vm) = −A([Hor(ϕ∗

g−1X), Hor(ϕ∗
g−1Y )](g · m))

= −A((ϕ∗
g−1 [HorX, HorY ])(g · m))

= −A(g · ([HorX, HorY ](m)))

= −g · A([HorX, HorY ](m)) = g · B(um, vm),

as required. This equivariance has the following consequence for the values
of the curvature form. Let m ∈ MH and um, vm ∈ TmM . Recall that since
the manifold consists of a single orbit type, the H-action fixes H(M)m.
Furthermore, since

um = Hor(um) + (A(um))M (m) = Hor(um) + Ver(um),

we have h · um = Hor(um) + h · Ver(um). Now let X extend um. Then the
vector field X̃ = HorX + ϕ∗

h−1VerX extends h · um since

X̃(h · m) = HorX(h · m) + (ϕ∗
h−1VerX)(h · m)

= HorX(m) + h · VerX(m)

= h · HorX(m) + h · VerX(m)

= h · (HorX(m) + VerX(m)) = h · um.

Following a similar construction for vm extended by Y , and a comparable
definition of Ỹ , we have

B(h · um, h · vm) = −A([HorX̃, HorỸ ](h · m))

= −A([HorX, HorY ](m))

= B(um, vm).

On the other hand, by G-equivariance of B, we have,

B(h · um, h · vm) = h · B(um, vm),

so that we are forced to conclude that for every h ∈ H, B(um, vm) = h ·
B(um, vm) and therefore the curvature takes values in the H-fixed set of
νm = g/h, which is the fiber over m of the stratum of ν containing 0m, that
is, ν(K).

For the reduced curvature form, let u[m], v[m] ∈ T[m](M/G). We define

B(u[m], v[m]) := [B(um, vm)],

where Tmπ(um) = u[m], Tmπ(vm) = v[m] and [B(um, vm)] denotes the ele-
ment of ν(H)/G determined by B(um, vm) ∈ ν(H). An easy calculation using
G-equivariance of B shows that this is well defined. �
Remark 4.8. Alternatively, we can approach the covariant derivative of
the connection by realizing that a singular connection is equivalent to an
Ehresmann connection as follows. An Ehresmann connection is simply a
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choice of horizontal distribution complementary to the vertical distribu-
tion that is G-invariant. Given a singular connection A, one defines an
Ehresmann connection Γ ∈ Ω1(M ; V (M)) (a V (M)-valued one form on M ,
where V (M) is the vertical distribution) by Γ(vm) = [σ]m ◦ A(vm) where
[σ] : ν → V is the bundle isomorphism induced by the action σ : g → TM .
Conversely, given an Ehresmann connection Γ one induces the singular con-
nection by A(vm) = [σ]−1 ◦ Γ(vm). Now, recall that for λ ∈ Ωk(M ; V (M)),
a V (M)-valued k-form on M , the definition of the covariant derivative of λ,
Dλ ∈ Ωk+1(M ; V (M)) is

Dλ(X0, . . . , Xk) : =
k∑

i=0

(−1)i[Xhor
i , λ(Xhor

0 , . . . , X̂i, . . . , X
hor
k )]ver

+
∑

0≤i<j≤k

(−1)i+jλ([Xhor
i , Xhor

j ],

× Xhor
0 , . . . , X̂i, . . . , X̂j , . . . , X

hor
k )(4.4)

where X0, . . . , XK are vector fields on M , and Xhor and Xver is the horizontal
and vertical projection of X.

We can then alternatively define

(4.5) DA := [σ] ◦ DΓ

for Γ = [σ] ◦ A which is consistent with equation (4.3) since, using equa-
tion (4.4), curvΓ(X, Y ) := DΓ(X, Y ) = −Γ([Xhor, Y hor]) which satisfies
B = [σ] ◦ curvΓ where B is the curvature of the singular connection A
as defined in equation (4.3). Finally we remark that using definition (4.5)
the Bianchi identity for B follows immediately since DcurvΓ = 0 implies
DB = 0.

4.4. A holonomy theorem. Our first result concerns the lowest dimen-
sional stratum of the Ad-induced H-action on g/h. As the next lemma shows,
this stratum turns out to be the Lie algebra of the group N(H)/H which
is precisely the group that acts freely on the submanifold MH . We will
then establish a bundle reduction theorem that will enable us to prove the
Ambrose–Singer theorem for singular connections: that the Lie algebra of
the holonomy group for a singular connection is given by the image of the
curvature of the connection. By Lemma 4.9, this holonomy group is then
contained in the group N(H)/H.

Lemma 4.9. The stratum containing 0 ∈ g/h corresponding to the stabilizer
group H, i.e., the lowest dimensional stratum for the H-induced stratifica-
tion, is the Lie algebra of the group N(H)/H.
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Proof. By definition (g/h)(H) = (g/h)H the fixed set by the linear H-action.
Let us denote this action by h·[ξ]. We then have h·[ξ] = [Adh ξ] and therefore

(g/h)(H) = {[ξ] ∈ g/h : [Adh ξ] = [ξ] for all h ∈ H}
= {[ξ] ∈ g/h : Adh ξ − ξ ∈ h for all h ∈ H}
= Lie(N(H)),

where the final equality is proved in Lemma 2.1.13 of [8]. The Lemma now
follows immediately. �

The next theorem addresses bundle reduction to a principal bundle for
single orbit type manifolds and establishes a one-to-one correspondence with
singular connections and principal bundle connections of the reduced bundle.

Theorem 4.10. Consider the following commutative diagram.

MH
= ��

π′

��

MH
ι ��

πN(H)

��

M

π

��
MH/(N(H)/H) = �� MH/(N(H)) 	 �� M/G

Then πN(H) : MH → MH/N(H) is a bundle reduction of π : M → M/G
and π′ : MH → MH/(N(H)/H) is a principal bundle reduction of MH →
MH/N(H).

