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THE COBORDISM CLASS OF THE MODULI SPACE
OF POLYGONS IN R

3

Alessia Mandini

For any vector r = (r1, . . . , rn), let Mr denote the moduli space
(under rigid motions) of polygons in R

3 with n-sides whose lengths
are r1, . . . , rn. We give an explicit characterization of the oriented S1-
cobordism class of Mr which depends uniquely on the length vector r.

1. Introduction

The study of the geometry of moduli spaces of polygons with fixed side
lengths r1, . . . , rn in the Euclidean space has raised, since the 1990s, a
remarkable interest in symplectic geometry. These moduli spaces have a
very rich structure; they can be described (in two possible ways) as sym-
plectic quotients: see for example [1] where Kapovich and Millson show
that these spaces are complex-analytic spaces and they define and study the
Hamiltonian flows on Mr obtained by bending polygons along diagonals.
Another description of Mr as a symplectic reduction is given by Hausmann
and Knutson [2], who also give a useful geometric interpretation of the bend-
ing action.

Let Sr =
∏n

j=1 S2
rj

be the product of n spheres of radii r1, . . . , rn respec-
tively; Sr is a symplectic manifold and a Hamiltonian SO(3)-space with
associated moment map

μ : Sr −→ Lie(SO(3))∗ � R
3

�e = (e1, . . . , en) �−→ e1 + · · · + en.

For a (suitably chosen) length vector r = (r1, . . . , rn) ∈ R
n
+ the symplectic

quotient Sr//SO(3) at the 0-level set is a smooth manifold, and it is defined
to be the moduli space Mr [1]. Note that the condition μ(�e) = 0 is the
closing condition for a polygon with edge vectors e1, . . . , en starting at an
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arbitrary base-point. Thus Mr can be identified with the set of polygons in
R

3, with n sides of lengths r1, . . . , rn, modulo rigid motions.
Mr can also be described as the symplectic reduction for the natural action

of the torus Un
1 , of diagonal matrices in the unitary group Un, on the complex

Grassmannian of 2-planes Gr2(Cn) [2]; the moment map μ
Un

1
: Gr2,n → R

n

associated to this Hamiltonian action maps the plane 〈a, b〉 generated by the
orthonormal vectors a, b ∈ C

n into μ
Un

1
(〈a, b〉) = (|a1|2 + |b1|2, . . . , |an|2 +

|bn|2). Then Mr is the topological quotient μ−1
Un

1
(r)/Un

1 .

The main result of this paper (Theorem 1.2) is an explicit characterization
of the oriented S1-cobordism class of Mr which depends uniquely upon a
special family of index sets defined as follows:

Definition 1.1. For each index set I ⊂ {1, . . . , n − 2} let εi = 1 if i ∈ I
and εi = −1 if i ∈ Ic := {1, . . . , n − 2} \ I. An index set I is said to be
r-admissible (or triangular, as in [3]) if and only if the following inequalities
hold:

(1.1)

⎧
⎪⎨

⎪⎩

∑
εiri + rn−1 − rn > 0

∑
εiri − rn−1 + rn > 0

−
∑

εiri + rn−1 + rn > 0.

We denote by Ir the set of all r-admissible I. Moreover, if M is a smooth
oriented manifold, we will denote by −M the same manifold with opposite
orientation and by 	 the disjoint union (or topological sum) of smooth
manifolds.

Theorem 1.2. Let r ∈ R
n
+ be such that Mr is a smooth manifold and there

exists i, j ∈ {1, . . . , n} such that ri 
= rj . Then the following oriented S1-
cobordism holds

Mr ∼
∐

I∈Ir
�=|I|

(−1)n−�
CP

n−3,

where Mr carries the bending action associated to ri and rj and the projective
spaces CP

n−3 carry the standard projective S1-action. In particular Mr ∼ 0
if n is even.

The projective S1-action we consider on CP
n−3 is given by

θ · [z1 : . . . : zn−2] = [eiθz1 : . . . : eiθzn−3 : zn−2].

This can be explained going briefly trough the proof the S1-equivariant
cobordism Theorem 3.1, of which ours is an application. We postpone this
to Remark 1.

The bending action has been studied by Kapovich and Millson [1] (see also
the earlier paper by Klyachko [4]) and is described in detail in Section 2.1.
The geometrical idea underlying its construction is the following: let P be a
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n-gon and μk its kth diagonal, i.e., μk = e1+ · · ·+ek+1. Consider the surface
S bounded by P ; S is the union of the triangles Δ1, . . . ,Δn where Δj has
edges μj−1, ej+1, μj . Each (non-zero) diagonal breaks S in two pieces, S′

and S′′, S′ being the union of Δ1, . . . ,Δk and S′′ the union of the remaining
ones. The bending action along the kth diagonal is the S1-action which
bends S′ along μk and let S′′ fixed.

The bending along a diagonal μk defines an S1-action on the whole Mr

when μk(P ) 
= 0 for all P ∈ Mr, see Section 2.1. The proof of Theorem 1.2
takes in consideration the bending along the last diagonal μ(n−3), which has
never length 0 if rn−1 
= rn. Since Mr is symplectomorphic to Mσ(r) for any
permutation σ on the n edges, we can refer to this situation anytime there
exists i, j ∈ {1, . . . , n} such that ri 
= rj . By bending action associated to ri

and rj we mean the well defined S1-action of bending along μ(n−3) in Mσ(r),
where σ is any permutation that takes ri and rj in the last two positions.

Note that if ri = rj for all i, j ∈ {1, . . . , n} (equilateral case) it is not
possible to define an S1-action on the whole Mr by bending. Still it is
enough to perturb the edges, for example considering (r1, . . . , r1 + ε) for
arbitrary small ε, and Theorem 1.2 applies. For equilateral n-gons, for n odd,
Kamiyama [5] proved a cobordism result using different techniques (note
that the equilateral case for even number of edges is always degenerate).

Precisely, he proves that M(1,...,1) is cobordant to (−1)m+1
(2m−1

m

)
CP

2m−2,
where the number of edges is n = 2m + 1. Applying Theorem 1.2 to
M(1,...,1,1+ε) and formally taking the limit for ε → 0, one recovers Kamiyama
result. In fact, in the equilateral case Ir = {I ⊂ {1, . . . , n − 2} | |I| = n−1

2 },

so the orientation of each projective space in Theorem 1.2 is (−1)n− n−1
2 =

(−1)m+1. Moreover, |Ir| =
(n−2

n−1
2

)
=

(2m−1
m

)
.

The proof of Theorem 1.2 is based on cobordism results presented by
Ginzburg et al. [6, 7]. They show that if M is a smooth oriented 2d-
dimensional manifold endowed with a semi-free S1-action, then the S1-
oriented cobordism class of M depends only on the fixed point set (M)S1

.
Precisely, (finitely many) isolated fixed points contribute to the cobordism
class of M with a copy each of the complex projective space ±CP

d; each k-
codimensional submanifold Xk of fixed points, k = 1, . . . , N contributes to

the cobordism class of M with the total space Bk of a fibration Bk
CP

k
��Xk

over Xk with fiber CP
k.

