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NON-KÄHLER SOLVMANIFOLDS WITH GENERALIZED
KÄHLER STRUCTURE

Anna Fino and Adriano Tomassini

We construct a compact 6-dimensional solvmanifold endowed with
a non-trivial invariant generalized Kähler structure and which does not
admit any Kähler metric. This is in contrast with the case of nilman-
ifolds which cannot admit any invariant generalized Kähler structure
unless they are tori.

1. Introduction

The generalized Kähler structures were introduced and studied by Gualtieri
in his PhD thesis [16] in the more general context of generalized geometry
started by Hitchin in [20].

There are many explicit constructions of non-trivial generalized-Kähler
structures [1, 2, 4, 7, 21, 24, 25]. For instance Gualtieri proved that all
compact-even dimensional semisimple Lie groups are generalized Kähler.
In [25], the generalized Kähler quotient construction is considered in rela-
tion with the hyperkähler quotient construction and generalized Kähler
structures are given on CP

n, on some toric varieties and on the complex
Grassmannian.

Some obstructions and conditions on the underlying complex manifolds
were found (see [2, 5, 16] and related references).

By [2, 16] it turns out that a generalized Kähler structure on a
2n-dimensional manifold M is equivalent to a pair of Hermitian structures
(J+, g) and (J−, g), where J± are two integrable almost complex struc-
tures on M and g is a Hermitian metric with respect to J±, such that the
3-form H = dc

+F+ = −dc
−F− is closed, where F±(·, ·) = g(J±·, ·) are the

fundamental 2-forms associated with the Hermitian structures (J±, g) and
dc

± = i(∂± − ∂±). In particular, any Kähler metric (J, g) gives rise to a
generalized Kähler structure by taking J+ = J and J− = ±J .

In the context of Hermitian geometry, the closed 3-form H is called the
torsion of the generalized Kähler structure and it can be also identified with
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the torsion of the Bismut connection associated with the Hermitian structure
(J±, g) (see [3, 14]). The generalized Kähler structure is called untwisted
or twisted according to the fact that the cohomology class [H] ∈ H3(M, R)
vanishes or not. In this paper we will give a homogeneous example of twisted
generalized Kähler manifold which does not admit any Kähler structure.

If (J±, g) is a generalized Kähler structure, then the fundamental 2-forms
F± are ∂±∂±-closed. Therefore, the Hermitian structures (J±, g) are strong
Kähler with torsion (SKT). Such structures have been studied by many
authors in [9, 11, 15, 23, 30].

In dimension 4 a Hermitian metric g which satisfies the SKT condition
is standard in the terminology of Gauduchon [13] and if, in addition, M is
compact, then any Hermitian conformal class contains a standard metric.
Compact examples in six dimensions are given in [11] where the Hermitian
manifolds are provided by nilmanifolds, i.e. compact quotients of nilpotent
Lie groups endowed with a Hermitian structure (J, g) in which J and g arise
from left-invariant tensors. In [5] it was proved that these manifolds can-
not admit an invariant generalized Kähler structure, since they are not for-
mal unless they are tori. Nevertheless, all 6-dimensional nilmanifolds admit
invariant generalized complex structures [6].

No general restrictions are known in the case of solvmanifolds, i.e., on
compact quotients of solvable Lie groups by uniform discrete subgroups.
By [18] a solvmanifold has a Kähler structure if and only it is covered by
a complex torus which has a structure of a complex torus bundle over a
complex torus.

As far as we know, the only known solvmanifold carrying a general-
ized Kähler structure is the Inoue surface. In [2] the complex solvmanifold
from [8] was considered and it was shown that this manifold does not admit
any left-invariant SKT metric compatible with the natural left-invariant
complex structure.

Other examples are given in [9], where the SKT metrics are called pluri-
closed in its terminology. By [10] there are compact complex manifolds
of dimension higher than four which do no admit any SKT Hermitian
metric.