There is a one-to-one correspondence between principal bundle connec-
tions on MH → MH/(N(H)/H) and singular connections on M . Further-
more, the curvature form for the singular connection restricted to MH is
equal to the curvature form Ω of the principal connection.

Proof. As we have already remarked, every G-orbit in M intersects MH in a
unique N(H)-orbit. Therefore for m ∈ MH , πN(H)(m) = π(ι(m)), and then
M/G 	 MH/N(H). Furthermore, since H fixes every point of MH , the free
action of N(H)/H on MH has the same orbits as the action of N(H) on
MH and therefore the bundle MH → MH/(N(H)/H) is a principal bundle
reduction of MH → MH/N(H). To set up the one-to-one correspondence of
connections, we start with a connection on the principal bundle π′ : MH →
MH/(N(H)/H). Denote this connection by Γ consisting of horizontal spaces
Qm for each m ∈ MH and its connection form by ω : TMH → n/h. We
show how to induce from this data a connection on M → M/G where
the connection data will consist of a horizontal distribution invariant with
respect to the group action. Given m′ ∈ M we have m′ = g · m for some
m ∈ MH and g ∈ G. Denoting as before the action of G on M by ϕ, and
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by slight abuse of notation, denoting the restricted action of N(H) on MH

also by ϕ, take

(4.6) Hm′ := Tmϕg ◦ Tmι(Qm).

To check it is well defined, take another realization, m′ = g1 · m1 where
m1 ∈ MH . Then, g · m = g1 · m1 so that g−1

1 g · m = m1 and therefore
h := g−1

1 g ∈ N(H). Now, by the N(H)-invariance of the connection on MH

we know that Qm1 = Tmϕh ·Qm and of course for h ∈ N(H), ι◦ϕh = ϕh ◦ ι.
Therefore,

Tm1ϕg1 ◦ Tm1ι(Qm1) = Tm1ϕg1 ◦ Th·mι ◦ Tmϕh(Qm) = Tmϕg1h ◦ Tmι(Qm)

= Tmϕg ◦ Tmι(Qm),

proving that equation (4.6) is well defined. We next establish that these
horizontal spaces are complementary to the vertical spaces in M → M/G.
For any m′ ∈ M , represented by m′ = g · m for m ∈ MH , we have the
following commutative diagram,

Qm
Tmφg◦Tmι ��

Tmπ′

��

Hm′

Tm′π

��
Tπ′(m)(MH/(N(H)/H)	 �� Tπ(m′)(M/G).

Since Tmπ′ : Qm → Tπ′(m)(MH/(N(H)/H)) is an isomorphism and the
diagram commutes, we must have that Tm′π : Hm′ → Tπ(m′)(M/G) is also
an isomorphism, proving that Hm′ is a complement to ker Tm′π, so that the
all the Hm spaces define a smooth distribution H(M) transversal to the G-
action on M . By (4.6) this distribution is G-invariant. Therefore it defines a
singular connection on M with corresponding connection form A : TM → ν,
from the isomorphism TM 	 H(M) ⊕ ν, given by

A(v) = P(v)

where P : TM → ν is the projection induced from the splitting.
Conversely, starting with a singular connection A : TM → ν we induce

a principal connection on MH → MH/(N(H)/H). As before, let Hm :=
Ker A(m). For m ∈ MH , in fact Hm ⊂ TmMH . To see this, recall that
M = G · MH so that, for m ∈ MH it follows that TmM = TmMH + g · m.
We refine this by taking an arbitrary complement, r, of n := Lie(N(H)) in
g so that g = n ⊕ r. Now, since ξM (m) ∈ TmMH if and only if ξ ∈ n, we
have TmM = TmMH ⊕ r · m. On the other hand, since TmM = Hm ⊕ g · m
it follows that Hm ⊂ TmMH . In fact we get the finer splitting TmM =
Hm ⊕ n · m ⊕ r · m with TmMH = Hm ⊕ n · m. Finally, notice that since the
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distribution defined by the spaces Hm is G-invariant, then it is also N(H)-
invariant so that we can define the horizontal spaces on TMH by Qm = Hm

for m ∈ MH .
To describe the corresponding induced connection form, notice that ι∗A :

TMH → ι∗ν where ι∗ν is the pull back bundle of ν with respect to the
map ι : MH → M , which is just the restriction of the bundle ν to the base
MH . By Proposition 4.2, this bundle is simply MH ×g/h. However ι∗A only
takes values in MH ×n/h since ξM (m) ∈ TmMH if and only if ξ ∈ n. Clearly
ι∗A is onto MH × n/h and induces a map ω : TMH → n/h. This map is
(N(H)/H)-equivariant and it is easy to check that Ker ω(m) = Qm, so that
ω is the corresponding principal connection form of the induced connection.

For the curvature correspondence, let Ω be the n/h-valued curvature form
of ω on MH . Let B be the curvature of A as defined in Definition 4.6. For
m ∈ MH , given um, vm ∈ TmM , let ũm := Hor um, and ṽm := Hor vm. Using
the definition of B (4.3), let X and Y be arbitrary extensions of ũm, ṽm cho-
sen to be tangent to MH . In fact we can construct these vector fields by first
projecting um, vm to the quotient M/G and then taking arbitrary extensions
in M/G 	 MH/(N(H)/H), denoted X̃, Ỹ . Next, lift the vector fields hor-
izontally with respect to the principal bundle π′ : MH → MH/(N(H)/H),
and then extend them to the entire manifold by the G-action, which we can
do since M is saturated by MH . Since the G-action preserves the horizon-
tal distribution, this will define globally two horizontal vector fields on M
denoted by X and Y , extending ũm and ṽm. Since they are horizontal, and
the horizontal distribution, restricted to MH is contained in TMH , their
restrictions to MH are smooth vector fields on MH . We then have

B(um, vm) = B(ũm, ṽm) = −A([HorX, HorY ])(m)

= −ω([HorX, HorY ])(m) = Ω(m)(ũm, ṽm)

where for the third equality, we use the fact that the Jacobi bracket of HorX
and HorY in M evaluated at m ∈ MH coincides with their bracket as vector
fields in MH (evaluated at m) so that the third equality holds. The final
equality is just a consequence of the usual curvature identity for principal
bundles. �
Theorem 4.11 (Ambrose–Singer). The horizontal lift of a curve in the
base space M/G through a point m ∈ MH lies entirely in MH and the
holonomy group through m, H(m), of the singular connection is contained
in N(H)/H. The Lie algebra of the holonomy group through m is given by
the image of the curvature of the singular connection at m.

