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MANIFOLDS WITH HAMILTONIAN LIE GROUP

ACTIONS

Hui Li

Let (M, ω) be a connected, compact symplectic manifold equipped
with a Hamiltonian G action, where G is a connected compact Lie
group. Let φ be the moment map. In [12], we proved the follow-
ing result for G = S1 action: as fundamental groups of topological
spaces, π1(M) ∼= π1(Mred), where Mred is the symplectic quotient at
any value of the moment map φ, and ∼= denotes “isomorphic to”. In
this paper, we generalize this result to other connected compact Lie
group G actions. We also prove that the above fundamental group is
isomorphic to that of M/G. We briefly discuss the generalization of the
first part of the results to non-compact manifolds with proper moment
maps.

1. Introduction

Let (M, ω) be a connected, compact symplectic manifold. Let us assume a
connected compact Lie group G acts on M in a Hamiltonian fashion with
moment map φ : M → g∗, where g∗ is the dual Lie algebra of G. Assume
φ is equivariant with respect to the G action, where G acts on g∗ by the
co-adjoint action. Take a moment map value a in g∗, the space MG · a =
φ−1(G · a)/G is called the symplectic quotient or the reduced space at the
co-adjoint orbit G · a. If Ga is the stabilizer group of a under the co-adjoint
action, by equivariance of the moment map, the two reduced spaces are
equal: Ma = φ−1(a)/Ga = φ−1(G · a)/G = MG · a. We will use the two
notations interchangeably. The space MG · a can be a smooth symplectic
manifold, or a symplectic orbifold, or a symplectic stratified space. The
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space MG · a, as a topological space, has a well defined fundamental group.
One has the notion of orbifold fundamental group which is different (see
[4] or [14] for the definition of orbifold π1, and see the example following
Theorem 1.1). In [12], we proved the following theorem:

Theorem 1.1. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian S1 action. Then, as fundamental groups of
topological spaces, π1(M) ∼= π1(minimum) ∼= π1(maximum) ∼= π1(Mred),
where Mred is the symplectic quotient at any value in the image of the
moment map φ.

The proof mainly relies on Morse–Bott theory and symplectic reduction.
It closely links the fundamental group of the “manifold under a value a”
Ma = {x ∈ M | φ(x) ≤ a} with the fundamental group of the reduced
spaces at values equal to or lower than a.

The above theorem is not true for “orbifold fundamental group”. For
example, let S1 act on (S2 ×S2, 2ρ⊕ ρ) (where ρ is the standard symplectic
form on S2) by λ(z1, z2) = (λ2z1, λz2). Let 0 be the minimal value of the
moment map. Then for a ∈ (1, 2), Ma is an orbifold which is homeomorphic
to S2 and has two Z2 singularities. The orbifold π1 of Ma is Z2, but the π1
of Ma as a topological space is trivial.

Theorem 1.1 is not true for non-compact symplectic manifolds. For ins-
tance, take S1 × R and let S1 act by rotating the first factor. This action
is Hamiltonian with moment map being the projection to R. We see that
each reduced space is a point.

In this paper, we generalize Theorem 1.1 to the case of torus actions and
to the case of non-abelian group actions. We state this generalization in two
theorems, separating the abelian and non-abelian group actions.

Theorem 1.2. Let (M, ω) be a connected, compact symplectic mani-
fold equipped with a Hamiltonian torus Tn action (n > 1) with moment
map φ. Then, as fundamental groups of topological spaces, π1(M) ∼=
π1(Mred), where Mred is the symplectic quotient at any value of the moment
map φ.

Theorem 1.3. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian G action with moment map φ, where G is a
connected compact non-abelian Lie group. Then, as fundamental groups of
topological spaces, π1(M) ∼= π1(Mred), where Mred is the symplectic quotient
at any co-adjoint orbit in the image of the moment map φ.

In order to explain the main ideas of the proofs, let us recall the following
convexity theorems.

Theorem 1.4. ([2] or [6]) Let (M, ω) be a connected compact symplec-
tic manifold equipped with a Hamiltonian torus T action. Let φ be the
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moment map. Then

1. For each value a ∈ im(φ), φ−1(a) is connected.
2. The moment map image φ(M) is a convex polytope �. It is the convex

hull of the images of the fixed point sets of T .

Theorem 1.5. ([9] or [11]) Let (M, ω) be a connected, compact symplectic
manifold equipped with a Hamiltonian G action with moment map φ, where
G is a connected compact non-abelian Lie group. Let t∗+ be a fixed closed
positive Weyl chamber of g∗. Then

1. For each co-adjoint orbit O in the image of φ, φ−1(O) is connected.
2. The image φ(M) ∩ t∗+ = �′ is a convex polytope.

The proofs of Theorem 1.2 and Theorem 1.3 mainly consist two steps.
Step 1, we use Theorem 1.1 and “maximal” value on the moment polytope to
prove that the reduced space at this value has the fundamental group of M .
Step 2, we prove that all the reduced spaces have isomorphic fundamental
groups. Step 1 is not hard. For Step 2, let us mainly explain the idea
for the case of an abelian group G = T action. The moment polytope �
in Theorem 1.4 consists of faces with different dimensions. We call the
values in the maximal dimensional faces generic values. We call the values
on other faces singular values. For two generic values near each other, by
the equivariant coisotropic embedding theorem, we show that the reduced
spaces at these two values are diffeomorphic. To compare the fundamental
groups of the reduced spaces at a singular value c and at a nearby generic
value a, we mainly use two facts. The first fact is, the gradient flow of
the moment map square gives an equivariant deformation retraction from
φ−1(U) to φ−1(c), where U is a small open neighborhood of c (see [15] or
[10]). Therefore, π1(φ−1(U)/T ) ∼= π1(φ−1(c)/T ) ∼= π1(Mc). The second
fact is the key step toward solving the problem. It is a removing lemma.
The space φ−1(U) is a T -invariant smooth manifold. The quotient space
φ−1(U)/T is a stratified space. We will remove in a certain order the singular
strata and, possibly, some piece of the generic stratum when necessary from
this quotient. We prove that, each time we remove, the resulting space has
isomorphic fundamental group as that of φ−1(U)/T . We do the removing
until we get a space which has the homotopy type of Ma. This proves that
π1(Mc) ∼= π1(Ma). For convenience, in the above argument, we may take
a subset Ū ′ of U and prove the above fact by using Ū ′ (see Lemma 3.8).
For the case of a non-abelian Lie group G action, the closed positive Weyl
chamber consists of faces with different dimensions each of which has a
different stabilizer group under the co-adjoint action. We use the symplectic
cross-section theorem (see Theorem 4.10) to reduce the proof of Step 2 for
the values on the maximal dimensional face of t∗+ (which contains values of
φ) to a torus action case. For moment map values on other faces of t∗+, we



348 H. LI

use the symplectic cross-section theorem and a similar idea as in the case of
an abelian group action.

Remark 1.1. By the above description (and by the method of the proof of
Theorem 1.1 in [12]), the isomorphisms of the fundamental groups between
some of the two spaces are obtained by the fact that the two spaces are
diffeomorphic, homotopy equivalent, or by using the Van-Kampen theorem
when we do removing (or gluing). When we do removing from a space, we
may need to do it multiple times. Each time we remove, we prove that the
resulting space has isomorphic fundamental group as the previous one. Each
time we use the Van-Kampen theorem, the base point is naturally taken in
the connected intersection of the two connected open sets which cover the
space. For the above reasons, in this paper, to simplify notation, when the
context is clear, we will omit writing base point when we write π1 of a space.
The isomorphisms of the fundamental groups between the rest of the two
spaces are obtained by transitivity.

The method of the proofs of Theorem 1.2 and Theorem 1.3 for the part
that all the reduced spaces have isomorphic fundamental groups can be
applied to the case of non-compact manifolds with proper moment maps.
Regarding the fundamental group of the manifold M , we have the follow-
ing observation. If the moment map φ has no critical values, then φ is
a proper submersion from M to g∗. By Ehresmann’s Lemma, φ gives
a fibration from M to g∗ with connected fiber ([9] or [11]) diffeomor-
phic to φ−1(a) for some a ∈ im(φ). By the homotopy exact sequence
for fibrations, we have π1(M) ∼= π1(φ−1(a)) (see the example of S1 × R

following Theorem 1.1). This may not be the fundamental group of the
reduced spaces. If the moment map φ has critical values, one may still be
able to prove that π1(M) ∼= π1(Mred). There can be different approaches
for this.

Another interesting fact that the method implies is:

Theorem 1.6. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian G action with moment map φ, where G is a
connected compact Lie group. Then, as fundamental groups of topological
spaces, π1(M/G) ∼= π1(Mred), where Mred is the symplectic quotient at any
co-adjoint orbit in the image of the moment map φ.

In this paper, when we say fundamental group, we mean the fundamental
group of the topological space, without explicitly saying so.