In [2], generalized Kähler structures for which the corresponding com-
plex structures J± commute are studied and a classification of compact
4-dimensional endowed with a generalized Kähler structure for which the
induced complex structures yield opposite orientations is obtained. By [2],
if J+ and J− commute, then the product J+J− is an involution of TM
and the tangent bundle splits as TM = T−M ⊕ T+M direct sum of the
±1-eigenspaces of the involution. By their result, the holomorphic tangent
bundle of a compact complex surface (M4, J) admitting a generalized Kähler
structure splits as a direct sum of two holomorphic sub-bundles and (M4, J)
is bi-holomorphic to one of the following:
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(1) a geometrically ruled surface;
(2) a bi-elliptic complex surface;
(3) a compact complex surface of Kodaira dimension 1 and even first

Betti number;
(4) a compact complex surface of general type;
(5) a Hopf surface;
(6) an Inoue surface in the family constructed in [22].

Moreover, in relation to the distinction between untwisted and twisted
generalized Kähler structures, they prove that untwisted generalized Kähler
structures on compact 4-dimensional manifolds may exist only if the first
Betti number is even and in the twisted case the first Betti number must
be odd.

The Inoue surface S0 can be viewed also as the quotient H×C/GM , where
H is the upper-half of the complex plane C and GM is a group of analytic
automorphisms of H×C (see [22, 32]). The complex surface S0 can be also
obtained as a 4-dimensional solvmanifold [17]. Moreover, since by Hattori’s
theorem [19] its de Rham cohomology is given by the invariant one, it is
easy to check that S0 is formal.

Generalizing the description of the Inoue surface S0 as solvmanifold, in
Section 3, we will construct a compact 6-dimensional manifold with a twisted
generalized Kähler structure. The 6-dimensional manifold is a solvmanifold,
a compact quotient of a non-completely solvable Lie group and the general-
ized Kahler structure is left-invariant. Such a manifold does not admit any
Kähler structure since its first Betti number is one and it is a total space
of a T

2-bundle over the Inoue surface. The construction can be extended in
any even dimension bigger than six.

Moreover, in the last section, we give an example of a non-unimodular
6-dimensional Lie group endowed with a generalized Kähler structure. The
corresponding Hermitian structures (J±, g) are locally conformal Kähler.

2. Preliminaries

In this section, we briefly recall the definition of generalized complex and
Kähler structures, following [2, 5, 16, 20]. Let M be an m-dimensional
manifold. Denote by TM and T ∗M the tangent and cotangent bundle of
M , respectively.

Let H be a closed 3-form on M ; the (twisted) Courant bracket on the
sections of TM ⊕ T ∗M is defined by

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ − 1
2
d(η(X) − ξ(Y )) + ιY ιXH,

where LX and ιX denote, respectively, the Lie derivative and the contraction
by X.
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On TM ⊕ T ∗M a natural symmetric pairing of signature (m, m) is
given by:

(2.1) 〈X + ξ, Y + η〉 =
1
2
(η(X) + ξ(Y )).

A generalized complex structure J on (M, H) is a complex structure on
the bundle TM ⊕ T ∗M which preserves the pairing and whose i-eigenspace
L is involutive with respect to the Courant bracket.

A generalized complex structure J can be also viewed as an element of
the orthogonal Lie algebra so(TM ⊕ T ∗M) and thus, with respect to the
splitting

so(TM ⊕ T ∗M) = Λ2TM ⊕ End(TM) ⊕ Λ2T ∗M,

it can be written as the block matrix

J =
(

A π
σ A

)
,

where π is a bi-vector field, A an endomorphism of TM and σ a 2-form.
For H = 0, examples of generalized complex structures are given by com-

plex and symplectic structures. In the case of a complex manifold, the i-
eigenspace is given by L = T 0,1M ⊕ T ∗1,0M and in the symplectic case
L = {X − iιXω, X ∈ TCM}, where ω is the symplectic form on M . In the
block matrix form we may write:

JJ =
(

−J 0
0 J∗

)
, Jω =

(
0 −ω−1

ω 0

)
.