Proof. Given [m] = π(m) ∈ M/G and a loop l(t) in M/G through [m], con-
sider m ∈ MH such that π(m) = [m]. From Proposition 4.2, we can view the
loop l as a loop in the base manifold MH/(N(H)/H). Consider its horizontal
lift, L(t) in the usual sense of principal bundles, through the point m ∈ MH .
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Since, by the proof of Theorem 4.10, the horizontal spaces of the bundle
MH → MH/(N(H)/H) are mapped into horizontal spaces of M → M/G,
it follows that L(t) is a horizontal curve in M for the singular connection
through the point m and projects to l(t) by construction. However, the hor-
izontal lift of a curve in M/G to M , through a specified point m is unique.
To prove this, one uses approximately the same argument as in the free case.
Suppose L2(t) is another curve through m which projects to l(t). It follows
that L2(t) = g(t)L(t) for some curve g(t) ∈ G. This curve is not unique
since the action is not free. However, d

dt

∣∣
t=0L2(t) = ġ(t)L(t) + g(t)L̇(t) by

the Leibniz identity, and therefore, applying the connection to this expres-
sion one finds 0 = A( d

dt

∣∣
t=0L2(t)) = A(ġ(t)L(t)) since L̇(t) is horizontal.

The only way ġ(t)L(t) can be horizontal is if it is zero and therefore g(t)
must be a curve that lies for all time in the stabilizer of L(t) and therefore
L2(t) = L(t) as required.

Next, we show that the Lie algebra of the holonomy group H(m) is the
image of the curvature of the singular connection at m. Since the horizontal
lift of a loop in M/G through m lies entirely in MH , then H(m) ∈ N(H)/H.
Now we can apply the standard holonomy theorem to the principal bundle
MH → MH/(N(H)/H) with the unique principal connection induced from
the singular connection. The conclusion is that the Lie algebra of the holo-
nomy group is given by the curvature of this induced principal connection
at m. However, the curvature of B, evaluated at m coincides with the cur-
vature of the induced principal connection. Since this can be done for any
m the statement follows. �

5. Singular Sternberg

The singular connection form A allows us to write down a G-equivariant
diffeomorphism,

(5.1) φA : M̃ × ν∗ → T ∗M

which will play the fundamental role in establishing the connection depen-
dent realization of the Poisson stratified space T ∗M/G. The mapping (5.1)
is a fiber product factorization of phase space into zero momentum and
nonzero momentum fibers, respectively. We call the quotient of the domain
in (5.1), M̃ ×G ν∗ the singular Sternberg space, as it generalizes the origi-
nal representation due to Sternberg of (T ∗M)/G in the free category. Using
φA we will also determine the minimal coupling forms on the strata of the
symplectic quotients.

The construction of the Sternberg space reviewed in Section 2 generalizes
to single orbit type manifolds as follows. We start by constructing the zero
momentum space M̃ by taking the pull back of M → M/G by the cotangent
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projection τM/G : T ∗(M/G) → M/G so that we have

M̃
τ̃ ��

π�

��

M

π

��
T ∗(M/G)

τM/G �� M/G

.

We then have

Proposition 5.1. M̃ is a fiber bundle over T ∗(M/G) whose fibers are the
G-orbits of M . Furthermore, M̃ is a G-space with single orbit type and
as a bundle over M is bundle isomorphic to the zero momentum space,
J−1(0) 	 V (M)◦ where V (M)◦ is the annihilator of the vertical fibers in
M → M/G. Then, M̃ naturally inherits a singular connection form given
by Ã := τ̃∗A : TM̃ → ν.

Proof. By definition, M̃ = {(α[m], m) : π(m) = τM/G(α[m]) = [m]}, and
therefore, for α[m] ∈ T ∗

[m](M/G), (π�)−1(α[m]) = {(α[m], m
′) : m′ ∈ G ·

m} 	 G · m where m is any representative of [m]. Similarly, the fibers of τ̃

satisfy τ̃−1(m) 	 T ∗
[m](M/G). Notice that M̃ inherits a G-action defined by

g · (α[m], m) = (α[m], g · m), clearly well defined, smooth, and proper since
the action of G on M is so. Furthermore, since G(α[m],m) = Gm it follows
that M̃ is a single orbit type manifold with orbit type (H), the same as for
M , and therefore the quotient of M̃ by this action is a smooth manifold.
By inspection this quotient is simply T ∗(M/G). Consider the map ψ : M̃ →
T ∗M given by (α[m], m) �→ (Tmπ)∗α[m]. This map takes the fiber of M̃
over m into T ∗

mM and takes values in V (M)◦ since 〈(Tmπ)∗α[m], ξM (m)〉 =
〈α[m], Tmπ(ξM (m))〉 = 0. Since the map ψ restricted to τ̃−1(m) is injective
(being the dual to the surjective map Tmπ : TmM → T[m](M/G)), and
since dim V (M)◦ = dimM − dim G + dimH = dim (M/G) it follows that
ψ|τ̃−1(m) : T ∗

α[m]
(M/G) → V (M)◦

m is an isomorphism and therefore ψ : M̃ →
V (M)◦ is a bundle isomorphism covering the identity on M . Finally, consider
the map τ̃∗A : TM̃ → ν. First notice that ν is the correct target bundle
for a singular connection on M̃ since it is a single orbit type manifold with
isotropy (H). Also, we have for each ξ ∈ g,

τ̃∗A(ξM̃ (α[m], m)) = A(ξM (m)) = [ξ]m.