A brief organization of the paper. In Section 2, we will recall facts about
proper compact Lie group actions and stratified spaces. Most importantly,
we build blocks on removing certain strata from a stratified space which
will keep π1 of the resulting space the same as that of the original space. In
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Section 3, we prove Theorem 1.2. In Section 4, we recall the symplectic cross-
section theorem and the local normal form theorem. These are important
tools for studying non-abelian Hamiltonian Lie group actions. In Section 5,
we prove Theorem 1.3 for rank 1 connected compact non-abelian Lie group
actions. This not only gives us an example of Theorem 1.3, but also allows
us to see the method of proof for general non-abelian connected compact
Lie group actions. In Section 6, we prove Theorem 1.3. In Section 7, we
prove Theorem 1.6.

2. Lie group actions and stratified spaces

In this section, we will recall the definition of a stratified space. For proper
Lie group actions on a smooth manifold where slice theorem applies, Bredon
has shown that the quotient space is a stratified space. We will recall this
proof, and emphasize important points about stratified spaces. Then, we
state two lemmas and Armstrong’s theorem which are very useful in the
subsequent sections about removing strata from a stratified space.

One may refer to [13] for the following definition of stratified spaces.

Definition 2.1. Let X be a Hausdorff and paracompact topological space
and let J be a partially ordered set with order relation denoted by ≤. A
J -decomposition of X is a locally finite collection of disjoint, locally closed
manifolds Si ⊂ X (one for each i ∈ J ) called pieces such that

(i) X = ∪i∈J Si;
(ii) Si ∩ S̄j �= ∅ ⇔ Si ⊂ S̄j ⇔ i ≤ j.

We call the space X a J -decomposed space.

Definition 2.2. A decomposed space X is called a stratified space if
the pieces of X, called strata, satisfy the following condition:

Given a point x in a piece S, there exist an open neighborhood Ũ of x in
X, an open ball B around x in S, a compact stratified space L, called the
link of x, and a homeomorphism

ϕ : B ×
◦
CL −→ Ũ

that preserves the decompositions.

In the above definition,
◦
CL is the space obtained by collapsing the bound-

ary L × 0 of the half-open cylinder L × [0,∞) to a point.
From now on, for convenience, we may not specify the point x in a (con-

nected) stratum S, and we will call the link of x the link of S.

Let us recall Bredon’s idea (see [3]) about the fact that the quotient
space of a proper Lie group action on a smooth manifold is a stratified
space. Assume a compact Lie group G acts smoothly on a smooth mani-
fold N . Assume that we have chosen a G-invariant metric on N . By the
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slice theorem, a neighborhood in N of an orbit with isotropy type (H) (sub-
groups conjugate to H) is isomorphic to G ×H D, where D is a disk in the
orthogonal complement of the tangent space to the orbit on which H acts
linearly. The action of H on D is equivalent to an “orthogonal” action, i.e.,
H acts as a subgroup of O(n), where n = dimD (See Theorem 0.3.5 in
[3]). So a neighborhood of the point G/H in N/G is isomorphic to D/H.
Let D = D1 × D2, where D1 is the disk consisting of fixed vectors by H.

So the neighborhood of G/H in N/G is isomorphic to D1 ×
◦
CL, where

L = S(D2)/H with S(D2) being a “sphere” of D2. It is clear that the link L
is connected if the dimension of D2 is bigger than 1, and the orbit types in
L have isotropy groups no bigger than H. So a small neighborhood in N/G
of a point in the (H)-stratum consists of (Ki)-strata, where Ki is conjugate
to a subgroup of H. In other words, the (H)-stratum can only be contained
in the closure of (K)-strata, where K is sub-conjugate to H. If we take a
connected component S of the (H)-stratum in N/G, then a neighborhood
of S in N/G can be seen as the total space of a fiber bundle over S with

fiber
◦
CL.

In Sections 3, 5, and 6, we will compute links of points. For convenience,
we summarize the above computation of a link in the following Lemma.

Lemma 2.1. Let a compact connected Lie group G act smoothly on a smooth
connected manifold N . Then the quotient space N/G is a stratified space.
Let S be a connected component of a stratum of N/G with isotropy group
conjugate to H. Let G ×H D be a neighborhood in N of an orbit with
isotropy type (H) ((H) denotes the collection of subgroups conjugate to H).
Let D = D1 × D2, where D1 is the disk consisting of fixed vectors by H.
Let S(D2) be a sphere in D2. Then the link of the corresponding point
in S (or the link of S) is LH = S(D2)/H. If dim(D2) > 1, then LH is
connected.

We will mainly use the following lemma and theorem to determine
whether the link of a connected component of a stratum is simply connected.

Lemma 2.2. (Corollary 6.3 in [3]) If X is an arcwise connected G-space,
G compact Lie, and if there is an orbit which is connected, then the funda-
mental group of X maps onto that of X/G.

Theorem 2.7. ([1]) Let G be a compact Lie group acting on a connected,
locally path connected, simply connected, locally compact metric space X.
Let H be the smallest normal subgroup of G which contains the identity
component of G and all those elements of G which have fixed points. Then
the fundamental group of the orbit space X/G is isomorphic to G/H.

Note that, if G is connected, the above theorem claims the same as
Lemma 2.2 for simply connected X.
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The next lemma is the key ingredient for claiming that the fundamental
group remains unchanged after removing a stratum.

Lemma 2.3. Let a compact connected Lie group G act smoothly on a smooth
connected manifold N such that N/G is a stratified space. Let S be a con-
nected component of a stratum in N/G such that no other strata are con-
tained in the closure of S. Assume the link LS of S is connected and simply
connected. Then π1(N/G) ∼= π1(N/G − S).

Proof. Let O1 be an open neighborhood of S in N/G such that O1 fibers over

S with fiber
◦
CLS . Since

◦
CLS is simply connected, we have π1(O1) ∼= π1(S).

Take O2 = N/G − S. Then O1 ∩O2 fibers over S with fiber
◦
CLS − 0

which is homotopy equivalent to LS . Since LS is connected and simply con-
nected by assumption, π1(O1 ∩O2) ∼= π1(S). By the Van-Kampen theorem,
π1(N/G) ∼= π1(O1) ∗π1(O1 ∩ O2) π1(O2) ∼= π1(N/G − S). �

3. Proof of Theorem 1.2

By Theorem 1.4, under the assumptions of Theorem 1.2, the moment map
image is a convex polytope.

Now, let us recall the following well known facts about connected compact
Lie group actions. One may refer to [6] and the references cited in [6].

Proposition 3.1. Let X be a connected manifold and G be a connected
compact Lie group acting smoothly on X. Let Gx be the stabilizer group of
x. Let r = min dimGx. Let Xi be the set of x’s for which dim Gx ≥ i + r.
Then

1. If X is compact, up to conjugacy, only a finite number of subgroups
of G occur as stabilizer groups of points of X. The subset Xi has co-
dimension ≥ i + 1 (for i = 1, 2, . . .) in X.

2. Let H be a closed subgroup of G. Let XH = {x ∈ X |Gx = H}. Then
XH is a submanifold of X. If X is a symplectic manifold and G acts
symplecticly, then XH is a symplectic submanifold of X.

From 1. of the above proposition, Xr is open dense and connected. Up
to conjugacy, let us call the stabilizer type of the points in Xr principal
stabilizer type.

Now we come back to our symplectic manifold (M, ω) with a Hamiltonian
G action, where G is a connected compact Lie group. By definition of the
moment map φ, for each X ∈ g, we have iXM

ω = d〈φ, X〉, where XM is the
vector field on M generated by X. From this, we easily derive

Lemma 3.4. Let m ∈ M . Let Gm be the stabilizer group of m in G and let
gm be its Lie algebra. Then the image of dφm : Tm → g∗ is the annihilator
in g∗ of gm.



352 H. LI

For the manifold M in Theorem 1.4, more explicitly, it can be stratified
according to the isotropy groups. Let T1, T2, . . . , TN be the subgroups of T
which occur as stabilizer groups of points of M . Let Mi be the set of points
in M for which the stabilizer group is Ti. By relabeling, we may assume
that the Mi’s are connected (So some Ti’ may be repeated). Then M is a
disjoint union:

M =
N⋃

i=1

Mi.

The moment map images of the fixed point set components of T are called
the vertices of φ. The vertices of φ can be “real” vertices on the boundary
of �, and can be “vertices” inside �.

Each Mi is a T -invariant symplectic submanifold of M , φ(Mi) is an open
subset of the affine plane ai + t⊥i , where ai is a vector in t∗, ti = Lie(Ti)
and t⊥i is the annihilator (or perpendicular) of ti in t∗ (or in t). Moreover,
φ(Mi) is the union of a finite number of convex sets each of which is the
convex hull of a collection of the vertices.

By the above description, � consists of faces with different dimensions.

Remark 3.2. We may assume that � contains an open subset of t∗. By the
definition of the moment map, this is the same as assuming that the T action
has finite generic stabilizer group. Moreover, we assume that

⋂
m∈M Tm = 1,

where Tm is the stabilizer group of m. If this is not the case, we divide T
by the common stabilizer group and consider the quotient torus action. Let
us call the values of φ in the open set regular values. Clearly, the set of
regular values is open and dense in im(φ).