A generalized Kähler structure on a 2n-dimensional manifold M is a pair
of commuting generalized complex structures (J1,J2) on M which satisfy
the following conditions:

(i) J1 and J2 are integrable with respect to the (twisted) Courant bracket
on TM⊕T ∗M and they are compatible with the natural inner product
〈·, ·〉 of signature (2n, 2n) on TM ⊕ T ∗M given by (2.1);

(ii) the quadratic form 〈J1·,J2·〉 is definite on TM ⊕ T ∗M .
By [2, 16] it turns out that a generalized Kähler structure on a manifold

M is equivalent to a triple (J+, J−, g), where J± are two integrable almost
complex structures on M and g is a Hermitian metric with respect to J±,
which satisfy the equations:

(2.2) dcF+ + dc
−F− = 0, d(dc

+F+) = 0, d(dc
−F−) = 0,

where F±(·, ·) = g(J±·, ·) are the fundamental 2-forms associated with the
Hermitian structures (J±, g) and dc

± = i(∂± − ∂±) = (−1)rJ±dJ±. These
conditions are equivalent to

(2.3) J+dF+ + J−dF− = 0, d(J+dF+) = 0, d(J−dF−) = 0,
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and in physics they appear in the target space geometry for a (2, 2) super-
symmetric sigma model (see, e.g., [12]).

A trivial solution of equation (2.2) is given by a Kähler structure (g, J)
on M , by taking J+ = J and J− = ±J . So the interesting case is when
J− �= ±J+, i.e., when the generalized Kähler structure does not arise from
a Kähler structure.

By (2.2), the fundamental 2-forms F± are ∂±∂±-closed. In general, a Her-
mitian structure (J, g, F ) is called a strong Kähler structure with torsion
(SKT) if ∂∂F = 0 and a Kähler structure satisfies this condition.

3. Compact example

In this section, we will describe explicitly a compact 6-dimensional example
of generalized Kähler manifold.

Consider the 2-step solvable Lie algebra sa,b with structure equations:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = ae1 ∧ e2,

de2 = 0,

de3 =
1
2
ae2 ∧ e3,

de4 =
1
2
ae2 ∧ e4,

de5 = be2 ∧ e6,

de6 = −be2 ∧ e5,

where a, b are non-zero real numbers. Let Sa,b be the simply connected solv-
able Lie group with Lie algebra sa,b and (t, x1, x2, x3, x4, x5) be global coor-
dinates on R

6. Then the Lie group Sa,b can be described using the following
product:

(3.2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t′

x′
1

x′
2

x′
3

x′
4

x′
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t + t′

e−atx′
1 + x1

e
a
2 tx′

2 + x2

e
a
2 tx′

3 + x3

x′
4 cos(bt) − x′

5 sin(bt) + x4

x′
4 sin(bt) + x′

5 cos(bt) + x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the 1-forms

e1 = eatdx1, e2 = dt, e3 = e− a
2 tdx2, e4 = e− a

2 tdx3,

e5 = cos(bt)dx4 + sin(bt)dx5, e6 = − sin(bt)dx4 + cos(bt)dx5.
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are left-invariant on Sa,b and they satisfy the structure equations (3.1). It
turns out that Sa,b is a unimodular semidirect product

R �ϕ (R × R
2 × R

2),

where ϕ = (ϕ1, ϕ2) is the diagonal action of R on R×R
2×R

2, given by (3.2).
We start with the following.

Lemma 3.1. The solvable Lie group S1, π
2

(corresponding to a = 1, b = π
2 )

admits a compact quotient M6 = S1, π
2
/Γ.