Remark 1. For finitely many isolated fixed points the proof in [6] involves
some surgery on M × C. On M × C there are the diagonal S1-action given
by θ · (p, z) = (θ · p, eiθz) for any θ ∈ S1, p ∈ M, z ∈ C, and the trivial
extension of the S1-action on M, i.e., θ ·(p, z) = (θ ·p, z). Fixed points by the
diagonal S1-action are couples (p, 0) where p is fixed for the given S1-action
on M. The surgery in [6] consists of cutting away the set {(p, z) | |z| ≥ 1}
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and (S1-invariant) open balls Uk around the fixed points (pk, 0). One can
identify the tangent space to (pk, 0) with C

d+1, turning the S1-action on
M into the S1-action on C

d of multiplication by eiθ. Via this identification,
Uk is {z | ‖z‖ < ε} ⊂ C

d+1 and gives rise to a projective space CP
d when

taking the quotient by the diagonal S1-action. Still, the two S1-actions
described above commute and therefore the trivial extension of the action
on M descends to the quotient, acting on CP

d by θ · [z1 : . . . : zd+1] = [eiθz1 :
. . . : eiθzd : zd+1]. Note also that the isomorphism T(p,0)(M × C) � C

d+1

respects the orientations if the isotropy weights are +1, and in this case CP
d

comes equipped with the standard orientation (associated to the Fubini–
Study symplectic form). If some of the weights are −1 then the orientation
of the associated projective space depends upon the weights, and this is
essentially what we compute in this paper.

The S1-action of bending along a proper (i.e., not an edge) diagonal is
a quasi-free S1-action on Mr and satisfies the hypothesis of the cobordism
theorems just described. The proof of Theorem 1.2 is based on the idea,
of Migliorini and Reznikov, to analyze the fixed point set of the bending
action to calculate the cobordism class of Mr. Precisely, we first show that
submanifolds of fixed points do not contribute to the cobordism class of Mr.
Then only the isolated fixed points are relevant to determine the class of Mr,
and the proof continues with a thorough analysis of the orientation induced
from the infinitesimal generator of the bending action on the CP

d associated
to each fixed point. While writing the paper the author was made aware
of [8] and acknowledges that the computation of the orientation of these
projective spaces might equivalently have been done applying results therein.

The layout of the paper is as follows: we first define the moduli space
of polygons, both as a symplectic reduction of a product of spheres (cf.
Section 2) and of the Grassmannian (cf. Section 2.2). Also in Section 2.1
we recall some important facts on the bending action. Then we define the
Hamiltonian cobordism class that we are studying and state the results on
which our proof is based (see Section 3.1). Finally, in Section 3.2, we give
the proof of our main theorem. In Section 4 we analyze in detail the case
n = 5, giving an example for each cobordism type.

2. The moduli space of polygons

An n-gon P in the Euclidean space E
3 is determined by its n vertices

v1, . . . , vn joined by the oriented edges ej = vj+1 − vj (en = v1 − vn). A
polygon is said to be degenerate if it lies on a line. Let Pn be the space of
all n-gons in E

3: two polygons P = (v1, . . . , vn) and Q = (w1, . . . , wn) are
identified if there exists an orientation preserving isometry g of E

3 such that
g(vi) = wi for 1 ≤ i ≤ n. For r = (r1, . . . , rn) ∈ R

n
+, the moduli space Mr is
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defined to be the space of n-gons with fixed side lengths r1, . . . , rn modulo
isometries as above.

The group R+ acts on Pn by scaling and this induces an isomorphism
Mr

∼= Mλr for each λ in R+. Moreover, the group Sn of permutations on
n elements acts on Pn by permuting the order of the edges, inducing an
isomorphism between Mr and Mσ(r) for each σ ∈ Sn.

Let S2
t be the sphere in R

3 of radius t and center the origin. For r =
(r1, . . . , rn) ∈ R

n
+, the product Sr =

∏n
j=1 S2

rj
of n copies of spheres is

a smooth manifold which can be endowed with a symplectic structure: if
pj : Sr → S2

rj
is the projection on the jth factor and ωj is the volume form

on the sphere S2
rj

, then the 2-form ω =
∑n

j=1
1
rj

p∗
jωj on Sr is closed and

non-degenerate and (Sr, ω) is a symplectic manifold. The group SO(3) acts
diagonally on Sr or, equivalently, identifying the sphere S2

rj
with a SO(3)-

coadjoint orbit, the SO(3)-action on each sphere is the coadjoint one. The
choice of an invariant inner product on the Lie algebra so(3) of SO(3) induces
an identification so(3)∗ � R

3 between the dual of so(3) and R
3. So, on each

single sphere S2
rj

, the moment map associated to the coadjoint action is the
inclusion of S2

rj
in R

3. It follows that the diagonal action of SO(3) on Sr is
still Hamiltonian and, by linearity, it has moment map

μ : Sr −→ R
3

�e = (e1, . . . , en) �−→ e1 + · · · + en.

The level set μ−1(0) := M̃r = {�e = (e1, . . . , en) ∈ Sr :
∑n

i=1 ei = 0} is a
submanifold of Sr because 0 is a regular value for μ.

Intuitively, if we think at the ej ’s as edges of a “broken line” P starting
at some point in R

3, then the condition
∑n

i=1 ei = 0 is the closing condition
for P making it a polygon in R

3. Thus the topological quotient M̃r/SO(3) is
the moduli space Mr of n-gons of fixed side lengths r modulo rigid motions
and Mr is realized as the symplectic quotient Sr// SO(3).

Kapovich and Millson ([1]) proved that Mr is a smooth manifold if and
only if the vector of lengths r does not admit degenerate polygons. Note
that the existence of degenerate polygons in Mr translates into the existence
of a partition I1 = {i1, . . . , is} and I2 = {is+1, . . . , in} of {1, . . . , n} such that
ri1 + · · · + ris − ris+1 − · · · − rin = 0, and thus it is actually a condition on
the lengths ri.

If r ∈ R
n
+ is such that in Mr there exist polygons on a line, then Mr

has singularities, which have been studied by Kapovich and Millson in [1].
Precisely, they proved that Mr is a complex analytic space with isolated
singularities corresponding to the degenerate n-gons in Mr, and these sin-
gularities are equivalent’ to homogeneous quadratic cones.
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Remark 2. Observe that for �e ∈ M̃r and and u, v ∈ T�eM̃r, the formulas

〈u, v〉 =
n∑

j=1

1
rj

〈uj , vj〉S , ω(u, v) =
n∑

j=1

〈
ej

r2
j

, uj ∧ vj

〉

S

,

J(u) =
(

. . . ,
ej

rj
∧ uj , . . .

)

(where 〈, 〉S is the standard scalar product in R
3) are SO(3)-invariant, and

determine an inner product 〈, 〉, a symplectic form ω, and a complex struc-
ture J on Mr.

2.1. The bending action. In this section, we describe bending flows intro-
duced by Kapovich and Millson in [1]. For each �e = (e1, . . . , en) ∈ M̃r let
μk(�e) := μk be its kth diagonal. The function fk(�e) = 1

2‖μk‖2 is SO(3)-
invariant, and it will be identified with the function it induces on the quo-
tient space Mr. From now on the construction will depend only formally
on the representative of the classes, and SO(3)-invariance should be kept in
mind. The bending flow around the kth diagonal is the Hamiltonian flow
ϕt

k of the Hamiltonian vector field Hfk

Hfk
(e1, . . . , en) = (μk ∧ e1, . . . , μk ∧ ek+1, 0, . . . , 0)

associated to the function fk.
In [1] Kapovich and Millson prove that ϕt

k maps a polygon P of edges
e1, . . . , en into the polygon ϕt

k(P ) of edges e1(t), . . . , en(t), where
{

ei(t) = exp(tadμk
)ei 1 ≤ i ≤ k + 1

ei(t) = ei, k + 2 ≤ i ≤ n.