Let us call a connected set of regular values of φ a (connected) chamber
of �. The moment map image � may have one or more than one connected
chambers.

Remark 3.3. Note that the Mi’s are disjoint, but the φ(Mi)’s may not be
disjoint (they are disjoint if (M, ω, T, φ) is a completely integrable system.).
For instance, regular points on M , i.e., points with finite stabilizer groups
can be mapped to non-open faces. One may see this easily for S1 actions,
and then generalize to T actions. For a boundary vertex v, φ−1(v) only
consists of one fixed point set component; for a vertex inside �, this cannot
be true. Indeed, by the following Theorem 3.9, a neighborhood in M of a
fixed point x is isomorphic to a T representation V = W ⊕ V T , and φ|V
is the moment map for the T action on W . If φ(x) is on the boundary of
�, then at least one subcircle of T acts on W with weights all positive, so
φ−1(0) only consists of the fixed point set component containing x. One
may see similarly that for an interior vertex v, φ−1(v) contains more points
than the fixed point set itself. For a wall W on the boundary, φ−1(W) is
fixed by the circle generated by the direction perpendicular to W. For a
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wall W inside �, φ−1(W) consists more than just a submanifold which is
fixed by the circle generated by the direction perpendicular to W.

Lemma 3.5. Suppose X1, X2, . . . , Xk are connected components of the fixed
point set of T such that φ(Xi), i = 1, . . . , k are boundary vertices vi, i =
1, . . . , k of the polytope �. Then π1(Mvi) ∼= π1(Xi) ∼= π1(M), for i= 1, . . . , k.

Proof. The first equality is clear since φ−1(vi) = Xi (see Remark 3.3) and
Xi is fixed by T . To prove the second equality, choose a sub-circle in T such
that vi is the maximal value of the moment map for the circle action. Then
we apply Theorem 1.1. �

Remark 3.4. Although we are proving Theorem 1.2, the following proofs
of Lemmas 3.6 and 3.7 cover the case of S1 actions.

Lemma 3.6. For two values a, b near each other in one connected
chamber of �, we have π1(Ma) ∼= π1(Mb). Therefore, by connectivity of the
chamber, for all values a in this chamber, π1(Ma)′s are all isomorphic.

Proof. Take two regular values a and b close enough. By the equivariant co-
isotropy embedding theorem, there exists a small neighborhood U containing
a and b such that U consists of regular values, and φ−1(U) is isomorphic to
φ−1(a) × U , where T acts on φ−1(a) and the moment map is the projection
to U . So Ma is diffeomorphic to Mb. So π1(Ma) ∼= π1(Mb). �

Lemma 3.7. Let c be a non-regular value on �. Let a be a regular value
such that it is very near c. Then π1(Mc) ∼= π1(Ma).

Proof of Theorem 1.2:

Proof. Theorem 1.2 follows from Lemmas 3.5, 3.6, and 3.7. �

Lemma 3.7 follows from the following Lemma 3.8. Let us first recall the
following theorem on the convergence of the gradient flow of the moment
map square:

Theorem 3.8. ([15] or [10]) Let (M, ω) be a connected Hamiltonian G-
manifold with proper moment map φ, where G is a connected compact Lie
group. Choose a G-invariant metric on M . Assume that the moment
map image intersects a neighborhood of 0 (the image not necessarily fills
an open neighborhood of 0). Then there exists a G-invariant open neigh-
borhood U ⊂ g∗ of 0 such that the negative gradient flow of the moment
map square induces a G-equivariant deformation retraction from φ−1(U)
to φ−1(0).

If G is a torus, we can always shift the moment map (by a constant) such
that a value c we consider corresponds to the 0 value of the new moment
map, so without loss of generality, we can regard c as 0.
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Assume G is a torus. Take U as in Theorem 3.8. Let U ′ be the intersection
of U with a connected open chamber, and, let Ū ′ be its closure in U . Then
φ−1(Ū ′) also G-equivariantly deformation retracts to φ−1(0).

Lemma 3.8. Let c be a value on a singular face of �, and let a be a regular
value very near c. Let U be a small open neighborhood of c on � containing
a such that φ−1(U) equivariantly deformation retracts to φ−1(c). Let U ′ be
the intersection of U with the connected open chamber containing a, and
let Ū ′ be its closure in U . Let B be the set of values in Ū ′ but not in U ′.
Then π1(φ−1(Ū ′)/T ) ∼= π1(φ−1(Ū ′)/T −φ−1(B)/T ), i.e., π1(Mc) ∼= π1(Ma).

We could use the set U itself, and apply a removing and flowing (by using
the gradient flow) process to achieve π1(Mc) ∼= π1(Ma). I found that I still
would have to do the above removing in the end. So taking Ū ′ is more
convenient.

In order to prove the above lemma, let us recall the following Local Normal
Form theorem for abelian Lie group actions.

Theorem 3.9. (Local normal form) ([8]) Let (M, ω) be a symplectic mani-
fold with a Hamiltonian torus T action. Let H be the isotropy subgroup
of a point p in M . Then a neighborhood in M of the orbit through p is
equivariantly symplectomorphic to T×H (b⊥×V ), where b⊥ is the annihilator
of b = Lie(H) in t∗ on which H acts by the co-adjoint action (trivial in
this case), and V is a complex vector space on which H acts linearly and
symplectically.

The equivalence relation on T ×H (b⊥ × V ) is given by (t, a, v) ≈
(th−1, a, h · v) for h ∈ H.

The T action on this local model is t1 · [t, a, v] = [t1t, a, v], and the moment
map on this local model is φ([t, a, v]) = φ(p) + a + ψ(v), where ψ(v) is the
moment map for the H action on V .

Remark 3.5. By Theorem 3.9, if an orbit has stabilizer H, then the nearby
orbits of this orbit have stabilizers no bigger than H. So, when we remove a
connected stratum which is more singular, we will not destroy the link of its
nearby (less singular) strata. If a face F of � is in the closure of the face F ′,
then φ−1(F) contains more singular (with bigger stabilizer groups) strata
than the strata in φ−1(F ′). In Lemma 3.8, if F is the face in U containing
the singular value c, then it is the most degenerate face in U .

The proof of Lemma 3.8 is a removing process. According to Lemma 1.3,
the quotient space of a smooth manifold by a compact Lie group action is a
stratified space, and certain removing of strata from the quotient keeps π1
of the resulting space the same as π1 of this quotient itself. The φ−1(Ū ′)
we took is not a manifold. Nevertheless, the analysis of the neighborhoods
allows us to perform the removing in φ−1(Ū ′)/T .
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Proof. Assume that F is the singular face in U containing c. Let m ≥ 0
be its dimension. The face F is the most degenerate face in U and in Ū ′.
According to Remark 3.5, we first remove φ−1(F)/T .

Assume the dimension of the torus T is n. Let us identify the Lie algebra
t of T with its dual t∗. The m-dimensional linear subspace L which contains
F as an open set generates a subtorus Tm. If F is not a wall, the comple-
mentary linear subspace of L in t spanned by the set S of other directions of
one-dimensional faces of Ū ′ generates a complementary subtorus Tn−m. If
F is a wall, then we take the direction orthogonal to L as a complementary
direction, and we take the complementary subtorus of Tm generated by this
direction. So, we have chosen a splitting T = Tn−m × Tm.

Notice that the most singular stratum in φ−1(F) has stabilizer Tn−m ×Γ,
where Γ is a finite subgroup of Tm. The set φ−1(F) may contain other strata
with stabilizer(s) of the form H = (T1 × Γ′) × Γ, where T1 is a connected
subgroup of Tn−m generated by directions of some 1-dimensional faces of
Ū ′, Γ′ is a finite subgroup of a complementary group T2 of T1 in Tn−m. (We
may have a different finite group Γ which is a subgroup of the previous Γ.
But this will not affect the proof, so we use the same notation). Here, we
chose T2 to be the subgroup of Tn−m generated by the rest of the directions
in S of 1-dimensional faces of Ū ′ when F is not a wall, and, we chose T2
to be trivial or to be the subgroup generated by the orthogonal direction of
L when F is a wall (remember that in this case n − m was 1).

By Theorem 3.9, a neighborhood in M of an orbit with isotropy type
H is isomorphic to A = T ×H (Rl × R

m × V ). The moment map on
A is φ = a + b + ψ(v), where a ∈ R

l, b ∈ R
m, and ψ is the moment

map of the H action on V (we assumed that “c = 0”). We split
V = W × V H , where W has no non-zero fixed vectors by H. Then ψ is
just ψ|W . So A ∩φ−1(Ū ′) = T ×H ((Rm × V H) × ((R+)l × W ∩ψ−1(Ū ′)))
(strictly speaking, the above R

m should be a small open disk in R
m cor-

responding to F ∩ Ū ′), where (R+)l are the non-negative real (half) lines
pointing towards Ū ′. The H-stratum in A ∩φ−1(Ū ′) which was mapped
to F is T ×H (Rm × V H). The link LH of the corresponding quo-
tient H-stratum in (A ∩φ−1(Ū ′))/T is S((R+)l × W ∩ψ−1(Ū ′))/H. Here,
S((R+)l × W ∩ψ−1(Ū ′)) is the intersection of S(Rl × W ) with (R+)l ×
W ∩ψ−1(Ū ′). Now, we consider all the possible cases of H (will correspond
to different l).