Proof. In order to construct a uniform discrete subgroup of S1, π
2
, we will

proceed as follows. The 4-dimensional solvable Lie group R �ϕ1 (R × R
2)

with structure equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = e1 ∧ e2,

de2 = 0,

de3 =
1
2
e2 ∧ e3,

de4 =
1
2
e2 ∧ e4,

admits a compact quotient by a uniform discrete subgroup of the form
Γ1 = Z �ϕ1 Z

3, since it can be identified with the Inoue surface M4 of
type S0 [22], described as in [17, 32]. More precisely, the action ϕ1 can be
given by assigning a matrix ϕ1(1) = (mjk) ∈ SL(3, Z), with two conjugate
eigenvalues α, α and a irrational eigenvalue c > 1 such that |α|2c = 1 and
considering the product on R � (R × C) defined by

(t, u, z) · (t′, u′, z′) = (t + t′, ctu′ + u, αtz′ + z), t, t′, u, u′ ∈ R, z, z′ ∈ C.

If we denote by (α1, α2, α3) an eigenvector corresponding to α and by
(c1, c2, c3) a real eigenvector corresponding to c, then Γ1 is generated by

h0 : (t, u, z) �−→ (t + 1, cu, αz),

hj : (t, u, z) �−→ (t, u + cj , z + αj), j = 1, 2, 3.

The vectors (cj , αj), j = 1, 2, 3 are linearly independent over R and

(3.3) (ccj , ααj) =
3∑

k=1

mjk
(ck, αk),

for any j = 1, 2, 3.
The 3-dimensional solvable Lie group R � R

2 with structure equations⎧⎪⎨
⎪⎩

de2 = 0,

de5 = 2πe2 ∧ e6,

de6 = −2πe2 ∧ e5,
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is a non-completely solvable Lie group which admits a compact quotient
and the uniform discrete subgroup is of the form Γ2 = Z � Z

2 (see [31,
Theorem 1.9; 26]). Indeed, the Lie group R � R

2 is the group of matrices⎛
⎜⎜⎝

cos(2πt) sin(2πt) 0 x
− sin(2πt) cos(2πt) 0 y

0 0 1 t
0 0 0 1

⎞
⎟⎟⎠

and a lattice Γ2 is generated by:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(

2πn

p

)
sin

(
2πn

p

)
0 x

− sin
(

2πn

p

)
cos

(
2πn

p

)
0 y

0 0 1
n

p

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎝

1 0 0 u1
0 1 0 v1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1 0 0 u1
0 1 0 v1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

where n is an integer, p = 2, 3, 4, 6 and

det
(

u1 v1
u2 v2

)
�= 0.

Therefore, S1, π
2

is isomorphic to (R6 = R � (R × C × C), ∗), where the
product ∗ is given by

(t, u, z, w) ∗ (t′, u′, z′, w′) = (t + t′, ctu′ + u, αtz′ + z, ei π
2 tw′ + w),

for any t, u, t′, u′ ∈ R, z, w, z′, w′ ∈ C.
Then, a uniform discrete subgroup Γ ∼= Z� (Z3 ×Z

2) of S1, π
2

is the group
generated by the transformations

g0 : (t, u, z, w) �−→ (t + 1, cu, αz, iw),

gj : (t, u, z, w) �−→ (t, u + cj , z + αj , w), j = 1, 2, 3,

g4 : (t, u, z, w) �−→ (t, u, z, w + 1),

g5 : (t, u, z, w) �−→ (t, u, z, w + i).

(3.4)

Indeed, Γ is a closed subgroup of S1, π
2

and the action of Γ on S1, π
2

is properly
discontinuous and without fixed points. The compactness of the quotient can
be checked. �

According to the Mostow structure theorem (see [28]), the solvmanifold
M6 can be fibered over S1 with fiber a 5-dimensional torus T

5, since the
maximal connected nilpotent subgroup is the abelian Lie group N whose
Lie algebra is spanned by (e1, e3, e4, e5, e6), where (e1, . . . , e6) denotes the
dual frame of (e1, . . . , e6).
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Proposition 3.2. The compact manifold M6 = S1, π
2
/Γ is the total space of

a T
2-bundle over the Inoue surface and b1(M6) = 1.

Proof. Since Γ ∩ (R � (R × C × C), ∗) is a uniform discrete subgroup of
(R � (R × C), ·), the map

π : R � (R × C × C) → R � (R × C),

(t, u, z, w) �−→ (t, u, z),

gives a fibration
π : M6 → M4,

with fibre T
2.