Let 	k : Mr → R be the function that associates to each polygon P = �e
the length of its kth diagonal, i.e., 	k(P ) = ‖ei + . . . + ek+1‖, then the
curve ϕt

k(P ) is periodic of period 2π/	k(P ) if 	k(P ) 
= 0, otherwise P is a
fixed point for ϕt

k and the flow ϕt
k(P ) has infinite period. It is possible to

normalize the flow so that the bending action bends polygons with constant
velocity up to excluding the polygons P such that 	k(P ) = 0. Let M ′

r be
the open subset of Mr consisting of those polygons (called prodigal) such
that no diagonal μi has zero length; the choice of a system of n − 3 non
intersecting diagonals in M ′

r allows one to define an action β of a (n − 3)-
dimensional Tn−3 torus on M ′

r by applying progressively the bending actions
β1, . . . , βn−3; β will be called the (toric) bending action.

Restricting to the dense open subset M0
r ⊂ M ′

r of polygons such that,
for each i, the ith diagonal μi is not collinear to ei+1, Kapovich and Millson
showed in [1] that this system is completely integrable and introduced on M0

r

action-angle coordinates. Precisely, the action coordinates are the lengths
	i of the diagonals and the angle coordinates are θi = π − θ̂i, where θ̂i is the
dihedral angle between Δi and Δi+1. (Note that under the hypothesis that
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no μi is collinear to ei+1 none of the Δi is degenerate, thus all the θi are
well defined).

Thus the moment map for the bending action β is

μ
Tn−3 : Mr −→ (tn−3)∗ � R

n−3

�e �−→ (	1(�e), . . . , 	n−3(�e)).

Remark 3. In the setting of Theorem 1.2 it is well defined on the whole
Mr an S1-action by bending. If there exists k such that 	k(P ) 
= 0 for all P
in Mr then the “normalized” flow defined by

{
ei(t) = exp(t adμk

/	k)ei 1 ≤ i ≤ k + 1
ei(t) = ei, k + 2 ≤ i ≤ n

has period 2π and defines an S1-action, denoted by βk, on the whole Mr

by bending along the kth diagonal. The assumption ri 
= rj guarantees
that there is such a k. In fact, since Mr is isomorphic to Mσ(r) for any
permutation σ ∈ Sn of the edges it is not restrictive to assume i = n − 1
and j = n. Therefore the last diagonal, μ(n−3) = e1 + e2 + · · · + en−2 =
−(en−1 + en), has length 	(n−3)(�e) ≥ |rn − rn−1| > 0 for any polygon �e and
the bending along μ(n−3) defines an S1-action on the whole Mr.

2.2. Polygon spaces and Grassmannians. In this section, we will briefly
overview the description of the moduli space Mr of polygons as the sym-
plectic reduction of the Grassmannian of 2-planes in C

n by the action of the
maximal torus Un

1 of diagonal matrices in Un. This description has been
introduced by Hausmann and Knutson in [2] and has been used by them
(also) to give a nice description of the bending action as the residual torus
action coming from the Gel’fand–Cetlin system on Gr2,n. This approach
made it possible to study wall-crossing problems and to give an alterna-
tive description of the cohomology ring H∗(Mr) (which has been originally
computed by Hausmann and Knutson [9]) by applying the Duistermaat–
Heckman Theorem. These results will appear in a further paper [10].

The diagonal action of the maximal torus Un
1 on Gr2,n is Hamiltonian

with associated moment map μ
Un

1
: Gr2,n → R

n such that, if Π = 〈a, b〉 is
the plane generated by a, b ∈ C

n, a and b orthonormal, then

μ
Un

1
(Π) = (|a1|2 + |b1|2, . . . , |an|2 + |bn|2).

Then the image of the moment map μ
Un

1
(Gr2,n) is the hypersimplex Ξ

μ
Un

1
(Gr2,n) = Ξ =

{
(r1, . . . , rn) ∈ R

n|0 ≤ ri ≤ 1,

n∑

i=1

ri = 2
}

and the set of critical values of μ
Un

1
consists of those points (r1, . . . , rn) ∈ Ξ

satisfying one of the following conditions
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(a) one of the ri’s vanishes or is equal to 1;
(b) there exists εi = ±1 such that

∑n
i=1 εiri = 0 with at least two εi’s for

each sign.

Note that points satisfying (a) constitute the boundary of Ξ, while points
satisfying condition (b) are the inner walls of Ξ.

From the identification of the bending flows with the residual torus action
coming from the Gel’fand–Cetlin system ([2] Theorem 5.2), Hausmann and
Knutson prove that the action coordinates 	1, . . . , 	n−3 satisfy the system

(2.1)

⎧
⎪⎨

⎪⎩

ri+2 ≤ 	i + 	i+1

	i ≤ ri+2 + 	i+1

	i+1 ≤ ri+2 + 	i.

In the case n = 5 the choice of the two (proper) diagonals from the first
vertex, i.e., μ1 = e1 + e2 and μ2 = e1 + e2 + e3 = −(e4 + e5), allows us
to define a toric bending action. The moment polytope μT 2(Mr) associated
to this bending action is the intersection μ

T2 (Mr) = I ∩ Υ, as in Figure 1,
where I is the rectangle

I =
[
|r1 − r2|, r1 + r2

]
×

[
|r4 − r5|, r4 + r5

]

and Υ is the region

Υ = {(x, y) ∈ R
2 : y ≥ −x + r3; y ≥ x − r3; y ≤ x + r3}.

For some examples we refer to Section 4.

Figure 1. μT 2(Mr).
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3. Cobordism of Polygon Spaces

In Section 3.1 we state S1-equivariant cobordism results due to Ginzburg
et al. [6]. In Section 3.2, we apply these to the moduli space of polygons
Mr endowed with the S1-action of bending along a (chosen) diagonal.

3.1. S1-equivariant cobordism. In this paper, we investigate the S1-
cobordism class of the moduli space of polygons Mr. Our proof will be
based on Theorems 3.1 and 3.2 due to Ginzburg et al. [6] (see also [7]).
Martin [11] also proved similar cobordism results.

Theorem 3.1. (V. Ginzburg, V. Guillemin, Y. Karshon)
Let M be an oriented 2d-dimensional manifold on which the group S1

acts. Suppose that this action is quasi-free and has finitely many fixed points.
Then M is cobordant a disjoint union of N copies of ±CP

d, where N is the
number of fixed points and the cobordism under consideration is oriented
S1-equivariant cobordism.

The proof (see [6]) shows that each isolated fixed point contributes to
the cobordism class of M with a copy of the projective space CP

d. The
orientation of this projective space comes from the infinitesimal generator
of the bending action, thus might not agree with the standard one.

Both the assumptions on the action are extremely strong. If we do not ask
the S1 action to be quasi-free (but still to have finitely many fixed points)
then it is still possible to prove a result on equivariant orbifold cobordism
between M and the disjoint union of twisted projective spaces [6, 7]. On
the other hand, if we assume the action to be quasi-free but we allow the
fixed point set not to be finite, still it is possible to describe explicitly the
equivariant cobordism class of M.

Theorem 3.2. (V. Ginzburg, V. Guillemin, Y. Karshon)
Let M be an oriented 2d-dimensional manifold endowed with a quasi-free

S1 action. Let Xk, k = 1, . . . , N, be the connected components of the fixed
point set MS1

. Then there is an oriented S1-equivariant cobordism

M ∼
N∐

k=1

Bk,

where Bk is a fibration over Xk with fiber CP
mk , and mk = codimCXk.