1. In the case of l = 0 (corresponding to H = Tn−m × Γ), since we
assumed that the moment map value fills U ′, the moment map ψ|W
has to be non-trivial. By Remark 3.6 and Lemma 3.9 below, the link
is connected and simply connected.

2. In the case of l �= 0 and W �= 0, by Remark 3.7 and Lemma 3.10 below,
the link LH is connected and simply connected.



356 H. LI

3. In the case of l �= 0 and W = 0 (all the points in A ∩φ−1(Ū ′) have the
same stabilizer group H which has to be the generic stabilizer group),
the link LH = S((R+)l)/H = S((R+)l) is connected and simply con-
nected.

If there are more singular faces left in Ū ′, we remove similarly as
above. �

Remark 3.6. For Case 1 in the proof of Lemma 3.8, we needed to consider
the quotient (S(W ) ∩ψ−1(Ū ′))/(Tn−m×Γ), where W is a complex (Tn−m×
Γ)-representation isomorphic to some (C)n (it splits into a product of C) on
which Tn−m × Γ acts as a subgroup of the maximal torus of U(n). Due
to how cyclic group acts on (C)n, and due to the fact that a finite group
action does not contribute to ψ, we can first divide W by Γ, we get W/Γ
homeomorphic to W . The action of Tn−m on W/Γ corresponds to a “weight
change” comparing to the action of Tn−m on W . Therefore, we can restrict
attention to the case of the following lemma.

Lemma 3.9. Let C
n be an effective T k symplectic representation, where

T k is a connected torus, and k ≤ n. Let ψ be the moment map for the T k

action. Let U ′ ⊂ (tk)∗ be an open connected chamber consisting of regular
values of ψ, and let Ū ′ be its closure. Let S′ = S2n−1 ∩ψ−1(Ū ′). Then, the
quotient S′/T k is always connected and simply connected.

Proof. When k = n, Tn corresponds to the maximal torus of U(n). It acts
on C

n in the standard way with moment map ψ = (|z1|2, |z2|2, . . . , |zn|2).
In this case, S′ = S2n−1. So S′/T k is either a point when n = 1, or it is
connected and simply connected by Lemma 2.2.

Now assume that k < n. We may assume that n > 1. Then
T k acts on C

n as a subtorus of Tn. Its moment map ψ is the pro-
jection of the above moment map to the dual Lie algebra of T k, i.e.,
ψ = α1|z1|2 + α2|z2|2 + · · · + αn|zn|2, where αi, i = 1, . . . , n are weight
vectors in (tk)∗. Then Ū ′ is formed by the cone with non-negative coeffi-
cients spanned by p with p ≥ k number of vectors among αi, i = 1, . . . , n.
Without loss of generality, we assume that they are the first p vectors. Any
k number of linearly independent vectors among them generates T k. Take
k number of linearly independent vectors, say the first k vectors, among the
p number of vectors, and write each of αi, i = p + 1, . . . , n as linear com-
binations of αi, i = 1, . . . , k: αi = ai1α1 + · · · + aikαk for i = p + 1, . . . , n.
Then ψ = (|z1|2 +

∑
i≥p+1 ai1|zi|2)α1 + · · · + (|zk|2 +

∑
i≥p+1 aik|zi|2)αk +

|zk+1|2αk+1 + · · · + |zp|2αp =
∑

i≤p fiαi. So ψ−1(Ū ′) = {z ∈ C
n : fi(z) ≥

0, i = 1, . . . , p}. Since the action is linear and the moment map is homoge-
neous, we only need to prove that ((Cn −0) ∩ψ−1(Ū ′))/T k is connected and
simply connected. Now consider (Cn −0) ∩ψ−1(Ū ′). Since 0 (very singular)
is taken away, we can perturb the set a little bit using the gradient flow of
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some fi without changing the topology so that the above intersection has
the same topology as a union of the sets Ai = {z ∈ C

n : fi > 0, fJ ≥ 0}
for some i = 1, . . . , p, where J = {1, . . . , i − 1, i + 1, . . . , p}. We move
the terms with negative coefficients in each of fi to the right hand side
of fi ≥ 0. For a fixed set Ai, we equivariantly deformation retract all
the zls

′ (which occured in fi > 0 and in fJ ≥ 0) with l > p which are
not on the left hand side of fi to 0. Now, the possibilities are: (a) The
right hand sides of all fJ are 0, then the inequalities fJ ≥ 0 do not give
any condition. The inequality fi > 0 (after deforming the right hand
side to 0) represents a copy of C

∗ or a simply connected sphere. So Ai

is deformed into C
∗ or a simply connected sphere or a product of one of

them with some copies of C represented by some coordinates on the left
hand sides of fJ but not on the left hand side of fi. So Ai/T k is con-
nected and simply connected. (b) The right hand sides of fJ are not 0.
Then, we perform some algebraic operations between the inequalities, we
have a new fi. We equivariantly deform the coordinates which are not on
the left hand side of the new fi to 0 again, and, we may need to repeat
this process until we have case (a) with a different fi from the original
one. The set ((Cn − 0) ∩ψ−1(Ū ′))/T k is obtained by gluing the connected
and simply connected Ai/T ks’. Now, we only need to see that the inter-
section of each two of Ais

′ is connected. We may treat the intersections
similarly as the above (now we have two strict inequalities), i.e., we use
algebraic operations and we use deformations until we can deform all the
right hand sides to 0. Now we have two strict inequalities fi > 0, fj > 0
with (quadratic terms and) positive coefficients. The inequalities repre-
sented by fJ ′ ≥ 0 (where J ′ = {1, . . . , p} − {i, j}) with positive coefficients
do not give conditions. So the coordinates on the left hand side of fJ ′ ≥ 0
but not on the left hand sides of fi > 0, fj > 0 are free. If there are no
common coordinates in fi > 0 and fj > 0, we see that the intersection
is a product of connected sets therefore connected. Otherwise, by writing
the intersection as a union of products of C

∗s′ with Cs′ which are con-
nected and which have connected intersections, we see that, the intersec-
tion of the two Ais are connected. The Van-Kampen theorem justifies the
conclusion. �

Remark 3.7. In the local model A = T × H(Rl × R
m ×V ) with H = T1 ×

Γ′ × Γ we considered in the proof of Lemma 3.8, if we divide A by Tm, we
get A/Tm = Tn−m ×(T1×Γ′) ((Rl × W/Γ) × (Rm × V H)) = (Tn−m ×(T1×Γ′)

(Rl × W/Γ)) × (Rm × V H). Now, for Case 2 in the proof of Lemma 3.8,
we “forget” the component (Rm × V H) (it was mapped to the face F)
and we count the fact that W/Γ is homeomorphic to W and the fact that
a finite group does not contribute to the moment map, we may restrict
attention to the case of the following lemma. In the following lemma, the
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U ′ is the intersection of the U ′ in Lemma 3.8 and the moment map image
on A′.

Lemma 3.10. Let T be a d-dimensional torus acting in a local model (see
Theorem 3.9) A′ = T ×(T1×Γ′) (Rl × W ), where T1 is a connected subgroup
with dimension less than d (so l �= 0), Γ′ is a finite subgroup, and W is
a complex T1 × Γ′ representation with no non-zero fixed vectors. Let the
moment map of the T action on A′ be φ([t, a, z]) = a + ψ(z). Let U ′ ⊂ t∗

be an open connected chamber consisting of regular values of φ, and let
Ū ′ be its closure. Let S′ = S((R+)l × W ∩ψ−1(Ū ′)). Then, the quotient
S′/(T1 × Γ′) is connected and simply connected.

Proof. We can see (as we did before) that S′/(T1 × Γ′) is the link of the
quotient (T1 × Γ′)-stratum in (A′ ∩φ−1(Ū ′))/T .

The group T1 × Γ′ acts on (R+)l trivially; and, for a similar reason as
we made in Remark 3.6 about cyclic group action on W and about its
trivial contribution to ψ, we can “ignore” Γ′, and consider S′/T1. Assume
T1 is of dimension k (k + l = d). We use the same notations as we did
in the proof of Lemma 3.9, we have (assume W is isomorphic to some C

n)
W ∩ψ−1(Ū ′) = {z ∈ C

n : fi(z) ≥ 0, i = 1, . . .}. For a similar reason as in
the proof of Lemma 3.9, we consider the intersection S′′ = ((Rl × C

n) −
0) ∩ ((R+)l × {z ∈ C

n : fi(z) ≥ 0, i = 1, . . .}), and we prove that S′′/T1 is
connected and simply connected. We perturb the set S′′ such that it has the
same topology as a union of the sets Ai′,i = {(a1, . . . , al) ∈ R

l, z ∈ C
n : ai′ >

0, aJ ′ ≥ 0, fi > 0, fJ ≥ 0} for some i′ = 1, . . . , l or for some i = 1, . . . , p,
where J ′ = {1, . . . , l} − i′ or J = {1, . . . , p} − i (only one of i′ and i is non-
empty, so J ′ = {1, . . . , l} or J = {1, . . . , p}). We argue as we did in the proof
of Lemma 3.9 that each Ai′,i/T1 is connected and simply connected, and the
intersection of each two of these sets is connected. We glue them together
and we use the Van-Kampen theorem to prove that S′′/T1 is connected and
simply connected. �

4. Cross-section theorem and local normal form theorem

In this section, we will first recall the Cross-section theorem due to Guillemin
and Sternberg. These cross-sections will give us symplectic submanifolds
with lower dimensional subgroup actions. Then, we will state the Local
Normal Form Theorem for Hamiltonian Lie group actions, due to Guillemin–
Sternberg, and Marle.