By (3.3) and (3.4), the generators of Γ satisfy the following relations:

gjgk = gkgj , ∀j, k = 1, . . . , 5.

Moreover,

[g0, gj ] = g0gjg
−1
0 g−1

j : (t, u, z, w) �−→ (t, u − cj + ccj , z − αj + ααj , w),
j = 1, 2, 3,

[g0, g4] = g0g4g
−1
0 g−1

4 : (t, u, z, w) �−→ (t, u, z, w − 1 + i),

[g0, g5] = g0g5g
−1
0 g−1

5 : (t, u, z, w) �−→ (t, u, z, w − 1 − i)

and the other commutators [gj , gk], for any j, k = 1, . . . , 5 are trivial. Hence,

[g0, gj ] = g
mj1
1 g

mj2
2 g

mj3
3 g−1

j , j = 1, 2, 3,

[g0, g4] = g4
−1g5,

[g0, g5] = g4
−1g5

−1.

Since Γ is 2-step solvable, it follows that [Γ, Γ] is a torsion-free abelian sub-
group of Γ and the rank of [Γ, Γ] is 5. By definition (see [29])

rankΓ = rankΓ/[Γ, Γ] + rank[Γ, Γ];

therefore
Γ/[Γ, Γ] ∼= Z

and consequently b1(M6) = 1. �
Remark 3.3. It has to be noted that we cannot apply Hattori’s theorem [19]
to compute the de Rham cohomology of the solvmanifold M6 since the group
S1, π

2
is non-completely solvable.

As a direct consequence we obtain the following.

Corollary 3.4. M6 does not admit any Kähler metric.

Now we can prove our main result:

Theorem 3.5. The compact manifold M6 = S1, π
2
/Γ carries a left-invariant

(non-trivial) twisted generalized Kähler structure.
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Proof. First of all we define the two almost complex structures J±, by setting

ω1
+ = e1 + ie2, ω2

+ = e3 + ie4, ω3
+ = e5 + ie6,

ω1
− = e1 − ie2, ω2

− = e3 + ie4, ω3
− = e5 + ie6.

Then by definition (ω1
±, ω2

±, ω3
±) are the (1, 0)-forms associated with J±. The

almost complex structures J± are both integrable. Indeed:

dω1
+ =

i

2
ω1

+ ∧ ω1
+,

dω2
+ = − i

4
(ω1

+ ∧ ω2
+ + ω2

+ ∧ ω1
+),

dω3
+ = −π

4
(ω1

+ ∧ ω3
+ + ω3

+ ∧ ω1
+),

and

dω1
− = − i

2
ω1

− ∧ ω1
−,

dω2
− =

i

4
(ω1

− ∧ ω2
− + ω2

− ∧ ω1
−)

dω3
− =

π

4
(ω1

− ∧ ω3
− + ω3

− ∧ ω1
−).

Moreover, it is easy to see that J± commute and J− �= −J+. Consider the
Riemannian metric g defined by

(3.5) g =
6∑

i=1

ei ⊗ ei.

Thus g is J±-Hermitian. Denote by F± the fundamental 2-form associated
with the Hermitian structures (J±, g); by a direct computation, we have

J+dF+ = −e1 ∧ e3 ∧ e4 = −J−dF−.

Since e1 ∧ e3 ∧ e4 is a closed and non-exact 3-form, the conditions (2.3) are
satisfied and (J±, g) define a non-trivial left-invariant twisted generalized
Kähler structure on M6 = S/Γ. �

The metric g given by (3.5) is not flat since the Ricci tensor is diagonal,
with the only non-vanishing component Ric(e2, e2) = −3

2 and the Hermitian
structures (J±, g) are not locally conformally Kähler since

dF± = e2 ∧ e3 ∧ e4.