Equivariance follows from equivariance of the projection τ̃ and equivariance
of A. �

Denote by M̃ × ν∗ the corresponding product bundle over M . We will
use the following notation for bundle projections, πν∗ : M̃ × ν∗ → ν∗ and
πM̃ : M̃ × ν∗ → M̃ . Note then, that π� ◦ πM̃ : M̃ × ν∗ → T ∗(M/G) which
we abbreviate, below, as simply π� to economize notation.
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Remark 5.2. Recall that, by definition, the momentum map for the G-
action on M is a map, J : T ∗M → g∗. However, since the image of J|T ∗

mM

is g◦
m 	 ν∗

m, we can also regard J as a bundle map T ∗M → ν∗ over M . In
the following we will sometimes implicitly use this point of view.

Proposition 5.3. Associated to the singular connection A there is an equi-
variant bundle isomorphism, φA : M̃ × ν∗ → T ∗M covering the identity on
M given by

φA((α[m], m), νm) = (Tmπ)∗α[m] + A∗(m)νm.

Furthermore, the pull back of the canonical one-form on T ∗M by φA is given
by,

(5.2) φ∗
AΘM = (π�)∗ΘM/G +

〈
J ◦ φA, Ã

〉
,

where 〈·, ·〉 indicates the natural pairing on the fibers of ν∗ with the corre-
sponding fibers on ν,

J ◦ φA : M̃ × ν∗ → ν∗

is just the bundle projection so that
〈
J ◦ φA, Ã

〉
is the one-form on M̃ × ν∗

given by
〈
J ◦ φA, Ã

〉
(vλ) =

〈
νm,A(m)(TπM̃ (λ)τ̃(TλπM̃ (vλ))

〉
,

with λ = ((α[m], m), νm).

Proof. Equivariance of φA follows immediately from the equivariance of the
singular connection A and the definition of the G-action on M̃ × ν∗.

Next, observe that for any ξ ∈ g we have
〈
J ◦ φA((α[m], m), νm), ξ

〉
=

〈
(Tmπ)∗α[m] + A∗(m)νm, ξM (m)

〉

= 〈νm, [ξ]m〉 = 〈ν, ξ〉 ,

where ν ∈ (gm)◦ and therefore J ◦ φA, restricted to the fiber over m takes
values in the fiber of ν over m, and is surjective on this fiber since it is
the dual of the injective map [ξ]m �→ ξM (m). Let vλ ∈ Tλ(M̃ × ν∗) with
λ = ((α[m], m), νm). We have

(φ∗
AΘM )(vλ) = ΘM (TλφA(vλ))

=
〈
(Tmπ)∗α[m] + A∗(m)νm, TφA(λ)τM ◦ TλφA(vλ)

〉

=
〈
α[m], Tλ(π ◦ τM ◦ φA)(vλ)

〉
+ 〈νm,A(m)(Tλ(τM ◦ φA)(vλ)〉

= (π�)∗ΘM/G(vλ) +
〈
J ◦ φA, Ã

〉
(vλ)

using the facts that π ◦ τM ◦ φA = τM/G ◦ π� and τM ◦ φA = τ̃ ◦ πM̃ in the
third equality. �
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In the next two theorems, we prove that the minimal coupling form due
to Sternberg generalizes to the singular setting. Care must be taken to prove
the generalization since we need to deal with a fiber product bundle, M̃×Õμ,
and not just the product of manifolds as in the free case. The proof of the
extension to the singular setting will make repeated use of the fact that
the bundles over M , M̃ and J−1(Oμ), are each G-saturated fiber bundles
over MH .

Theorem 5.4. Let Oμ be a coadjoint orbit through a point in the image
of J : T ∗M → g∗. The map φA restricts to an equivariant stratified bundle
isomorphism, J−1(Oμ) → M̃ ×Õμ where M̃ ×Õμ is the fiber product bundle
over M , and Õμ ⊂ ν∗ is a sub-bundle with fiber over m ∈ MH given by
Oμ ∩ h◦. The orbit type strata of M̃ × Õμ are M̃ × Õμ,(K) where K are the
subgroups of H determined by the isotropy lattice for the action H ×h◦ → h◦

and (K) denote their conjugacy classes in G. They are smooth fiber bundles
over M with fiber over m ∈ MH , T ∗

[m](M/G) × (Oμ ∩ h◦
(K)). Denote by

ι(K) : M̃ × Õμ,(K) ↪→ M̃ × ν∗ the inclusion. The restriction of the form
φ∗

AωM , the pull back of the canonical symplectic form on T ∗M , to each
stratum M̃ × Õμ,(K) is given by

(5.3) ι∗(K)φ
∗
AωM = (π�)∗ωM/G − d

〈
JÕμ,(K)

, Ã
〉

,

where ωM/G is the canonical symplectic form on T ∗(M/G) and JÕμ,(K)
is

the restriction of J ◦φA to M̃ ×Õμ,(K). Define the two-form on M̃ ×Õμ,(K)

(5.4) ωOμ,(K) := (π�)∗ωM/G − d
〈
JÕμ,(K)

, Ã
〉

− J∗
Õμ,(K)

ω+
Oμ

,

where ωM/G is the canonical symplectic form on T ∗(M/G), and ω+
Oμ

is
the (+) orbit symplectic form on Oμ. The two-form ωOμ,(K) satisfies the
following:

(i) It is basic, i.e., G-invariant and annihilates G-vertical vectors.
(ii) It drops to a unique two-form ω

Oμ,(K)
min on M̃ ×G Õμ,(K).