4.1. Cross-section Theorem.

Definition 4.3. Suppose that a group G acts on a manifold M . Given
a point m in M with isotropy group Gm, a submanifold U ⊂ M contain-
ing m is a slice at m if U is Gm-invariant, G ·U is a neighborhood of m,
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and the map

G ×Gm U −→ G ·U, [a, u] �−→ a ·u is an isomorphism.

For instance, consider the co-adjoint action of G = SU(2) or SO(3) on
R

3 = Lie(G). Recall that all the co-adjoint orbits through non-zero points
in R

3 are diffeomorphic to S2 (these are generic co-adjoint orbits), and the
co-adjoint orbit through 0 is 0 (this is a singular co-adjoint orbit). For
x ∈ R

3, x �= 0, there is a unique ray Ix passing through 0 and x. It is easy
to see that the open ray I◦

x = Ix − 0 is a slice at x. If x = 0, then a slice at
0 is R

3.
More generally, let us consider the co-adjoint action of a connected com-

pact Lie group G on g∗. For x ∈ g∗, let Ux be the natural slice at x for the
co-adjoint action. Fix a (closed) positive Weyl chamber t∗+, without loss of
generality, we assume x ∈ t∗+. Let τ ⊂ t∗+ be the open face of t∗+ containing
x and let Gx be the isotropy group of x (all the points on τ have the same
isotropy group). Then Ux = Gx · {y ∈ t∗+|Gy ⊂ Gx} = Gx ·

⋃
τ⊂τ̄ ′ τ ′, and it

is an open subset of g∗
τ = g∗

x.

We have the following Cross-section theorem due to Guillemin and Stern-
berg (Theorem 26.7 in [7]; for the following version, see Corollary 2.3.6
in [5]).

Theorem 4.10. (Cross-section). Let (M, ω) be a symplectic manifold with
a moment map φ : M → g∗ arising from an action of a compact connected
Lie group G. Let x be a point in g∗ and let U be the natural slice at x. Then
the cross-section R = φ−1(U) is a Gx-invariant symplectic submanifold of
M , where Gx is the isotropy group of x. Furthermore, the restriction φ|R is
a moment map for the action of Gx on R.

4.2. Local normal form theorem. The following local normal form theo-
rem describes up to equivariant isomorphism a neighborhood of an isotropic
orbit in a Hamiltonian G-manifold.

Theorem 4.11. (Local normal form) ([8]) Let (M, ω) be a symplectic mani-
fold with a Hamiltonian connected compact Lie group G action. Assume
p ∈ M , and the orbit G · p is isotropic. Let H be the isotropy subgroup
of p. Then a neighborhood of the orbit through p in M is equivariantly
symplectomorphic to G×H (b◦×V ), where b◦ is the annihilator of b =Lie(H)
in g∗ on which H acts by the co-adjoint action, and V is a complex vector
space on which H acts linearly and symplectically.

The equivalence relation on G ×H (b◦ × V ) is given by (g, a, v) ≈
(gh−1, h · a, h · v) for h ∈ H.

The G action on this local model is g1 · [g, a, v] = [g1g, a, v], and the
moment map on this local model is φ([g, a, v]) = Ad∗(g)(φ(p) + a + ψ(v)),
where ψ(v) is the moment map for the H action on V .
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5. Proof of Theorem 1.3 in the case of G=SU(2) or G=SO(3)

As an example, we will prove Theorem 1.3 for the action of G = SU(2) and
G = SO(3). This will give us the flavor of the proof of Theorem 1.3.

If 0 is the only value in the moment map image, then by the definition of
the moment map, G acts trivially on M . So the theorem is trivial in this
case.

Let us now assume that φ has non-zero values. Using Theorem 4.10, we
will first reduce the proof of the theorem at non-zero values to a circle action
case.

Lemma 5.11. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian SU(2) or SO(3) action. Assume the moment
map image has non-zero values. Then, as fundamental groups of topologi-
cal spaces, π1(M) ∼= π1(Mred), where Mred is the symplectic quotient at any
non-zero value of the moment map φ.

Proof. Let x ∈ im(φ), and x �= 0. Let I◦
x be the natural slice at x, and

take R = φ−1(I◦
x). By Theorem 4.10, R is a symplectic submanifold with

a Hamiltonian S1 action whose moment map is φ|R and φ|R is proper onto
its image. From Theorem 1.5, we can deduce that R is connected. By
Lemma 3.6 and Lemma 3.7 (see Remark 3.4), π1(Ma) ∼= π1(Mb) for any
a, b ∈ I◦

x.
This same S1 acts on M with moment map being the projection of φ

to R = Lie(S1). Let us use φp to denote this “projected” moment map.
Suppose it has maximal value z. Then z ∈ I◦

x, and φ−1
p (z) = φ|−1

R (z)
is the maximum on M of φp. By Theorem 1.1, π1(M) ∼= π1(φ−1

p (z)) ∼=
π1(φ−1

p (z)/S1) ∼= π1(φ|−1
R (z)/S1) ∼= π1(Mz). �

Lemma 5.12. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian SU(2) or SO(3) action. Assume 0 and ε small
are in the moment map image. Then π1(M0) ∼= π1(MG · ε).

The proof of Lemma 5.12 relies on Theorem 3.8 and Lemma 5.13 below.

Lemma 5.13. Under the assumptions of Lemma 5.12, there exists a small
G-invariant open neighborhood U = { x ∈ R

3| |x| < ε0}, such that U − 0 con-
sists of regular values, and such that π1(φ−1(U)/G) ∼= π1(φ−1(U)/G −M0).

Assume we have this. The proof of Lemma 5.12 goes as the following.

Proof. Assume that we have taken U small enough such that we can use
Theorem 3.8. Therefore, π1(M0) ∼= π1(φ−1(U)/G). By Lemma 5.13,
π1(φ−1(U)/G) ∼= π1(φ−1(U)/G − M0). The space φ−1(U)/G − M0 is
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homotopy equivalent to φ−1(G · ε)/G = Mε. To see this, by the Symplec-
tic Cross-section Theorem, φ−1(U) − φ−1(0) is the total space of a fibra-
tion over S2 (a co-adjoint orbit) with fiber φ−1(I), where I is an open
interval. Since all values in I are regular, φ−1(I) is isomorphic to φ−1(ε)× I
which is equivariantly homotopy equivalent to φ−1(ε). Therefore, φ−1(U) −
φ−1(0) is equivariantly homotopy equivalent to the total space of a fibra-
tion over S2 with fiber φ−1(ε), and this space is φ−1(G · ε). So π1(M0) ∼=
π1(Mε). �

It remains to prove Lemma 5.13.

Proof. By equivariance of the moment map and by continuity, we see that
if φ takes value 0 and a non-zero value, it has to take values in an open
neighborhood of 0. Since M is compact, by considering a subcircle action,
we see that if we take U small enough, then U − 0 consists of regular values
of φ.

By Lemma 2.1, φ−1(U)/G is a stratified space. By [13], φ−1(0) and
M0 are stratified spaces. If there is only one stratum, then these spaces are
manifolds. The sub-groups of G = SU(2) or SO(3) are finite, 1-dimensional,
including S1 and its normalizer N(S1), and G itself. So φ−1(0) and M0 may
contain strata with some or all of these orbit types.

We will remove strata of M0 from φ−1(U)/G in the order of lower dimen-
sional ones (with “bigger” isotropy groups) to higher dimensional ones. By
Lemma 2.3, we only need to prove that the link of each removed stratum is
connected and simply connected.

Assume there is an (H)-stratum in M0. By Theorem 4.11, a neighborhood
A in M of a connected component of the (H)-stratum of φ−1(0) is isomorphic
to A = G ×H (b⊥ × V ), where b⊥ is the annihilator of b = Lie(H) in g∗.
Split V = W ⊕ V H . By Lemma 2.1, the link of the connected component of
the (H)-stratum in A/G is LH = S(b⊥ × W )/H.

1. Assume H = G. Then the above LH = LG = S(W )/G. Since the
moment map image intersects a neighborhood of 0, W has to be a
non-trivial complex G-representation, so S(W ) (with high dimension)
is connected and simply connected. By Lemma 2.2 or by Theorem 2.7,
LG is connected and simply connected.