It is also possible to describe the equivariant orbifold cobordism class
of M when the S1 action is not quasi-free and MS1

is not finite. In this
more general case a result similar to Theorem 3.2 holds, but the fibrations
over the connected components of MS1

have now fibers which are twisted
projective spaces.
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3.2. Proof of the cobordism theorem. In light of the results presented
in the previous sections we investigate the set of fixed points for a bending
action. Let β be the action of S1 on Mr by bending along the (n − 3)-th
diagonal μ(n−3) = e1 + e2 + · · · + en−2, i.e.,

β : S1 × Mr −→ Mr

(t, [(e1, . . . en)]) �−→ [(exp(tadμ(n−3))e1, . . . , exp(tadμ(n−3))en−2, en−1, en)].

The action β is quasi-free, in fact the stabilizers of points are connected
(they are S1 for fixed points, {0} otherwise).

A point P ∈ Mr is fixed by β if it is of one of the following two types:
(I) [P ] = [�e], e1, . . . , en−2 are collinear as in Figure 2

In this case, the action β fixes not just [P ] but also each represen-
tative.

(II) [P ] = [�e], en−1, en are collinear as in Figure 3.
In this case, the action β changes the representative �e but not the

SO(3) class.

The fixed point set MS1

r is then the (disjoint) union of the sets (MS1

r )isol

of fixed points of type I and (MS1

r )subm of fixed points of type II.
If [P ] is a fixed point of type II then [P ] ∈ Xk, where Xk is a submanifold

of fixed points. In particular Xk is the space of polygons of n − 1 sides Mr̄,
with r̄ = (r1, . . . , rn−2,±rn−1 ± rn) ∈ R

n−1
+ . (The signs ± are determined

according to the orientation of the edges en−1 and en.) It follows that
codimCXk = 1, and so Xk contributes to the cobordism of Mr with the
total space Bk of a fibration on Xk with fiber CP

1. This implies that Bk ∼ 0

Figure 2. Fixed point of type I.

Figure 3. Fixed point of type II.
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because it is the boundary of the associated fibration B̃k on Xk with fiber
the disk D (δD = S2 ∼ CP

1).
Fixed points of type I are instead isolated and so from Theorem 3.1 con-

tribute to the cobordism class of Mr with a copy of CP
n−3. The orientation

of this projective space comes from the generator of the bending action and
may not agree with the orientation that CP

n−3 inherits from the symplec-
tic structure of Mr. In fact for each [P ] ∈ (MS1

r )isol the symplectic form ω
on Mr defines a complex structure J on T[P ]Mr by ω[P ](u, v) = g(u, Jv),
where g is a Riemannian metric on R

3n. The bending action defines too a
complex structure on T[P ]Mr : differentiating β in (θ, [P ]) and valuating it
at 1 ∈ R � Lie(S1) we obtain an endomorphism of T[p]Mr and this defines
also an S1-action (the linear isotropy action) on T[p]Mr :

d[P ]β : S1 −→ EndT[p]Mr)

θ �−→ d(θ,[P ])β(1)

under which T[p]Mr decompose in the direct sum

T[p]Mr =
⊕

w∈Z

Vw

so that on each Vw the S1-action is “multiplication by eiwθ.” The w’s are
the isotropy weights and, because the action is semi-free (for S1-actions
quasi-free and semi-free are equivalent), they are 0 or ±1. The differential
of d[P ]β

A =
d

dθ
(d[P ]β)|=0(1) : T[p]Mr −→ T[p]Mr

is the generator of the bending action (note that on each Vw, A is the
multiplication by iw).

To determine the cobordism class of Mr we will calculate the orientation
that A induces on the projective spaces CP

n−3. The proof will go as follows:
first we will calculate

Â =
d

dθ
(d�eβ̂)|=0(1) : T�eM̃r −→ T�eM̃r

where β̂ is the bending action on the level set

M̃r = {�e ∈
n∏

j=1

S2(rj)/e1 + · · · + en = 0},

i.e.

β̂ : S1 × M̃r −→ M̃r

(t, (e1, . . . en)) �−→ (exp(t adμ(n−3))e1, . . . , exp(t adμ(n−3))en−2, en−1, en).



12 A. MANDINI

Then identifying T[P ]Mr with the orthogonal T⊥
P (SO(3) ·P ) of tangent space

to the SO(3) orbit through P in M̃r we will project Â on T[P ]Mr and write A
explicitly. Finally, we will verify that A is a complex structure and compare
it with J by checking when a J-positive basis of TP Mr is also A-positive.

Remark 4. Observe that Â is well defined because if P = [�e] is a fixed
point of type I then �e is a fixed point for β̂ (i.e., β fixes each representative
of the class, not just the class).

3.2.1. The complex structure A. Determining Â : TP M̃r → TP M̃r.
The action β̂ described above still bends the first (n − 2) sides of a polygon
along its (n−3)-diagonal. An element of TP M̃r is of the form d

dε(P +εQ)|ε=0,
P +εQ = (e1+εv1, . . . , en+εvn). Let μ be the (n−3)-diagonal of the polygon
P , i.e., μ = e1 + . . .+ en−2, and let ν be the (n− 3)-diagonal of P + εQ, i.e.,

ν =
n−2∑

i=1

ei + ε

n−2∑

i=1

vi := μ + εξ.

From now on, when �v is understood, we will write ξ for ξ(�v) =
∑n−2

i=1 vi.
Let Rε be the rotation that takes ν to the x-axis and let bθ be the rotation

of angle θ around the x-axis. The bending action β̂ can be described in terms
of Rε and bθ, precisely:

β̂(P + εQ) = (. . . , R−1
ε bθRε(ej + εvj), . . . , en−1 + εvn−1, en + εvn).

So

Â: TP M̃r −→ TP M̃r

v �−→ Â(v)

with

Â(v) =
d

dθ |θ=0

d

dε |ε=0
(. . . , R−1

ε bθRε(ej + εvj), . . . , en−1 + εvn−1, en + εvn).

Remark 5. We will use the notation j ∧ k for the matrix

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ of

the rotation around the x-axis. In general, for u1, u2 in R
3, u1 ∧ u2 is the

rotation which takes u1 on u2, i.e.,

(u1 ∧ u2)(v) = 〈u1, v〉u2 − 〈u2, v〉u1 ∀v ∈ R
3.

Proposition 3.3.

d

dθ |θ=0

( d

dε |ε=0
R−1

ε bθRε(ej + εvj)
)

= −〈μ, ej〉
‖μ‖2 j ∧ k(ξ) + j ∧ k(vj).
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Proof. Using the same notation as in Remark 5, the rotation Rε is
exp(−Θ μ∧εξ

‖μ‖‖εξ‖), where the angle of rotation is Θ = ‖εξ‖
‖μ‖ , and bθ is exp(θj∧k).

The first-order Taylor expansions of R−1
ε and Rε are

R−1
ε = id + ε

μ ∧ ξ

‖μ‖2 + o(ε), Rε = id − ε
μ ∧ ξ

‖μ‖2 + o(ε)

So
d

dε |ε=0
R−1

ε bθRε(ej + εvj) =
[
μ∧ξ

‖μ‖2 bθ(ej + εvj) − bθ
μ∧ξ

‖μ‖2 (ej + εvj) + bθvj

]

|ε=0

=
μ ∧ ξ

‖μ‖2 bθej − bθ
μ ∧ ξ

‖μ‖2 ej + bθvj .