(iii) Denoting by π(K) : M̃ × Õμ,(K) → M̃ ×G Õμ,(K) the orbit map, the

reduced form ω
Oμ,(K)
min on M̃ ×G Õμ,(K) (defined by π∗

(K)ω
Oμ,(K)
min =

ωOμ,(K)) satisfies

(5.5) ι∗(K)φ
∗
AωM − J∗

Õμ,(K)
ω+

Oμ
= π∗

(K)ω
Oμ,(K)
min .

Proof. First recall that M̃ is a single orbit type manifold with orbit type
(H) identical to that of M . By definition, Õμ is the bundle over M whose
fiber over m is ν∗

m ∩Oμ. It is clear that (J ◦φA)−1(Oμ) = M̃ ×Õμ, the fiber
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product bundle over M , since the restriction of J ◦ φA to each fiber is given
simply by πν∗ . It follows that JÕμ

((α[m], m), νm) = νm ∈ Oμ ∩ g◦
m ⊂ Oμ.

On the other hand, the bundle Õμ over M has the structure of a stratified
fiber bundle which trivializes over MH . Restricted to MH we have

Õμ|MH
= MH × (Oμ ∩ h

◦)

and furthermore Õμ = G · Õμ|MH
since the fiber of Õμ over the point g · m

in M is just Oμ ∩ (Adg h)◦ = Oμ ∩ g · ν∗
m according to the definition of the

G-action on ν∗. Since M̃ has just the single orbit type (H), the orbit types
of the fiber product bundle M̃ × Õμ are just given by the orbit types of Õμ,
which, from the saturation and trivialization over MH are just given by the
orbit types for the H action on h◦.

Equation (5.3) follows by taking the restriction of equation (5.2) of
the previous Proposition 5.3 to the stratum M̃ × Õμ,(K) and then taking
the exterior derivative. For (i), note that φA is G-equivariant, and ωM is
G-invariant and therefore φ∗

AωM = (π�)∗ωM/G −d
〈
J◦φA, Ã

〉
is G-invariant.

It follows that the pulled back form, ι∗(K)φ
∗
AωM to the G-manifold M̃ ×

Õμ,(K), is also G-invariant. In fact, each term in φ∗
AωM is independently

invariant. To check this, let λ := ((α[m], m), νm) ∈ M̃ × Õμ,(K), (so that
νm ∈ h◦

(K)), and vλ ∈ Tλ(M̃ × Õμ,(K)). Then,
〈
J ◦ φA, Ã

〉
(g · vλ) =

〈
πν∗(g · λ), Ã(g · vλ)

〉
=

〈
g · νm,A(g · Tλ(τ̃ ◦ πM̃ )(vλ))

〉

=
〈
g · νm, g · A(Tλ(τ̃ ◦ πM̃ )(vλ))

〉

=
〈
νm,A(Tλ(τ̃ ◦ πM̃ )(vλ))

〉
=

〈
J ◦ φA, Ã

〉
(vλ),

from which it follows that, by infinitesimal invariance,

0 = LξM̃×Õμ,(K)

〈
JÕμ,(K)

, Ã
〉

= ιξM̃×Õμ,(K)
d

〈
JÕμ,(K)

, Ã
〉

+ dιξM̃×Õμ,(K)

〈
JÕμ,(K)

, Ã
〉

,(5.6)

where LX denotes the Lie derivative, and equation (5.6) follows from Car-
tan’s magic formula. Now, consider the form ωOμ,(K). The sum of the first
two terms is simply ι∗(K)φ

∗
Aω and each is G-invariant, and the first term,

(π�)∗ωM/G is basic. The third term of ωOμ,(K) is easily checked to also be G-
invariant using equivariance of JÕμ,(K)

and invariance of the orbit symplectic

form ω+
Oμ

. Therefore, ωOμ,(K) is G-invariant. To see that ωOμ,(K) annihilates
vertical vectors we must show that

(5.7) ιξM̃×Õμ,(K)

(
−d

〈
JÕμ,(K)

, Ã
〉

− J∗
Õμ,(K)

ω+
Oμ

)
= 0.
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From equation (5.6) we have

ιξM̃×Õμ,(K)

(
−d

〈
JÕμ,(K)

, Ã
〉)

= dιξM̃×Õμ,(K)

〈
JÕμ,(K)

, Ã
〉

= d
〈
JÕμ,(K)

, [ξ]ν
〉

,

where [ξ]ν is the section of ν given by [ξ]ν(m) = [ξ]m ∈ g/gm. We have,

ξM̃×Õμ,(K)
(λ) =

d

dt

∣∣∣∣
t=0

((α[m], exp(tξ) · m), Ad∗
exp(−tξ) νm)

and therefore,

TλJÕμ,(K)
· ξM̃×Õμ,(K)

(λ) =
d

dt

∣∣∣∣
t=0

Ad∗
exp(−tξ) νm = − ad∗

ξ νm.

Furthermore, TλJÕμ,(K)
applied to any tangent vector vλ ∈ Tλ(M̃ × Õμ,(K))

must be of the form − ad∗
η νm since the bundle Õμ,(K) = G · (MH × Oμ ∩

h◦
(K)) trivializes and saturates over MH and therefore the most general curve

passing through λ has the form t �→ ((α[m](t), m(t)), ν(t)) where ν(t) =
g(t) · νm for some curve g(t) ∈ G through the identity. Therefore,

TλJÕμ,(K)
(vλ) =

d

dt

∣∣∣∣
t=0

JÕμ,(K)
((α[m](t), m(t)), g(t) · νm)

=
d

dt

∣∣∣∣
t=0

g(t) · νm = − ad∗
η νm

where η := d
dt

∣∣
t=0g(t). Using this, we have

ιξM̃×Õμ,(K)
(J∗

Õμ,(K)
ω+

Oμ
)(vλ) = (J∗

Õμ,(K)
ω+

Oμ
)(ξM̃×Õμ,(K)

(λ), vλ)

= ω+
Oμ

(− ad∗
ξ νm,− ad∗

η νm)

= 〈νm, [ξ, η]〉 .