2. Assume H = N(S1). Then the above LH = S(R2 ×W )/N(S1), where
R

2 is such that R
2 ⊕ Lie∗(N(S1)) = g∗. In this case, N(S1) acts on

R
2 as the action of O(2). If W = 0, LH is a point. Otherwise, by

Theorem 2.7, LH is connected and simply connected.
3. Assume H = S1. Similar to 2.
4. Assume H = Γ, where Γ is a finite subgroup of G. Then the above

link is LH = LΓ = S(R3 × W )/Γ. Since each element of Γ belongs
to a maximal torus of G, it has a non-zero fixed vector in S(R3). By
Theorem 2.7, LΓ is connected and simply connected. �
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6. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.
Let G be a connected compact non-abelian Lie group with Lie algebra g

and dual Lie algebra g∗. Let t∗+ be a fixed closed positive Weyl chamber
of g∗. The set t∗+ intersects each co-adjoint orbit at a unique point, and it
consists of open faces with different dimensions. All the points on a fixed
open face of t∗+ have the same stabilizer group under the co-adjoint action.
We advise the reader to distinguish Weyl chamber and the faces of the Weyl
chamber in this section with the chamber and faces of the abelian moment
polytope in Section 3 for which we used and we will use black letters.

By Theorem 1.5, φ(M) ∩ t∗+ = �′ is a convex polytope. Let us call
the highest dimensional face τP of t∗+ which contains values of φ the
principal face, and let us call the generic values of φ on G · τP generic
values of φ. Let GτP (connected) be the stabilizer group of τP under the
co-adjoint action. Let UτP be the slice at τP . By Theorem 4.10, GτP acts on
the principal cross-section φ−1(UτP ). Split GτP = G′

τP ×TτP , where G′
τP

is semi-simple, and TτP is abelian. By Theorem 3.1 in [11] (see the cited
theorem below), the semi-simple part G′

τP acts trivially, only the connected
central torus TτP of GτP acts on φ−1(UτP ) non-trivially. If τP is in the
open positive Weyl chamber σ of t∗+, then φ−1(Uσ) has the maximal torus
T action. Otherwise, the central torus TτP of GτP which acts on φ−1(UτP )
has a smaller dimension than the dimension of the maximal torus T of G.

Let us write Theorem 3.1 in [11] in the following

Theorem 6.12. Let G be a compact connected Lie group, and M a con-
nected Hamiltonian G-manifold with moment map φ : M → g∗.

a. There exists a unique open face τP of the Weyl chamber t∗+ with the
property that φ(M) ∩ τP is dense in φ(M) ∩ t∗+.

b. The preimage Y = φ−1(τP ) is a connected symplectic TτP -invariant
submanifold of M , and the restriction φ|Y of φ to Y is a moment map
for the action of TτP .

c. The set G ·Y = {g ·m | g ∈ G, m ∈ Y } is dense in M .

Remark 6.8. For Theorem 1.3, without loss of generality, let us assume
that the principal stabilizer type of the points in M intersects the center
of G trivially. If not, the above intersection subgroup (which is contained
in the center) is contained in all the stabilizer groups of the points in M , so
we can divide it out and consider the quotient group action.

The proof of Theorem 1.3 consists of Lemmas 6.14–6.16.

Lemma 6.14. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian G action with moment map φ, where G is
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a connected compact non-abelian Lie group. Assume that a G-invariant
metric is chosen on g∗. Let b ∈ t∗+ be the furthest moment map value from
the origin. Then π1(M) ∼= π1(Mb).

Proof. Let the Weyl group act on �′. The image of �′ under this action is
a polyhedron set (not necessarily convex) in t∗, and, we see that the Weyl
group orbit through b consists of the furthest points in t∗ to the origin, they
are some boundary vertices of the polyhedron.

The maximal torus T of G acts on M with moment map φT being the
projection to t∗ of the G moment map φ. By Theorem 1.4, this moment
map image is a convex polytope. The point b (and its Weyl group images)
is a boundary vertex of the image of φT . To see this, take the line segment
ob, take the hyperplane in g∗ perpendicular to ob. Only the G moment
map images on this hyperplane will be projected to b. But, there cannot
be points other than b on this hyperplane which are in the G moment map
image. If there was, then this point is further than b to the origin, and
the intersection of t∗+ and the co-adjoint orbit through this point would be
a point on �′ which is further than b to the origin. So we have proved
that φ−1(b) = φ−1

T (b) is a fixed point set component of the T action on M .
Therefore φ−1(b) is a compact symplectic manifold with a trivial T action.

Let Gb be the stabilizer group of b under the co-adjoint action. Then Gb

acts on φ−1(b). The maximal torus of Gb is also T . Since T acts trivially
on φ−1(b), Gb acts trivially on φ−1(b). So π1(Mb) ∼= π1(φ−1(b)) ∼= π1(M) by
Lemma 3.5. �

Lemma 6.15. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian G action with moment map φ, where G is a con-
nected compact non-abelian Lie group. Let τP ⊂ t∗+ be the principal face,
and let a, b ∈ τP be any two moment map values. Then π1(Ma) ∼= π1(Mb).

Proof. By Theorem 6.12, the principal cross-section φ−1(UτP ) = Y is
a connected symplectic submanifold of M with a torus TτP action whose
moment map is φ|Y . Since φ|Y is proper onto its image, we can use Theo-
rem 3.8. So we still have Lemma 3.8 which implies Lemma 3.7. By Lem-
mas 3.6 and 3.7, we have π1(Ya) ∼= π1(Yb) for all a, b ∈ τP . By definition of
the reduced spaces, this is to say π1(Ma) ∼= π1(Mb). �

Lemmas 6.14 and 6.15 immediately imply the following special case of
Theorem 1.3.

Corollary 6.1. Let (M, ω) be a connected, compact symplectic manifold
equipped with a Hamiltonian G action with moment map φ, where G is a
connected compact non-abelian Lie group. Assume that the polytope φ(M)∩
t∗+ = �′ only lies on one face of the positive Weyl chamber, i.e., the moment
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polytope only has a principal face. Then, as fundamental groups of topo-
logical spaces, π1(M) ∼= π1(Mred), where Mred is the symplectic quotient at
any co-adjoint orbit of the moment map φ.

For general cases, if we have Lemmas 6.14 and 6.15, we are only left to
show the following.

Lemma 6.16. Let (M, ω) be a connected compact symplectic manifold
equipped with a Hamiltonian G action with moment map φ, where G is
a connected compact non-abelian Lie group. Let τP be the principal face
of the moment polytope. Let c be a value of φ which is not on τP , i.e., c is
on a lower dimensional face of t∗+. Let a be a generic value on τP very near
c. Then π1(Mc) ∼= π1(Ma).

Now, assume c ∈ τ , where τ is a face of t∗+. Let Gτ be the stabilizer
group of points on τ under the co-adjoint action. Then Gτ is a compact and
connected Lie subgroup. Clearly, Gτ contains T . Let Uc be the natural slice
(see Section 4) at c. By Theorem 4.10, Uc contains τP . Let R = φ−1(Uc)
be the cross-section (see Theorem 4.10) on which Gτ acts with moment
map being φ|R. Since Gτ ·φ−1(τP ) is open, dense and connected in R by
Theorem 6.12, R is connected. By definition of the reduced spaces at c and
at a, to compare π1 of the two quotients Ma and Mc, we may restrict atten-
tion to (R, ω|R, Gτ , φ|R). Split Gτ = G1 × T2, where G1 is semi-simple, and
T2 is abelian and it is the connected component of the center of Gτ . The
linear space spanned by the face τ is the dual Lie algebra of T2. Since τ
lies on the center of g∗

τ , we may shift the moment map φ|R by c such that
the value c corresponds to the value 0 of the shifted moment map φ′|R. So,
without loss of generality, we assume that we have the Hamiltonian space
(R, ω|R, Gτ , φ

′|R), and we want to prove that π1(R0) ∼= π1(RGτ · a), where
a ∈ τP is a generic value near 0 in g∗

τ . Although R may not be compact,
since M is compact, the moment map φ|R is proper onto its image. So, if we
take a small Gτ -invariant neighborhood U of 0 in g∗

τ , we may assume that
the G-equivariant gradient flow of f = ‖φ‖2 restricts to the Gτ -equivariant
gradient flow of ‖φ|R‖2 on φ|−1

R (U). By Theorem 3.8, there exists a smaller
Gτ -invariant neighborhood U ′ of 0, such that φ|−1

R (U ′) is Gτ -equivariantly
homotopy equivalent to φ|−1

R (0).

So we only need to prove the following general lemma.

Lemma 6.17. Let (N, ω) be a connected symplectic manifold equipped with a
Hamiltonian K action with moment map φ which is proper onto its image,
where K is a connected compact non-abelian Lie group. Assume that the
moment map takes value at 0 and it takes values in a neighborhood of 0 in
k∗ (not necessarily that the moment map image fills an open neighborhood of
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0). Let a be a generic value near 0 in the positive Weyl chamber t∗+. Then
π1(N0) ∼= π1(Na).