Similarly, observe that the first-order Taylor expansion of bθ is

bθ = id + θj ∧ k + o(θ),

and so
d

dθ |θ=0

d

dε |ε=0
R−1

ε bθRε(ej + εvj) =
d

dθ |θ=0

(
μ ∧ ξ

‖μ‖2 bθej − bθ
μ ∧ ξ

‖μ‖2 ej + bθvj

)

=
μ∧ξ

‖μ‖2 j ∧k(ej)− j ∧k
μ∧ξ

‖μ‖2 (ej)+ j ∧ k(vj)

=
μ∧ξ

‖μ‖2 (〈j, ej〉
︸ ︷︷ ︸

=0

k−〈k, ej〉
︸ ︷︷ ︸

=0

j) −
j ∧k

‖μ‖2 (〈μ, ej〉ξ

− 〈ξ, ej〉
︸ ︷︷ ︸

=0

μ) + j ∧ k(vj)

= −〈μ, ej〉
‖μ‖2 j ∧ k(ξ) + j ∧ k(vj). �

Hence the map Â is given by

Â : TP M̃r −→ TP M̃r

v �−→ (Â1(v), . . . , Âk(v), 0, 0) = Â(v),

where

(3.1) Âj(v) = −〈μ, ej〉
‖μ‖2 j ∧ k(ξ) + j ∧ k(vj).

Passage to the quotient Mr = M̃r

/
SO(3).

Under the SO(3)-action the tangent space in P at M̃r decomposes in
the direct sum of the tangent space at the SO(3) orbit trough P and its
orthogonal:

TP M̃r = TP (SO(3) · P ) ⊕ T⊥
P (SO(3) · P ).
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Identifying T⊥
P (SO(3) · P ) with T[P ]Mr we calculate A by projecting Â on

T⊥
P (SO(3) · P ), i.e., if δ1, δ2, δ3 is an orthogonal basis of Tp(SO(3) · P ),

(3.2) A(v) = Â(v) − 〈Â(v), δ1〉
‖δ1‖2 δ1 − 〈Â(v), δ2〉

‖δ2‖2 δ2 − 〈Â(v), δ3〉
‖δ3‖2 δ3.

The generators of the SO(3)-action are the rotations around the axes. So
δ̂1 = (e1 ∧ i, . . . , en ∧ i), δ̂2 = (e1 ∧ j, . . . , en ∧ j), δ̂3 = (e1 ∧ k, . . . , en ∧ k)
define a basis of Tp(SO(3) · P ). This basis in general is not orthogonal with
respect to the metric associated to the symplectic structure and we will
orthonormalize it using the Gram–Schmidt formula. So, in order to write
explicitly the basis δ̂1, δ̂2 and δ̂3 of the SO(3)-orbit trough P in M̃r let us
fix a representative �e in [P ].

Because P is planar it is not restrictive to assume that it lies in the plane
(x, y). Moreover, let us assume that the coordinate axis x is oriented as the
(n−3)-th diagonal μ(n−3) := μ, then the triangle in Figure 2 has side lengths
rn, rn−1, and

∑
εiri, where ε1 = 1 if ei = ri

‖μ‖μ and εi = −1 otherwise. This
gives a geometric interpretation of the notion of r-admissibility for an index
set I introduced in Definition (1.1). In fact I counts the number of “forward
tracks,” or, more formally, if 	 = |I|, then

	 = �{ej/ej · μ > 0}

and the inequalities in system (1.1) are just the “triangle inequalities” for
the triangle of edge lengths rn, rn−1, and

∑
εiri. So I is r-admissible if and

only if such a triangle (as in Figure 2) closes. The assumptions done so far
are not restrictive. Let us also assume that the first 	 edges are oriented as
the x-axis, i.e.,

(3.3) ei = (ri, 0, 0), ∀i = 1, . . . , 	,

and that the following (n − 2 − 	) edges are conversely oriented, i.e.,

(3.4) ei = (−ri, 0, 0) ∀i = 	 + 1, . . . , n − 2.

This assumption is instead restrictive, we are in fact choosing the polygon
P corresponding to the index set I = {1, . . . , 	}. This assumption is useful
in order to keep the notation more compact. In Remark 8 we will say some
more words about what happens if we consider another class.

Under these assumptions the polygon P is as in Figure 4 the last two
edges en and en−1 are

en = (−rn cos θ, −rn sin θ, 0), en−1 = (−rn−1 cos α, rn−1 sin α, 0).

We can express cos α and sinα as functions of θ, rn−1 and rn as follows:

sin α =
rn

rn−1
sin θ, cos α =

‖μ‖ − rn cos θ

rn−1
.
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Figure 4. Model for [P ] fixed point of type I.

With these assumptions the vectors δ̂1, δ̂2 and δ̂3 are

δ̂1 = (0, . . . , 0,−rn−1 sin αk, rn sin θk);

δ̂2 = (r1k, . . . , r�k,−r�+1k, . . . ,−rn−2k,−rn−1 cos αk,−rn cos θk);

δ̂3 = (−r1k, . . . ,−r�k, r�+1k, . . . , rn−2k, rn−1 sin αi + rn−1 cos αj,

−rn sin θi + rn cos θj).

Applying Gram–Schmidt we build an orthogonal basis {δ1, δ2, δ3} from the

basis {δ̂1, δ̂2, δ̂3}, i.e., δ1 := δ̂1, δ2 := δ̂2 − 〈δ̂2,δ1〉
〈δ1,δ1〉δ

1 and δ3 := δ̂3 − 〈δ̂3,δ1〉
〈δ̂1,δ̂1〉

δ̂1 −
〈δ̂3,δ2〉
〈δ2,δ2〉δ

2.

Recall that the scalar product on TP M̃r is 〈u, v〉 =
∑n

i=1
1
ri

〈ui, vi〉S where
〈·, ·〉S is the standard scalar product in R

3. So

〈δ̂2, δ̂1〉 =
rn

rn−1
sin2 θ(rn−1 + rn) and 〈δ̂1, δ̂1〉 =

rn

rn−1
sin2 θ(rn−1 + rn).

Moreover 〈δ̂3, δ1〉 = 0 and 〈δ̂3, δ2〉 = 0.
To summarize, an orthogonal basis of Tp(SO(3) · P ) is given by:

δ1 = (0, . . . , 0,−rn sin θk, rn sin θk),

δ2 = (r1k, . . . , r�k,−r�+1k, . . . ,−rn−2k,− rn−1‖μ‖
rn−1 + rn

k,− rn‖μ‖
rn−1 + rn

k),

δ3 = (−r1 k, . . . ,−r� k, r�+1 k, . . . , rn−2 k, rn sin θ i + (‖μ‖ − rn cos θ) j,

−rn sin θ i + rn cos θ j).

Computing A(v).

Recall that A(v) = Â(v)− 〈Â(v),δ1〉
‖δ1‖2 δ1 − 〈Â(v),δ2〉

‖δ2‖2 δ2 − 〈Â(v),δ3〉
‖δ3‖2 δ3, where from

(3.1) the jth component of Â(v) is

Â(v)j =
(

−〈μ, ej〉
‖μ‖2 〈j, ξ〉 + 〈j, vj〉

)

k +
(

〈μ, ej〉
‖μ‖2 〈k, ξ〉 − 〈k, vj〉

)

j

for j = 1, . . . , n − 2, and Â(v)j = 0 if j = n − 1, n.
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Let εj denote the direction of ej , i.e.,

εj =

{
1, j = 1, . . . , 	

−1 j = 	 + 1, . . . , n − 2.

It is straightforward to verify that 〈Â(v), δ1〉 = 0,

〈Â(v), δ2〉 =
n−2∑

j=1

εj

(

−〈μ, ej〉
‖μ‖2 〈j, ξ〉 + 〈j, vj〉

)

and

〈Â(v), δ3〉 =
n−2∑

j=1

(−εj)
(

−〈μ, ej〉
‖μ‖2 〈k, ξ〉 + 〈k, vj〉

)

.