On the other hand,

d
〈
JÕμ,(K)

, [ξ]
〉

(vλ) =
〈
TλJÕμ,(K)

(vλ), [ξ]
〉

=
〈
− ad∗

η νm, ξ
〉

= 〈νm, [ξ, η]〉

so that equation (5.7) is satisfied. Consequently, ωOμ,(K) drops to a unique
form ω

Oμ,(K)
min on M̃ ×G Õμ,(K), and this form satisfies equation (5.5) since it

is the unique orbit reduced form by construction. �

Remark 5.5. The above theorem generalizes the minimal coupling con-
structions for the regular case given in Section 2 as follows. The form
(π�)∗ωM/G − d

〈
JÕμ,(K)

, Ã
〉

is the singular generalization of ω̃−
Oμ

given in

equation (2.3). The form ω
Oμ,(K)
min is the singular generalization of the mini-

mal coupling form ω
Oμ

min in equation (2.4).
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We then have the following result on the reduced symplectic form ω
Oμ,(K)
min

determined on each M̃×GÕμ,(K) coupling the canonical symplectic structure
with the homogeneous Kostant–Kirillov form on the orbit fibers via the
reduced curvature B of the singular connection.

The involved mappings are summarized in the following diagram

M̃ × Õμ,(K)
πM̃ ��

π(K)

��

M̃
τ̃ ��

π�

��

M

π

��
M̃ ×G Õμ,(K) p

�� T ∗(M/G)τM/G

�� M/G.

We will proceed as before to write π� = π�◦πM̃ in order to economize nota-
tion.

Theorem 5.6. The reduced minimal coupling form ω
Oμ,(K)
min on M̃ ×GÕμ,(K)

can be expressed in terms of the reduced curvature, B, of A as follows.

ω
Oμ,(K)
min = (π�)∗ωM/G −

〈
Φ̃, (τM/G ◦ p)∗B

〉
+ ω̃(K)

where p : M̃ ×G Õμ,(K) :→ T ∗(M/G) is the submersion given by p([(α[m], m),
νm]) = α[m] and Φ̃([(α[m], m), νm]) := [m, νm] ∈ Õμ,(K).

The two-form ω̃(K) is equivalent at each point to the homogeneous reduced
symplectic form defined in (3.2).

Proof. First, we observe that, as in the free case, using the connection A we
can induce from the two-form J∗

Õμ,(K)
ω+

Oμ
on M̃ ×Õμ,(K), a form ω̃(K) on the

quotient space M̃ ×G Õ(K). To construct this form, we need to first obtain a
splitting of the tangent bundle of M̃ ×G Õμ,(K). Note that the vertical fibers
of p are given by

p−1(α[m]) 	 (Oμ ∩ h
◦
(K))/H

where Gm = H. These fibers carry a symplectic structure as we have deter-
mined in (3.2). The tangent spaces to these fibers determine the vertical sub-
bundle V of T (M̃ ×G Õμ,(K)): for each [λ] = [(α[m], m), νm] ∈ M̃ ×G Õμ,(K),
V[λ] := kerT[λ]p. The connection, A, determines a complement as follows.
Given a vector vα[m] ∈ Tα[m]T

∗(M/G) tangent to some curve α[m](t), denote
the projected curve to M/G by [m](t) := τM/G ◦ α[m](t). Then, letting m(t)
denote the horizontal lift of [m](t) to M through the point m notice that, by
construction, the curve (α[m](t), m(t)) ∈ M̃ and, furthermore, the curve is
not contained in the G-orbit through (α[m], m). Finally the tangent vector to
the curve ((α[m](t), m(t)), νm) ∈ M̃ × Õμ,(K) through λ, (v(α[m],m), 0), is not
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contained in the kernel of T[λ]p and therefore we have constructed an injec-
tive map Φ[λ] : Tp([λ])T

∗(M/G) → T[λ](M̃ ×G Õμ,(K)). The image of Φ[λ] then
has dimension complementary to ker T[λ]p. Now ranging over [λ], this defines
the horizontal distribution H in T (M̃ ×G Õμ,(K)) with H[λ] := Im Φ[λ]. We
then have a projection P[λ] onto the vertical space V[λ] corresponding to this
splitting. The form ω̃(K) is then defined on M̃ ×G Õμ,(K) by

ω̃(K)(v[λ], w[λ]) := −(J∗
Õμ,(K)

ω+
Oμ

)((0, v), (0, w))

where v ∈ TνmÕμ,(K) satisfies Tλπ(K)(0, v) = P[λ](v[λ]) and analogously
for w. This is well defined due to the G-invariance of the form J∗

Õμ,(K)
ω+

Oμ
.

Next, consider the basic form (from equation (5.7)) on M̃ × Õμ,(K),

−d
〈
JÕμ,(K)

, Ã
〉

− J∗
Õμ,(K)

ω+
Oμ

. We need to show that

(5.8) π∗
(K)

(〈
Φ̃, (τM/G ◦ p)∗B

〉
− ω̃(K)

)
= d

〈
JÕμ,(K)

, Ã
〉

+ J∗
Õμ,(K)

ω+
Oμ

.

Fix a point λ := ((α[m], m), νm) ∈ M̃ × Õμ,(K). We consider three types of
tangent vectors at this point: (h(α[m],m), 0), ξM̃×Õμ,(K)

(λ), and (0, u) where

h(α[m],m) is a horizontal vector at T(α[m],m)M̃ relative to Ã, ξ ∈ g and u ∈
TνmÕμ,(K). We prove equation (5.8) by checking equality on all six pairs of
these types of tangent vectors. Note that on vectors of the form ξM̃×Õμ,(K)

(λ)
both sides of equation (5.8) are zero: trivially for the left hand side, and for
the right-hand side, by equation (5.7). Therefore it will suffice to verify
equation (5.8) on the three types of pairs generated by types (h(αm,m), 0)
and (0, u), which we call horizontal and momentum vectors, respectively.