Lemma 6.18. Under the assumptions of Lemma 6.17, assume in addition
that U ⊂ k∗ is a small open invariant neighborhood of 0 such that φ−1(U)
equivariantly deformation retracts to φ−1(0). Let B be the set of values in U
which are on the faces other than the principal face τP of the closed positive
Weyl chamber and the set of values which are on τP but not on the open
connected chamber of generic values containing a. Then π1(φ−1(U)/K) ∼=
π1(φ−1(U)/K − φ−1(K ·B)/K).

Assume we have this lemma. Then the proof of Lemma 6.17 goes as the
following.

Proof. Since φ−1(U) equivariantly deformation retracts to φ−1(0), we have
π1(φ−1(U)/K) ∼= π1(N0). By Lemma 6.18, π1(φ−1(U)/K) ∼= π1(φ−1(U)
/K − φ−1(K ·B)/K) ∼= π1(Na). �

It is left to prove Lemma 6.18. The following two facts about the co-
adjoint action of a connected compact Lie group are needed in the proof of
Lemma 6.18.

Proposition 6.2. Let G be an n-dimensional connected compact Lie group
with Lie algebra g and dual Lie algebra g∗. Let H �= G be a subgroup of G
with Lie algebra Lie(H) = b, and let b◦ be the annihilator of b in g∗. The
space b◦ can be identified with the orthogonal complement b⊥ of b in g for a
suitable metric. The subgroup H acts on b◦ by the co-adjoint action. Then,
the smallest normal subgroup NH of H containing the identity component of
H and all those elements of H which have non-zero fixed points is H itself.

Proof. (1) If H is connected, we are done.
(2) Assume that H is not connected. Let H0 be the identity compo-

nent of H. Then H is generated by H0 and finitely many elements, say
h1, h2, . . . , hk. If we can prove that each hi, i = 1, . . . , k has a non-zero fixed
point in b◦, then we are done. Let T1 be a maximal torus of H. Then
T1 ⊂ H0. Let T be a maximal torus of G such that T = T1 × T2, where the
dual Lie algebra t2 of T2 is contained in b◦ (T1 or T2 can be trivial). If hi ∈ T ,
then t2 �= 0. So hi fixes the subspace t2 of b◦. If hi /∈ T , i.e., hi is in a differ-
ent maximal torus T ′ other than T , then the dual Lie algebra t′∗ of T ′ has
to have a non-zero component in b◦. Indeed, if t′∗ ⊂ b, then hi ∈ T ′ ⊂ H0,
a contradiction. So hi fixes the above non-zero component in b◦. �

Proposition 6.3. Let G be a connected compact semi-simple non-abelian
Lie group with Lie algebra g and dual Lie algebra g∗. Let H be a subgroup
of G with Lie algebra h. Let h◦ be the annihilator of h in g∗. If H �= G, then
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H has at least codimension 2. If H has codimension 2, i.e., if dim (h◦) = 2,
then H acts (co-adjoint action) on S(h◦) = S1 transitively.

Proof. Let g = t ⊕
⊕

α∈R+ Mα be the (real) root space decomposition of g,
where t is the Lie algebra of the maximal torus TG of G, and R+ is the set of
positive roots. We know that each root space Mα is 2-dimensional, and for
two generators X, Y ∈ Mα, there is a Z ∈ t, such that [Z, X] = 2X, [Z, Y ] =
−2Y, [X, Y ] = 2Z (this corresponds to the Lie algebra of SU(2)). Let TH

be the maximal torus of H. We can split h similar to the splitting of g. If
dim(TH) < dim(TG), then at least one vector of t is missing in Lie(TH) ⊂ h,
and at least one Mα is missing in h. Indeed, let us assume that dim(TH) =
dim(TG)−1. Let Z be the non-zero vector in t but not in Lie(TH). It is clear
that the linear space Mα which has the above mentioned property with Z
cannot be in h since h is a Lie algebra. If only one generator X ∈ Mα was in
h, then X would contribute to a vector in Lie(TH) which contradicts to the
fact that dim(TH) = dim(TG) − 1. Therefore, in the case that dim(TH) <
dim(TG), H has at least codimension 3 in G. If dim(TH) = dim(TG), then
t ⊂ h. Since H �= G, at least one Mα is missing in h. So, in this case, H
has at least codimension 2 in G. When codimension of H is 2, h◦ = Mα for
some α. So there is an S1 (generated by the above Z) in the maximal torus
of G which acts on S(h◦) = S1 transitively. �

Let us now proceed to prove Lemma 6.18. For the same reason as we
made in Remark 3.5, we will prove Lemma 6.18 by induction on removing
φ−1(K · τ)/K in the order of lower dimensional faces (τs’ whose preimage
may have bigger stabilizer groups) to higher dimensional faces of the closed
positive Weyl chamber. Let C be the central face of the closed positive
Weyl chamber t∗+. Write K = K1 × T1, where K1 is semi-simple, and T1 is
abelian (both K1 and T1 are connected). If C is the principal face, then by
Theorem 6.12, only the central torus T1 acts on N . Corollary 6.1 addressed
this case. In the following, we assume that C is not the only face which
contains the image of φ. Let us first remove φ−1(C)/K from φ−1(U)/K.

Lemma 6.19. Under the assumptions of Lemma 6.18, let C be the central
face of t∗+. Assume that C is not the only face which contains the image of
φ. Then π1(φ−1(U)/K) ∼= π1(φ−1(U)/K − φ−1(C)/K).

Proof. Let K = K1 × T1, where K1 is semi-simple, and T1 is abelian. Both
K1 and T1 are connected by assumption. Let the Lie algebra of K1 be k1,
and let its dual Lie algebra be k∗

1. Let the Lie algebra of T1 be t1, and let
its dual Lie algebra be t∗1 . Then C = t∗1 .

We will remove strata of φ−1(C)/K in the order of lower dimensional ones
to higher dimensional ones and use Lemma 2.3 repeatedly.
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Now, assume there is a stratum with isotropy type (H) (subgroups con-
jugate to H) in φ−1(C)/K. Then H has the form of a product H = H1 ×T ′,
where H1 is a subgroup of K1, and T ′ is a subgroup of T1. Let h⊥

1 be the
annihilator of the Lie algebra h1 = Lie(H1) in k∗

1, and let (t′)⊥ be the anni-
hilator of the Lie algebra t′ = Lie(T ′) in t∗1 . Since every orbit in φ−1(C)
is isotropic, we can use Theorem 4.11. By Theorem 4.11, a neighbor-
hood in N of an orbit in φ−1(C) with isotropy type (H) is isomorphic
to A = K ×H (b⊥ × V ), where b⊥ is the annihilator of b = Lie(H) in
k∗ = Lie∗(K). Let V = W ×V H . Write A = K ×H (h⊥

1 ×(t′)⊥ ×(W ×V H)).
The quotient A/K is (h⊥

1 × W )/H × (t′)⊥ × V H . The (H)-stratum of
φ−1(C)/K in A/K is (t′)⊥ × V H . The link LH of this connected (H)-
stratum is S(h⊥

1 × W )/H. Now, we consider all the possible cases of H.
1. Assume that H1 = K1. Then the above link is S(W )/(K1 ×T ′). Since

we assumed that the moment map image intersects not only the central
face of the positive Weyl chamber, W has to be a non-trivial complex
K1 representation. So S(W ) (with dimension at least 3) is connected
and simply connected. Due to the fact that the quotient of W by a
finite abelian group Γ is homeomorphic to W , we may assume that
T ′ is connected. By Lemma 2.2, the link LH is connected and simply
connected.

2. Assume H1 �= K1. By Proposition 6.3, dim(h⊥
1 ) ≥ 2.

First, let us assume that W �= 0, then dim(h⊥
1 ×W ) > 2. So S(h⊥

1 ×W )
is connected and simply connected. By Proposition 6.2 and Theo-
rem 2.7 (T ′ acts on h⊥

1 trivially), the link S(h⊥
1 × W )/(H1 × T ′) is

connected and simply connected.
Next, let us assume that dim(h⊥

1 ) = 2 and W = 0. The link is S(h⊥
1 )/H.

By Proposition 6.3, this link is a point, therefore connected and simply
connected.

Now, let us assume that h⊥
1 > 2 and W = 0. By Proposition 6.2 and

Theorem 2.7, the link is connected and simply connected. �
Proof of Lemma 6.18:

Proof. By assumption, 0 ∈ im(φ) and im(φ) intersects a small neighborhood
of 0. If the image of φ only lies on the central face C of the positive Weyl
chamber, then the main theorem comes down to the case of Corollary 6.1.
Now, we assume that the image of φ intersects not only one face of the
positive Weyl chamber.