Hence, for each v ∈ T[P ]Mr the components of A(v) are:

A(v)j =

(

− rj

‖μ‖〈j, ξ〉 + 〈j, vj〉 − 〈Â(v), δ2〉
‖δ2‖2 rj

)

k

+

(
rj

‖μ‖〈k, ξ〉 − 〈k, vj〉 +
〈Â(v), δ3〉

‖δ3‖2 rj

)

j,

for all j = 1, . . . , 	;

A(v)j =

(
rj

‖μ‖〈j, ξ〉 + 〈j, vj〉 +
〈Â(v), δ2〉

‖δ2‖2 rj

)

k

+

(

− rj

‖μ‖〈k, ξ〉 − 〈k, vj〉 − 〈Â(v), δ3〉
‖δ3‖2 rj

)

j,

for all j = 	 + 1, . . . , n − 2;

A(v)n−1 =
〈Â(v), δ2〉

‖δ2‖2
rn−1‖μ‖
rn−1 + rn

k − 〈Â(v), δ3〉
‖δ3‖2 (rn sin θi + (‖μ‖ − rn cos θ))j;

(3.5)

A(v)n =
〈Â(v), δ2〉

‖δ2‖2
rn‖μ‖

rn−1 + rn
k − 〈Â(v), δ3〉

‖δ3‖2 (−rn sin θi + rn cos θ)j.

(3.6)

3.2.2. Comparing the complex structures A and J. Determining
a basis for T[P ]Mr. Using the identification T[P ]Mr � T⊥

P (SO(3) · P ),
Kapovich and Millson ([1]) write the equations of T[P ]Mr as a subspace
of R

3n. Precisely, v ∈ T[P ]Mr if and only if:
(i)

∑n
i=1 vi = 0,

(ii) ei · vi = 0 ∀i = 1, . . . , n,
(iii)

∑n
i=1

1
ri

(ei ∧ vi) = 0.
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The vectors

ui = (0, . . . , 0, j
︸︷︷︸

i

, −j
︸︷︷︸
i+1

, 0, . . . , 0), i = 1, . . . , 	 − 1,

ûi = (0, . . . , 0, j
︸︷︷︸

i

, −j
︸︷︷︸
i+1

, 0, . . . , 0), i = 	 + 1, . . . , n − 3,

vi = (0, . . . , 0, k
︸︷︷︸

i

, −k
︸︷︷︸
i+1

, 0, . . . , 0), i = 1, . . . , 	 − 1,

v̂i = (0, . . . , 0, k
︸︷︷︸

i

, −k
︸︷︷︸
i+1

, 0, . . . , 0), i = 	, . . . , n − 3

verify the conditions (i), (ii), (iii), so they are in T[P ]Mr, and are linearly
independent.

Remark 6. Note that a vector of the form (0, . . . , 0, j
︸︷︷︸

�

, −j
︸︷︷︸
�+1

, 0, . . . , 0)

would not satisfy condition (iii).

When 	 = n − 2 we have 2(n − 3)such vectors and they are linearly
independent, forming a basis of T[P ]Mr. If instead 	 
= n − 2 then we have
2(n − 4) vectors and it is necessary to complete them to a basis. To do this
we look for a vector of the form

w = (λk, . . . , λk, γk, . . . , γk, λn−1k, λnk),

with λ, γ, λn−1, λn ∈ R, and we impose that w satisfies conditions (i), (ii)
and (iii). Condition (iii) is straightforward verified by w. Condition (i) holds
if and only if

(3.7) 	λ + (n − 	 − 2)γ + λn−1 + λn = 0.

Denoting by wi the ith component of w
ei

ri
∧ wi = (1, 0, 0) ∧ (0, 0, λ) = −λj ∀i = 1, . . . , 	,

ei

ri
∧ wi = (−1, 0, 0) ∧ (0, 0, γ) = γj ∀i = 	 + 1, . . . , n − 2,

1
rn−1

en−1 ∧ wn−1 =
(

−‖μ‖ − rn cos θ

rn−1
,

rn

rn−1
sin θ, 0

)

∧ (0, 0, λn−1)

=
(
λn−1

rn

rn−1
sin θ, λn−1

‖μ‖ − rn cos θ

rn−1
, 0

)
,

1
rn

en ∧ wn = (− cos θ, − sin θ, 0) ∧ (0, 0, λn) = (−λn sin θ, λn cos θ, 0).

Consequently we obtain that condition (iii) holds if and only if

(3.8) −	λ + (n − 	 − 2)γ + λn−1
‖μ‖ − rn cos θ

rn−1
+ λn cos θ = 0



18 A. MANDINI

and

(3.9) λn−1
rn

rn−1
senθ − λnsinθ = 0.

So w is determined by the system of equations (3.7)–(3.9). A solution of
this system is

λ = − 1
2	

(‖μ‖ − rn−1 − rn), γ =
1

2(n − 	 − 2)
(‖μ‖ + rn−1 + rn)

λn−1 = −rn−1, λn = −rn.

From now on let us fix these values for λ, γ, λn−1, λn. The vector w is lin-
early independent with the vectors ui, ûi, vi, v̂i. J is the complex struc-
ture associated to the symplectic form, so −J(w) is linearly indepen-
dent with ui, ûi, vi, v̂i, w and complete to a basis of T[P ]Mr. Recalling that
J(w) = ( e1

r1
∧ w1, . . . ,

en
rn

∧ wn) we get

−J(w) = (λj, . . . , λj,−γj,−γj, rn sin θi + (‖μ‖ − rn cos θ)j,

− rn sin θi + rn cos θj).

So B1 = {u1, v1, . . . , u�−1, v�−1, û�+1,−v̂�+1, . . . , ûn−3,−v̂n−3, J(w), w} is a
basis of T[P ]Mr and it is positive, i.e., this is the standard convention. In fact,

J(ui) =
(

. . . ,
ri

ri
i ∧ j,

ri

ri
i ∧ (−j), 0, . . . , 0

)

= (0, . . . , 0, k,−k, 0, . . . , 0) = vi,

J(ûi) =
(

. . . ,−ri

ri
i ∧ j,−ri

ri
i ∧ (−j), 0, . . . , 0

)

= (0, . . . , 0,−k, k, 0, . . . , 0) = −v̂i,

and J(vi) = −ui, J(−v̂i) = −ûi and J(−J(w)) = w.
A is a complex structure.

In this section, we will verify that A is a complex structure. To check that
A2 = −Id we write the matrix of A with respect to the basis B1 (with a
little abuse of notation, we will call this matrix A).

First of all we can note that ξ(ui) = ξ(ûi) = ξ(vi) = ξ(v̂i) = 0 (remember
that ξ(v) =

∑n−2
i=1 vi for all v ∈ R

3n). So

〈Â(ui), δ2〉 = 〈j, j〉 + 〈j,−j〉 = 0

and similarly 〈Â(ûi), δ2〉 = 〈Â(vi), δ3〉 = 〈Â(v̂i), δ3〉 = 0. Moreover it is
trivial to see that 〈Â(ui), δ3〉 = 〈Â(ûi), δ3〉 = 〈Â(vi), δ2〉 = 〈Â(v̂i), δ2〉 = 0.
Now it is easy to verify that

A(ui) = (0, . . . , 0, k,−k, 0, . . . , 0) = vi, ∀i = 1, . . . 	 − 1,

A(vi) = (0, . . . , 0,−j, j, 0, . . . , 0) = −ui, ∀i = 1, . . . 	 − 1,

A(ûi) = (0, . . . , 0, k,−k, 0, . . . , 0) = v̂i, ∀i = 	, . . . n − 3,

A(v̂i) = (0, . . . , 0,−j, j, 0, . . . , 0) = −ûi, ∀i = 	, . . . n − 3,
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Also
A(−J(w)) = b1v1 + . . . + bk−2v̂k−2 + bw

and
A(w) = a1u1 + . . . + an−3ûn−3 + a(−J(w))

ai, bi, a, b ∈ R, and so the matrix A is:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 a1
−1 0 b1 0

. . .
...