Horizontal. Horizontal Consider the pair (ũ1, 0), (ũ2, 0) ∈ Tλ(M̃×Õμ,(K))
where ũi is a horizontal vector on M̃ at the point (α[m], m) and ui :=
T(α[m],m)τ̃(ũi) ∈ TmM . We use the notational convention that an upper case
letter is a vector field that extends the lower case tangent vector. Extend
these vectors to vector fields (Ũi, 0) where Ũi is a horizontal vector field on
M̃ , so that the extended vector fields are given by (Ũi, 0)((α[m], m), νm) =
(Ũi(α[m], m), 0). Denoting by Ui the uniquely defined τ̃ -related horizontal
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vector fields on M given by T τ̃ ◦ Ũi = Ui ◦ τ̃ , we then have,

d
〈
JÕμ,(K)

, Ã
〉
((ũ1, 0), (ũ2, 0))

= (Ũ1, 0)
(〈

JÕμ,(K)
, Ã

〉
(Ũ2, 0)

)
(λ) − (Ũ2, 0)

(〈
JÕμ,(K)

, Ã
〉

× (Ũ1, 0)
)

(λ) −
〈
JÕμ,(K)

, Ã
〉 (

[(Ũ1, 0), (Ũ2, 0)]
)

(λ)

= −
〈
JÕμ,(K)

, Ã
〉 (

[(Ũ1, 0), (Ũ2, 0)]
)

(λ)

= −
〈
νm, Ã

(
[Ũ1, Ũ2]

)
(α[m], m)

〉

= −
〈
νm,A

(
T τ̃ [Ũ1, Ũ2]

)
(α[m], m)

〉
= −〈νm,A ([U1, U2]) (m)〉

= 〈νm, B(u1, u2)〉 ,

where we have used the fact that T τ̃ ◦ Ũi = Ui ◦ τ̃ , so that T τ̃ ◦ [Ũ1, Ũ2] =
[U1, U2]◦τ̃ , and also the definition of the curvature of the singular connection
in the final equality.

We now compute the left hand side of equation (5.8) on the horizontal
vectors,

π∗
(K)

(〈
Φ̃, (τM/G ◦ p)∗B

〉)
((ũ1, 0), (ũ2, 0))

=
〈
[m, νm], (τM/G ◦ p)∗B(Tλπ(K)(ũ1, 0), Tλπ(K)(ũ2, 0))

〉

=
〈
[m, νm],B(Tmπ ◦ T(α[m],m)τ̃ ◦ TλπM̃ (ũ1, 0),

× (Tmπ ◦ T(α[m],m)τ̃ ◦ TλπM̃ (ũ2, 0))
〉

=
〈
νm,B(Tmπ ◦ T(α[m],m)τ̃(ũ1), Tmπ ◦ T(α[m],m)τ̃(ũ2))

〉

= 〈νm,B(Tmπ(u1), Tmπ(u2))〉 = 〈νm, B(u1, u2)〉 ,

agreeing with the right hand side.

Momentum. Momentum By definition of the form ω̃(K) we have, for
(0, v), (0, w) ∈ Tλ(M̃ × Õμ,(K)),

π∗
(K)

(〈
Φ̃, (τM/G ◦ p)∗B

〉
− ω̃(K)

)
((0, v), (0, w))

= −π∗
(K)ω̃(K)((0, v), (0, w))

= J∗
Õμ,(K)

ω+
Oμ

((0, v), (0, w))

=
(
d

〈
JÕμ,(K)

, Ã
〉

+ J∗
Õμ,(K)

ω+
Oμ

)
((0, v), (0, w)).

The first equality holds since Tλπ(K)(0, v) is in the kernel of T[λ]p. The second
equality holds by definition of the form ω̃(K) and last follows by extending
(0, v) and (0, w) to vector fields (0, V ), (0, W ) where V and W are vector
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fields on Õμ,(K) and then using the fact that the bracket of these fields is
just (0, [V, W ]).

Horizontal. Momentum On a pair of mixed vectors, both sides of equa-
tion (5.8) vanish since horizontal vector fields commute with momentum
vector fields. We have now proven equation (5.8), and therefore by equation
(5.4), the theorem follows. �

6. The Poisson stratification

In this section, we compute the Poisson stratification of the reduced Poisson
Sternberg space S = M̃ ×Gν∗, and we write down the reduced gauge bracket
on each of the Poisson strata.

Following the setup of Section 5, the G-equivariant symplectomorphim
φA descends to a stratified isomorphism φ̃A : S → (T ∗M)/G. Since S is a
quotient of a smooth manifold by a proper group action, it has a natural
stratification with strata S(K) = (M̃ × ν∗)(K)/G. Since M̃ is a single orbit
type manifold, the orbit types of the pre-quotiented space correspond to the
orbit types of the total space of the bundle ν∗, which were shown, in the
proof of Theorem 4.5, to be in one-to-one correspondence with the isotropy
lattice for the action H × h◦ → h◦. Therefore the strata of S are given by

S(K) = M̃ ×G ν∗
(K).

Moreover, since M̃ ×ν∗ is a symplectic manifold with symplectic structure
φ∗

AωM ,it follows from the general theory that the orbit type strata of S are
actually Poisson, the Poisson structure coming from singular reduction. The
symplectic leaves of these Poisson structures are exactly the manifolds M̃×G

Õμ,(K) equipped with the minimal coupling forms ω
Oμ,(K)
min of Theorem 7.

Instead of using the theory of singular reduction to compute the reduced
Poisson brackets on the strata S(K), in Theorem 8 we will postulate these
brackets and then verify that they actually produce the minimal symplectic
foliation of Theorem 7. By the uniqueness of the symplectic foliation of a
Poisson manifold it follows that the postulated brackets are actually the
reduced gauge Poisson brackets.