Remark 3.6. The previous construction can be extended in order to get
a non-trivial generalized Kähler on a T

2n-bundle over the Inoue surface, by
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considering the 2-step solvable Lie algebra

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = ae1 ∧ e2,

de2 = 0,

de3 =
1
2
ae2 ∧ e3,

de4 =
1
2
ae2 ∧ e4,

de2k+3 = be2 ∧ e2k+4,

de2k+4 = −be2 ∧ e2k+3, k = 1, . . . , n,

with a = 1 and b = π
2 .

The two integrable complex structures J± are given by setting

ω1
+ = e1 + ie2, ω2

+ = e3 + ie4, ωk+2
+ = e2k+3 + ie2k+4,

ω1
− = e1 − ie2, ω2

− = e3 + ie4, ωk+2
− = e2k+3 + ie2k+4,

as the associated (1, 0)-forms.

4. Non-compact homogeneous example

In this section, we construct a non-compact homogeneous example of
6-dimensional Lie group endowed with a non-trivial generalized Kähler
structure.

Let l be the Lie algebra with structure equations:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

df1 = f1 ∧ f2,

df2 = 0,

df3 =
1
2
f2 ∧ f3,

de4 =
1
2
f2 ∧ f4,

df5 =
1
2
f2 ∧ f5,

df6 =
1
2
f2 ∧ f6,

and L be the simply-connected Lie group with Lie algebra l.
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The Lie group L can be described using the following product on R
6 with

global coordinates (t, y1, y2, y3, y4, y5):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

y1

y2

y3

y4

y5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t′

y′
1

y′
2

y′
3

y′
4

y′
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t + t′

ety′
1 + y1

e
1
2 ty′

2 + y2

e
1
2 ty′

3 + y3

e
1
2 ty′

4 + y4

e
1
2 ty′

5 + y5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The 1-forms

f1 = e−tdx1, f2 = dt, f3 = e− 1
2 tdy2,

f4 = e− 1
2 tdy3, f5 = e− 1

2 tdy4, f6 = e− 1
2 tdy5

are left-invariant on L and L is a 2-step completely solvable Lie group.
Moreover, L is not-unimodular and consequently by [27] it does not admit
any compact quotient.

Proposition 4.1. The Lie group L admits a left-invariant (non-trivial)
generalized Kähler structure.

Proof. Consider the two almost complex structures J±, whose (1, 0)-forms
are given by

θ1
+ = f1 + if2, θ2

+ = f3 + if4, θ3
+ = f5 + if6,

θ1
− = f1 − if2, θ2

− = f3 + if4, θ3
− = f5 + if6.

We have

dθ1
+ =

i

2
θ1
+ ∧ θ

1
+,

dθ2
+ = − i

4
(θ1

+ ∧ θ2
+ + θ2

+ ∧ θ
1
+),

dθ3
+ = − i

4
(θ1

+ ∧ θ3
+ + θ3

+ ∧ θ
1
+)

and

dθ1
− = − i

2
θ1
− ∧ θ

1
−,

dθ2
− =

i

4
(θ1

− ∧ θ2
− + θ2

− ∧ θ
1
−),

dθ3
− =

i

4
(θ1

− ∧ θ3
− + θ3

− ∧ θ
1
−).
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Then, J± are both integrable, commute and J− �= −J+. The Riemannian
metric

g =
6∑

i=1

f i ⊗ f i

is J±-Hermitian and

J+dF+ = −f1 ∧ f3 ∧ f4 − f1 ∧ f5 ∧ f6 = −J−dF−,

where F± the fundamental 2-form associated with the Hermitian structures
(J±, g); since f1∧f3∧f4+f1∧f5∧f6 is a closed 3-form, the conditions (2.3)
are satisfied and (J±, g) define a non-trivial left-invariant generalized Kähler
structure on L. �

The Ricci tensor is diagonal and given by

Ric(g) = f1 ⊗ f1 − 2f2 ⊗ f2 − 1
2

6∑
j=3

f j ⊗ f j ,

hence the metric g is not flat. Furthermore, in contrast with the previous
example, the Hermitian structures (J±, g) are locally conformally Kähler
since

dF± = f2 ∧ F±.
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