...
0 1 0 a�−1

−1 0 b�−1 0
0 −1 0 a�

1 0 b� 0
. . .

...
...

0 −1 0 an−3
1 0 bn−3 0

0 a
b 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence A2 = −Id ⇐⇒ ab = −1.
Determine a and b. First of all we can notice that the last two compo-

nents of A(−J(w)) and A(w) are enough to determine a and b because the
vectors ui, ûi, vi, v̂i have no influence on the final components.

Observing that 〈Â(−J(w)), δ3〉 = 0 (because −J(w) has no non-zero com-
ponents along k), it follows from (3.5) and (3.6) that:

A(−J(w)) =

(

. . . ,
〈Â(−J(w)), δ2〉

‖δ2‖2
rn−1‖μ‖
rn−1 + rn

k,
〈Â(−J(w)), δ2〉

‖δ2‖2
rn‖μ‖

rn−1 + rn
k

)

.

Now, recalling that w = (λk, . . . , λk, γk, . . . , γk,−rn−1k,−rnk) we get

(3.10) b = −〈Â(−Jw), δ2〉
‖δ2‖2

‖μ‖
rn−1 + rn

.

Similarly, it is possible to observe that 〈Â(w), δ2〉 = 0, thus

A(w) =

(

. . . ,−〈Â(w), δ3〉
‖δ3‖2 (rn sin θi + (‖μ‖ − rn cos θ)j),

− 〈Â(w), δ3〉
‖δ3‖2 (−rn sin θi + rn cos θj)

)

.

Comparing A(w) with the last two components of −Jw we get:

(3.11) a = −〈Â(w), δ3〉
‖δ3‖2 .



20 A. MANDINI

Remember that ξ(−J(w)) =
∑n−2

i=1 (−Jw)i = 	λ − (n − 	 − 2)γ = −‖μ‖j.
Then

〈Â(−J(w)), δ2〉 =
�∑

j=1

(
rj

‖μ‖‖μ‖ + λ

)

−
n−2∑

j=�+1

(

− rj

‖μ‖‖μ‖ − γ

)

=
n−2∑

j=1

rj + 	λ + (n − 	 − 2)γ =
n−2∑

j=1

rj + rn−1 + rn = 2.

‖δ2‖2 =
n−2∑

j=1

rj +
‖μ‖2(rn−1 + rn)

(rn−1 + rn)2
=

(rn−1 + rn)
∑n−2

j=1 rj + ‖μ‖2

rn−1 + rn
.

So

b = − 2‖μ‖
(rn−1 + rn)

∑n−2
j=1 rj + ‖μ‖2

.

Similarly, ξ(w) = 	λ + (n − 	 − 2)γ = −1
2(‖μ‖ − rn−1 − rn) + 1

2(‖μ‖ +
rn−1 + rn) = rn−1 + rn.

〈Â(w), δ3〉 =
�∑

j=1

(

− rj

‖μ‖(rn−1 + rn) + λ

)

+
n−2∑

j=�+1

(

− rj

‖μ‖(rn−1 + rn) − γ

)

= −rn−1 + rn

‖μ‖

n−2∑

j=1

rj + 	λ − (n − 	 − 2)γ

= −
(rn−1 + rn)

∑n−2
j=1 rj + ‖μ‖2

‖μ‖ .

‖δ3‖2 =
n−2∑

j=1

rj + rn−1 + rn = 2.

So

(3.12) a =
(rn−1 + rn)

∑n−2
j=1 rj + ‖μ‖2

2‖μ‖ .

It is now straightforward to verify that ab = −1, and so A2 = −Id.

3.2.3. Conclusions. B2 = {. . . , ui, Aui, . . . , ûi, Aûi, . . . ,−Aw, w} is a A-
positive basis of T[P ]Mr. Then B2 is also J-positive if and only if the deter-
minant of the matrix of the change of base MB2B1 = M is positive. In
this case the orientation induced by A is positive (or concord with the one
induced by J).
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Let −Aw = α1u1 + . . .+αnûn +α(−Jw). From the description of A given
in the previous section the coordinate change matrix is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 α1 0
1 0 0

1 α2 0
. . .

...
...

1 0 0
1 α� 0

−1 0 0
. . .

...
...

1 αn−4 0
−1 0 0

α 0
0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

So detM = (−1)n−3−�α.
Now, since α = −a, it follows from (3.12) that

α = −
(rn−1 + rn)

∑n−2
j=1 rj + ‖μ‖2

2‖μ‖ < 0.

So sgn(det(M)) = (−1)n−� and [P ] contributes to the cobordism class of Mr

with (−1)n−�
CP

n−3.

Remark 7. We already observed that if 	 = n − 2 then the vectors
ui, vi, ûi, v̂i form a basis of T[P ]Mr. In this case it is straightforward to see
that the orientations induced by A and J agree, i.e., det(M) = 1. So the
result sgn(det(M)) = (−1)n−� holds for each 	 = 1, . . . , n − 2.

Remark 8. We assumed in (3.3) and (3.4) that the first 	 edges are oriented
as the x-axis and the following n− 	−2 are conversely oriented. We already
pointed out that this assumption is equivalent to choosing a particular class
[P ]. Let us consider another fixed point [Q] = [�e] of type I. Because the
first n − 2 edges are on the x-axis and μ = e1 + · · · + en−2 = ‖μ‖i, then
there exist two subsets I and Ic of {1, . . . , n − 2} such that I ∩ Ic = ∅,
I ∪ Ic = {1, . . . , n − 2}, and such that

ei = (ri, 0, 0) ∀i ∈ I

ei = (−ri, 0, 0) ∀i ∈ Ic.

Let 	 be the cardinality of I. If I = {1, . . . 	} then this is the case that we
studied in detail. Otherwise, the proof extends word by word just changing
{1, . . . , 	} with I and {	 + 1, . . . , n − 2} with Ic. So a generic point [Q]
contributes to the cobordism class of Mr with (−1)n−�

CP
n−3 where 	 is the

number of forward tracks, i.e., 	 = �{ej | ej · μ > 0}.
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Remark 9. If n = 2m then the odd dimensional projective space CP
n−3

is the total space of a circle bundle over the quaternion projective space
HP

m−2, and hence is the boundary of the associated disk bundle. So, if n is
even Mr ∼ 0.

Remark 10. Since in Section 3.2 the complex structure on Mr is ana-
lyzed in detail, one might hope that in Theorem 1.2 complex cobordism
is actually under consideration. Theorem 1.2 does not hold when replac-
ing S1-equivariant cobordism with Hamiltonian complex cobordism (cf. [7],
Chapter 2, Section 5). In fact Hamiltonian complex cobordant spaces have
the same quantization (cf [7]) and it is easy to provide two S1-cobordant
spaces such that the dimensions of their geometric quantizations are differ-
ent. As an example, consider the polygon spaces associated to the length
vectors r1 = (2, 3, 8, 2, 4) and r2 = (4, 6, 16, 4, 8). Both are cobordant to CP

2

(they are obtained just by rescaling the length vector as in the first example
in next Section), but their geometric quantizations are different. In fact, for
Mr1 the dimension of the space of holomorphic sections of the pre-quantum
line bundle is 3, while for Mr2 is 28. Details will appear in [12]. The question
is still open about complex cobordism.