Lemma 6.19 removed φ−1(C)/K from φ−1(U)/K.
Assume now that the image of φ intersects another higher dimensional

face τ other than τP of the positive Weyl chamber. Suppose the stabilizer
group of τ under the co-adjoint action is Kτ . Let Uτ be the natural slice
at τ . Then by the symplectic cross-section theorem, Yτ = φ−1(Uτ ) is a
symplectic submanifold with a Kτ action. The face τ lies on the central
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dual Lie algebra of Kτ . Similar to Lemma 6.19, we remove φ−1(τ)/Kτ

from (φ−1(U) ∩Yτ )/Kτ . In order to remove φ−1(K · τ)/K from φ−1(U)/K,
we only need to notice that, by equivariance of the moment map, each
stratum of φ−1(K · τ)/K has the same link in φ−1(U)/K as the corre-
sponding stratum of φ−1(τ)/Kτ in (φ−1(U) ∩Yτ )/Kτ . Indeed, to prove this,
observe that K ·Yτ is equivariantly diffeomorphic to the bundle K ×Kτ Yτ

over the co-adjoint orbit K/Kτ . So each connected stratum S̃ in K ·Yτ is
S̃ = K ×Kτ S̃′, where S̃′ is the corresponding stratum in Yτ . A neighbor-
hood of S̃ in K ·Yτ corresponds to a neighborhhood of S̃′ in Yτ . There-
fore, the quotient stratum S̃/K in K ·Yτ/K has the same link as S̃′/Kτ in
Yτ/Kτ . If we restrict to the invariant set φ−1(U), the same property still
holds.

We can remove similarly φ−1(K · τ ′)/K from φ−1(U)/K if the image of φ
intersects other non-principal faces τ ′s’ of the positive Weyl chamber.

Now assume only φ−1(K · (τP ∩U))/K is remaining. If all the values on
τP ∩U are regular, we are done. Otherwise, we will remove and “flow”
in the following way until only the connected open chamber containing a
is remaining. After we “removed” all the non-principal faces of the pos-
itive Weyl chamber, if on the “verge” of τP ∩U , there is an open con-
nected chamber U ′ not containing a, we use the gradient flow of suit-
able components of the T moment map to deformation retract φ−1(U ′) to
φ−1(Fs), where Fs are certain singular faces around U ′. Correspondingly,
by equivariance of φ again, φ−1(K ·U ′) deformation retracts to φ−1(K · Fs).
Then, we use Lemma 3.8 to remove φ−1(Fs)/TτP from the remaining
part of φ−1(τP ∩U)/TτP , and we use equivariance as above to remove
φ−1(K · Fs)/K. Or, we may only need to do removing if there is only
one connected open chamber which is the one containing a is left in τP ∩U
(the other singular faces are in the closure of this chamber). We may need
to repeat the procedure until only the connected open chamber containing
a remains.

Now, we have removed all φ−1(K ·B)/K from φ−1(U)/K. The remaining
space is homotopy equivalent to φ−1(K · a)/K = NK · a, where a is a generic
value in the chamber containing a. �

7. Proof of Theorem 1.6

In this section, we will prove Theorem 1.6. For simply connected manifold
M , Armstrong’s theorem (Theorem 2.7) tells us that π1(M) ∼= π1(M/G).
In this case, by Theorems 1.1–1.3, we have Theorem 1.6. In this section, we
use our method of removing to give a direct proof of Theorem 1.6. Since
we proved that all reduced spaces have isomorphic fundamental groups, we
only need to prove that M/G has the same fundamental group as that of a
particular reduced space.
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In Lemma 3.8, we did removing from “one side”, i.e., we took Ū ′. Now,
let us do a removing from “all sides”, i.e., we take U itself. The proof is
even simpler.

Lemma 7.20. Assume we have the assumptions of Theorem 1.6, where G
is a torus T . Let F be a face of the moment polytope � which is not a
chamber. Let U be a small open neighborhood of F on � (U does not
intersect the faces which are in the closure of F). Let S be the set of
singular orbits (or non-generic orbits) in φ−1(F). Then π1(φ−1(U)/T ) ∼=
π1(φ−1(U)/T − S/T ).

Proof. Assume that the dimension of the face F is m with m ≥ 0. We do the
removing from lower dimensional strata to higher dimensional strata. As we
did before, we only need to check that the link of the removed stratum is
connected and simply connected.

As in the proof of Lemma 3.8, we split the torus T = Tn−m × Tm. The
possible stabilizer types of the strata in φ−1(F) have the form H = (T1 ×
Γ′) × Γ, where T1 is a connected subgroup of Tn−m, Γ′ is a finite subgroup
of Tn−m, and Γ is a finite subgroup of Tm.

By Theorem 3.9, a neighborhood in M of an orbit with isotropy type
(H) is isomorphic to A = T ×H (Rl × R

m × V ). Split V = W × V H . If
W = 0, then all the points in A have the same stabilizer group. Since A
is open, this stabilizer group is the generic stabilizer group. So we assume
that W �= 0 by our assumption. The (H)-stratum in A which was mapped
to F is T ×H (Rm ×V H). The quotient of A by T is A/T = R

l ×R
m ×V H ×

W/H. The link LH of the corresponding quotient (H)-stratum in A/T is
S(Rl × W )/H. The possible cases of H (or of l) are:

1. In the case l = 0, since the moment map value fills the neighborhood
U , W has to be a non-trivial representation of H with a non-trivial
moment map. So either LH is a point, in the case of dim (W ) =
2, therefore connected and simply connected, or, it is connected and
simply connected by the fact that W/Γ is homeomorphic to W and by
applying Lemma 2.2 .

2. In the case l �= 0, S(Rl × W ) is simply connected (W is a non-trivial
complex vector space). By Theorem 2.7, LH is connected and simply
connected. �

Lemmas 3.8, 6.19, and 7.20 did “local removing”, namely, we chose small
neighborhoods of a value or of a face on the moment polytope. Note that
the removing itself does not depend on the gradient flow. In Lemmas 3.8 and
6.19, we chose U to be small neighborhoods of one value. As in Lemma 7.20,
if only for the purpose of removing (not for the purpose of comparing π1 of
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the reduced spaces at nearby values), we could have taken U in Lemmas 3.8
and 6.19 to be an open small neighborhood of the face we are considering.
Now, if we consider the global quotient M/G, we can do the same removing
in M/G, since the quotient of an orbit is only “linked” to its neighborhood
in the space M/G.

Another observation is that the gradient flow (or negative gradient flow)
of the components of the moment map or of the moment map square
always retracts less singular regions on the manifold to more singular
ones.

Lemmas 3.8, 6.19, and 7.20 allow us to remove (the quotients of certain
orbits). By using the gradient flow of suitable components of the moment
map, we can retract regular regions to singular ones. These two operations
are the main points of the proof of Theorem 1.6.

Proof of Theorem 1.6 for S1 actions:
Proof. Assume that the moment map takes critical values at a0, a1, . . . , an,
and we have a0 < a1 < · · · < an.

By Lemma 3.8 and an argument by the Van-Kampen theorem, we have
π1(M/S1) ∼= π1(M/S1 − Man). The right hand side is equal to π1(φ−1([a0,
an))/S1). Now the negative gradient flow of φ equivariantly deforma-
tion retracts φ−1([a0, an)) to φ−1([a0, an−1]). So π1(φ−1([a0, an))/S1) ∼=
π1(φ−1([a0, an−1])/S1). By Lemma 3.8 and a similar argument by the Van-
Kampen theorem as the above, π1(φ−1([a0, an−1])/S1) ∼= π1(φ−1([a0, an−1))
/S1). We use the negative gradient flow of φ again to “flow down”
the next regular region φ−1((an−2, an−1)) to φ−1([a0, an−2]). We repeat-
edly use the above procedure of removing and “flowing” until we reach
π1(M/S1) ∼= π1(Ma0). �

Proof of Theorem 1.6 for G = T actions:
Proof. Different removing and flowing process can achieve the proof. The
moment polytope � consists of faces with different dimensions; and, it
may have one or more than one connected open chambers. The main
tools we can use, or the main points of the proof are: (a) We can use
Lemma 7.20 to remove singular faces on the boundary of �. (b) The
inverse image of a singular face in the “interior” of � may contain reg-
ular orbits (orbits with generic stabilizer group). Whenever after we use
Lemma 7.20 for such a singular face, the gradient flow of some components
of the moment map always takes the remaining regular orbits to an appro-
priate regular region (the inverse image of an open chamber). (c) We can
start to remove from a vertex on the boundary of �. We follow the principle
we made in Remark 3.5 about the order of removing. We deform when it
is allowed by using the gradient flow of suitable components of the moment
map. When we encounter a removing of a singular face from the closure of
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only one connected chamber, we may use Lemma 3.8. (d) We can choose
different process. In the end, we arrive at π1(M/G) ∼= π1(Mb), where b is a
value on �. �

Proof of Theorem 1.6 for non-abelian G actions:
Proof. We use the method of Lemma 6.19 to inductively remove φ−1(G · τ)/G
from M/G for the faces τs’ which are not the principal face τP of the closed
positive Weyl chamber (Again, we may need the cross-section theorem to do
some removing in the cross-section, and then use equivariance of the moment
map. For this, see the proof of Lemma 6.18. I would like to stress that, the
removing itself does not depend on the gradient flow.). Assume, now, we
have π1(M/G) ∼= π1(φ−1(G · τP )/G). By equivariance of the moment map,
the two spaces φ−1(G · τP )/G and φ−1(τP )/T are the same. We use the
method for torus actions to prove that π1(φ−1(τP )/T ) ∼= π1(Mb) for some
value b ∈ τP . �
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