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GENERIC BEHAVIOR OF ASYMPTOTICALLY

HOLOMORPHIC LEFSCHETZ PENCILS

Jaume Amorós, Vicente Muñoz, and Francisco Presas

We prove that the vanishing spheres of the Lefschetz pen-

cils constructed by Donaldson on symplectic manifolds of any

dimension are conjugated under the action of the symplec-

tomorphism group of the fiber. More precisely, a number

of generalized Dehn twists may be used to conjugate those

spheres. This implies the non-existence of homologically triv-

ial vanishing spheres in these pencils. To develop the proof,

we discuss some basic topological properties of the space of

asymptotically holomorphic transverse sections.

1. Introduction

In this article we analyze the generic behavior of vanishing spheres in the
symplectic pencils introduced by Donaldson in [10], henceforth referred to as
Donaldson’s ε-transverse Lefschetz pencils (see Section 2 for precise defini-
tions), and show it to be similar to the case of Lefschetz pencils for complex
projective varieties. Using the pencils as a tool, we start the study of the
symplectic analogue of the dual variety in algebraic geometry, which we
believe will be of interest in symplectic topology.

The property of Lefschetz pencils on projective algebraic varieties that
we seek to extend is classical:

Theorem 1.1 (cf. [18] XVIII, 6.6.2). Let M be a complex projective man-

ifold, and L → M an ample line bundle. For k large enough the pen-

cils associated to quotients of holomorphic sections of the line bundle L⊗k

have vanishing spheres which are conjugated under the action of the group

Diff+(F ) of orientation-preserving diffeomorphisms of the generic fiber F .
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The main result of this article is a generalization of the previous theo-
rem to the symplectic case. By establishing the irreducibility of symplectic
analogues to the dual variety, defined in (1), we will prove a more precise
version, which replaces the diffeomorphism group of F with its smallest
possible subgroup. For that we need the following

Definition 1.2. Two Lagrangian submanifolds L0 and L1 are Lagrangian
isotopic if there is a continuous family of Lagrangian submanifolds {Lt}t∈[0,1]

connecting them.

Then, we show

Theorem 1.3. For k large enough Donaldson’s ε-transverse Lefschetz pen-

cils have vanishing spheres that, up to Lagrangian isotopy, are conjugated

under the action of the group of symplectomorphisms generated by the Dehn

twists of the fiber along the vanishing spheres of the pencil itself.

We point out that the conjugating group of symplectomorphisms of The-
orem 1.3 is not elementary, as Donaldson’s pencils exist for large k and have
O(kdim M/2) singular fibers. Nevertheless, this group may be substantially
smaller than the full symplectomorphism group of the fiber. Note that its
action on the homology of the fiber is trivial except in middle degree, while in
many instances, such as products and bundles of symplectic manifolds, there
exist symplectomorphisms acting nontrivially in other cohomology groups.

Finally we will give the following application of theorem 1.3:

Theorem 1.4. For k large enough Donaldson’s ε-transverse Lefschetz pen-

cils satisfy that all the vanishing spheres are homologically non-trivial.

In the case of dimension 4, I. Smith [16] has already proved that the van-
ishing spheres appearing in the Donaldson’s ε-transverse Lefschetz pencils
are homologically non-trivial for k even. On the other hand, for general
symplectic Lefschetz pencils in 4-manifolds [8] gives a lower bound for the
number of homologically non-trivial vanishing spheres.

In the cases of dimension greater than 4, Theorem 1.4 is still a meaningful
result, as homologically trivial Lagrangian spheres are known to exist in
higher dimensional symplectic manifolds at least in dimension 4k + 2 (see
the examples of [17, 3.d] and [2], for instance), and there is great flexibility
in constructing symplectic Lefschetz pencils adapted to given Lagrangian
submanifolds ([7]).

Theorem 1.1 is a consequence of the irreducibility of the dual variety,
which is the subset of the dual projective space defined by hyperplanes tan-
gent to an embedded projective variety. It is not too hard to give a definition
of this variety in the symplectic case, by combining ideas of [14] and [10].
This dual “symplectic” variety appears as an “asymptotically holomorphic”
divisor. The divisor is not smooth and, in particular, has self-intersections.
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It is difficult to control the behavior of self-intersections for this kind of di-
visor (for an example without known solution see [5]). Therefore we have
chosen an alternative route to prove Theorem 1.3. However it makes sense
to speak in a “rough sense” of the complement of the dual variety, i.e., the
space of transverse hyperplanes. We will give some topological properties of
this space.