4. Some examples

For each length vector r we will analyse which index sets I are r-admissible
(see Definition 1.1). We point out that if I does not satisfy the closing
conditions (system 1.1), also its complement Ic := {1, . . . , 5} \ I does not.
Moreover if I is admissible then Ic can’t be admissible too, in fact just one
between

∑
i∈I εiri > 0 and

∑
i∈Ic εiri > 0 = −

∑
i∈I εiri > 0 is true. In this

section we will denote an element of (MS1

r )isol just by giving the signs of the
vectors e1, e2, e3, so for example + + − say us

e1 = (r1, 0, 0), e2 = (r2, 0, 0), e3 = (−r3, 0, 0),

and the remaining edges e4, e5 are determined up to rotations. So the class
(uniquely) determined in Mr by + + − will be denoted by P++−.

In the examples studied the vector of lengths is not normalized (i.e.,∑
i ri 
= 2). This will keep the notation cleaner and is not restrictive because

Mr � Mλr for all λ ∈ R
+.

Each of the following examples is obtained by its previous one by crossing
a inner wall in Ξ, or equivalently (because Mr is toric for n = 5) by chopping
off a vertex in the moment polytope μT 2(Mr). We will go back to this remark
at the end of this section, but this should be kept in mind as looking at the
moment polytope.

(1) r = (1, 1.5, 4, 1, 2) : Mr is a smooth manifold, and the only r-
admissible set is I {3}; 	 = |{3}| = 1 so the CP

2 produced with
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the surgery around P−−+ comes with sign (−1)5−1 = 1, i.e., it comes
with the standard orientation.

Other configurations are not r-admissible, in fact {1, 2, 3}, {1, 3},
{2, 3} (and their complements) do not satisfy the closing condition
(i.e. system (1.1)); {1, 2} is also not r-admissible. In fact it is the
complement of {3}. Thus

Mr ∼ CP
2.

In this case the image μT 2(Mr) is as in Figure 5 (A).
(2) r = (0.5, 2, 4, 1, 2) : Mr is a smooth manifold, and the r-admissible

index sets are:
{2, 3} ⇒ l = 2 ⇒ on TP−++Mr, A = −J and CP

2 comes with the
orientation opposite to the standard one.

{3} ⇒ l = 3 ⇒ on TP+++Mr, A = J and CP
2 comes with the standard

orientation.
Thus

Mr ∼ CP
2 	 −CP

2 ∼ 0.

For this choice of r the image μT 2(Mr) is as in Figure 5 (B).
(3) r = (2, 0.5, 4, 0.5, 2.5) Mr is a smooth manifold, and the only r-

admissible set is I = {2, 3}, of cardinality 	 = 2. So on TP−++Mr,

A = (−1)n−� = −J and CP
2 comes with the opposite orientation

to the standard one. There are no other r-admissible sets. In fact
{1, 2, 3}, {1, 2}, {3}, {1, 3} and their complements do not satisfy sys-
tem (1.1), and neither does {1} (it is the complement of {2, 3}).

Thus
Mr ∼ −CP

2.

Figure 5. Examples (1) and (2).
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Figure 6. Examples (3) and (4).

The image μT 2(Mr) of Mr is then the 5-sided polytope in
Figure 6(A).

(4) r = (2, 3.5, 4, 1, 2)
Mr is a smooth manifold, and the r-admissible index subsets are {1, 2}
and {1, 3}. Both of them have cardinality 	 = 2, and so they contribute
to the cobordism class of Mr with two copies of −CP

2, i.e.,

Mr ∼ −CP
2 	 −CP

2 ∼ −2CP
2.

As before, it is immediate to draw the polytope μT 2(Mr), see Figure 6
(B).

(5) r = (2, 3.5, 4, 3.5, 2.5)
Mr is a smooth manifold, and the r-admissible sets are {1, 2}, {1, 3},
{2, 3}. All of them have cardinality 	 = 2, so the corresponding fixed
points contribute to the cobordism class of Mr with a −CP

2. Thus

Mr ∼ −CP
2 	 −CP

2 	 −CP
2 ∼ −3CP

2.

For this choice of the length vector r the image μT 2(Mr) is as in
Figure 7.

(6) r = (5, 1, 4, 5, 1) : Mr is a smooth manifold. For this choice of r the
set (MS1

r )isol is empty. In fact none of the index sets {1, 2, 3}, {1, 2},
{1, 3}, {2, 3} are r-admissible, thus

Mr ∼ 0

and μT 2(Mr) is as in Figure 8 (A).
(7) r = (1, 1.5, 3.5, 3, 3.5) : Mr is a smooth manifold, and the r-admissible

index sets are {1, 2, 3}, {1, 3}, {2, 3}, {3}. Of these, two have even
cardinality and two have odd cardinality, so

Mr ∼ CP
2 	 CP

2 	 −CP
2 	 −CP

2 ∼ 0
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Figure 7. Example (5).

Figure 8. Examples (6) and (7).

and the moment image μT 2(Mr) is as in Figure 8 (B).
Note that the examples above are built by “chopping off a vertex” at each

step. This has a formal description: “chopping a vertex” corresponds to a
wall crossing in Ξ. For example the passage from r’s such that μT 2(Mr) is as
in Figure 5 (A) to r’s such that μT 2(Mr) is as in Figure 5 (B) corresponds
to the crossing of the wall r1 + r3 = r2 + r4 + r5.

This is an expected phenomenon. In fact in the 4-dimensional case (n = 5)
crossing a wall has the effect of blowing up a fixed point (or blowing down,
depending on the wall-crossing direction). For this we refer to [10], where
we describe how the diffeotype of Mr changes as r crosses a wall in Ξ.

By the notion of admissibility for an index subset I, it follows that for
n = 5 these are all the possible cobordism types of Mr. Moreover, for r’s
in the same region of regular values Δ ⊂ Ξ, the moment polytope μT 2(Mr)
has the same “shape,” and its number of edges is an invariant of cobordism.
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Remark 11. The manifolds Mr as in Examples 2 and 6, 7 have the same
cobordism type (Mr ∼ 0) but different diffeotype, and thus different sym-
plectomorphism type. The moment polytope μT 2(Mr) contains all the infor-
mations needed to recover the (T 2-equivariant) symplectomorphism type
(see [13, 14]). For Mr’s such that the moment polytope is as in Example
6,and more generally when the opposite edges of the polytope μT 2(Mr) are
parallel, it is well-known that the manifold Mr is diffeomorphic to CP

1×CP
1

(see, for example, [15]).
Let us now analyze the cases such that the moment polytope has shape as

in Figures 5 (B) and 8 (B). Karshon [16] finds explicitly the (S1-equivariant)
symplectomorphism types for these examples, and, in particular, establishes
when they are the same. A possible way to see it is the following: because
μT 2(Mr) is the intersection of the regions I and Υ, its edges are either
horizontal, vertical or have slope ±1. Moreover there is always a pair of
opposite edges which are parallel. If the normals to the other opposites edges
(the non-parallel ones) generate the lattice Z

2 then Mr is diffeomorphic to
CP

2 blown up at a point; otherwise, if they generate a sublattice of Z
2 of

index two, it is diffeomorphic to S2 ×S2 � CP
1 ×CP

1. This can also be seen
by analyzing the graphs associated to the polytopes as in Figures 5 (B) and
8 (B) (see [17], Section 2).
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