Theorem 6.1. Let s = [(α[x], x), μx] ∈ S(K), where without loss of generality
we have chosen Gx = H and Hμx = K. Let f, g ∈ C∞(S(K)). Then the
reduced Poisson structure on S(K) is given by

{f, g}S(K)(s) = ωM/G(α[x])
(
dS

Ãf(s)�,dS
Ãg(s)�

)

+
〈
[μx], B̃(α[x])(d

S
Ãf(s)�,dS

Ãg(s)�
〉

−
〈

μx,

[
δf

◦

δμ
,
g◦

δμ

]〉
,
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where the sharp operator in the first term is with respect to ωM/G and the
covariant derivative dS

Ã is computed using the singular connection as in
equation (2.1) for the regular case. In the second term, B̃ = τ∗

M/GB where B
is the reduced curvature of the singular connection, A. For the third term,
f is the restriction of f to the fiber of ν∗

(K)/G at [x], which is isomorphic

to h◦
(K)/H, and f

◦ is a H-invariant extension to g∗ of the lift of f to h◦
(K).

Note that the last term is simply a (−) homogeneous Lie-Poisson bracket

{f, g}(K)([μx])

on the fiber of ν∗
(K)/G at [x] as introduced in Section 3, in equation (3.1).

Proof. Since S(K) is Poisson, the theorem is proved if for any pair f, g ∈
C∞(S(K)) and s ∈ M̃ ×G Õμ,(K) ⊂ S(K), {f, g}S(K)(s) = ω

Oμ,(K)
min (Xf (s),

Xg(s)), where Xf , Xg are the Hamiltonian vector fields associated to the
restrictions of f and g to M̃ ×G Õμ,(K). Let U = O × R

n be a trivializing
neighborhood of T ∗(M/G) and shrink O and R

n if necessary so that S(K)

is trivialized over U like S
(K)
U = U × h◦

(K)/H. If xi, pi, i = 1, . . . , n are
bundle coordinates on U we will consider the family of functions xi, pi and
f ∈ C∞(h◦

(K)/H), whose differentials span the cotangent bundle of S(K) at

any point of S
(K)
U .

Let (x1, . . . , xn, g1, . . . , gk) be local coordinates on M over O and Al
i, i =

1, . . . , n+k, l = 1, . . . , k the components of the connection A. The local coor-
dinates {gl} on G are chosen in a way that A(∂gl) = ξl, where {ξ1, . . . , ξk}
is a basis for g for which, for r < k, {ξ1, . . . , ξr} is a basis for gx. Then the
horizontal lift of a local vector field ∂xi on O is ∂xi − Al

i∂gl .
Therefore, we have hors(∂xi) = ∂xi and hors(∂pi) = ∂pi . Consequently we

obtain

dS
Ãxi(s) = dxi

dS
Ãpi(s) = dpi

dS
Ãf(s) = 0

Since in this trivialization ωM/G is given by dxi ∧ dpi it follows that

dS
Ãxi(s)� = −∂pi

dS
Ãpi(s)� = ∂xi

dS
Ãf(s)� = 0.

Next, linear coordinates for g∗ with respect to the dual basis {ξ1, . . . , ξk}
are given by {μ1, . . . , μk}. Let Bα

ij , i, j = 1, . . . , n, α = r + 1, . . . , k be the
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local expression for the components of B, the reduced curvature of A. Then
the local expressions for the bracket in the statement of the theorem are
given by

{xi, pj}(s) = δi
j

{pi, pj}(s) = μαBα
ij , α = r + 1, . . . , k

{xi, xj}(s) = 0

{xi, f}(s) = 0

{pi, f}(s) = 0

{f, g}(s) = −
〈

μ,

[
∂f◦

∂μ
,
∂g◦

∂μ

]〉
.

(6.1)

This is easily checked to define a Poisson tensor. The only point that requires
a straightforward calculation is to check the Jacobi identity on a bracket of
type {pi, {pj , pk}}. But, since the singular curvature satisfies the Bianchi
identity (see Remark 4.8), it follows that the two-form 〈[μ],B〉 is closed
which implies Jacobi. Antisymmetry is implied by the antisymmetry of the
reduced curvature form.

Note that the last expression is nothing but the homogeneous Lie–Poisson
bracket of Section 3, and that it restricts on each momentum fiber of M̃ ×G

Õμ,(K) over T ∗(M/G) to the homogeneous reduced symplectic form in (3.2).
We now compute the Hamiltonian vector fields on a given typical sym-

plectic leaf M̃ ×G Õμ,(K) with respect to ω
Oμ,(K)
min , as well as the Poisson

structure on these leaves induced by ω
Oμ,(K)
min .

It easily follows from Theorem 5.6 that in our local coordinates,

ω
Oμ,(K)
min = dxi∧dpi−μαBα

ij dxi∧dxj +ω̃(K), i, j = 1, . . . , n, α = r+1, . . . k.

From here, we immediately obtain the associated Hamiltonian vector
fields

Xxi = −∂pi

Xpi = ∂xi − μαBα
ij∂pj

for i, j = 1, . . . , n, α = r + 1, . . . k. If f ∈ C∞(h◦
(K)/H), we denote also by

f its restriction to Oμ,(K)/H, the typical fiber of the fibration p : M̃ ×G

Õμ,(K) → T ∗(M/G). Then Xf is defined by

ω̃(K)(Xf , ·) = df.



48 M. PERLMUTTER AND M. RODRIGUEZ-OLMOS

From these local expressions it is now clear that

ω
Oμ,(K)
min (Xxi , Xxj ) = 0

ω
Oμ,(K)
min (Xxi , Xpj ) = δj

i

ω
Oμ,(K)
min (Xpi , Xpj ) = −μαBα

ji = μαBα
ij

ω
Oμ,(K)
min (Xxi , Xf ) = 0

ω
Oμ,(K)
min (Xpi , Xf ) = 0

ω
Oμ,(K)
min (Xf , Xg) = ω̃(K)(Xf , Xg) = {f, g}(K)|M̃×GÕμ,(K)

which agree with (6.1) by (3.1) and the discussion of Section 3. �
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