The organization of this paper is as follows. In Section 2 we give the
definitions and results introduced in [9, 10] needed to carry out the proofs.
In Section 3 we establish our symplectic analogue to the irreducibility of the
dual variety, on which the whole paper rests. A discussion of the topology
of the set of “transverse” sections is carried out in Section 4. Using this,
Theorems 1.3 and 1.4 are proved in Section 5. Finally, in Section 6 we briefly
discuss the possibility of obtaining a symplectic invariant from the space of
transverse sections.

Acknowledments. Some of the results contained in Section 4 are the re-
sult of conversations between D. Auroux and the third author. In particular,
the statement of Theorem 4.2 was suggested by him to us. We thank Uni-
versidad Autónoma de Madrid for its hospitality to the first author during
the elaboration of this work. We are also grateful to L. Katzarkov and I.
Smith for useful comments.

2. Donaldson’s asymptotically holomorphic theory

Let (M, ω) be a symplectic manifold of integer class, i.e., satisfying that
[ω]/2π admits an integer lift to H2(M ; Z). We define L to be a hermitian
bundle with connection whose curvature is RL = −iω. Moreover fixing a
compatible almost complex structure J , this defines a Riemannian metric
g(u, v) = ω(u, Jv) on M . We also consider the sequences of metrics gk = kg,
k ≥ 1. The following definitions are needed.

Definition 2.1. A sequence of sections sk of the bundles L⊗k has C3-bounds
c if it satisfies the following bounds (in gk-metric)

|sk| ≤ c, |∇rsk| ≤ c (r = 1, 2, 3), |∇r∂̄sk| ≤ ck−1/2 (r = 1, 2).

Definition 2.2. A sequence of sections sk of the hermitian bundles Ek is
ε-transverse to zero at the point x ∈ M if one the two following conditions
is fulfilled

i) |sk(x)| ≥ ε.
ii) ∇sk : TxM → (Ek)x is surjective and it admits a right inverse of norm

bounded by ε−1, using the norm gk in M .

The sequence is said to be transverse to zero in a set U if it is transverse
to zero at every point of the set.
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We need to introduce notations to control 1-parametric families of sec-
tions. In particular (Jt)t∈[0,1] will denote a 1-parametric family of almost
complex structures compatible with ω. We can associate to this family a
sequence of families of metrics gk,t. A family of sequences of sections sk,t

has C3-bounds c if sk,t has C3-bounds c with respect to the almost complex
structure Jt and the metric gk,t for each t ∈ [0, 1]. (Note that such a family

is a continuous path in the space of sections of L⊗k with the C3-topology.)
The same remark must be applied for families of ε-transverse sequences.

There exist local objects that are close to being holomorphic, as given by
the following two lemmas

Lemma 2.3 (Lemma 3 in [4]). Let xt ∈ M , t ∈ [0, 1], be a path in M .

Then there exist complex Darboux coordinates depending continuously on

t, Φt : Bgk
(xt, k

1/2) → BCn(0, k1/2), Φt(xt) = 0 such that the inverse

Ψt = Φ−1
t of the coordinate map is nearly pseudo-holomorphic with respect

to the almost complex structure Jt on M and the canonical complex struc-

ture on C
n. Namely, the map Ψt satisfies |∇rΨt| = O(1) for r = 1, 2, 3 and

|∂̄Ψt(z)| = O(k−1/2|z|), and |∇r∂̄Ψt| = O(k−1/2) for r = 1, 2.

We also have

Lemma 2.4 (Lemma 3 in [3]). There exist constants λ > 0 and cs > 0 such

that, given any continuous path xt : [0, 1] → M , and large k, there exist

sections sref
k,xt

of L⊗k over M with the following properties:

i) The sections sref
k,xt

have C3-bounds with respect to Jt, independent of t.

ii) They depend continuously on t.

iii) The bound |sref
k,xt

| > cs holds over the ball of gk-radius 1 around xt.

iv) |sref
k,xt

(q)| ≤ exp(−λdk(xt, q)
2), where dk is the distance associated to

gk.

v) sref
k,xt

is supported in a ball around xt of gk-radius ck1/6 for some con-

stant c.

Recall from [10]:

Definition 2.5. A symplectic Lefschetz pencil on (M, ω) is a surjective map
φ : M − N → CP

1, with N a codimension 4 symplectic submanifold, such
that every point p ∈ M has a complex–valued coordinate neighbourhood
ψ : U ⊂ M → C

n sending p to (0, . . . , 0), the standard symplectic structure
ω0 of C

n to ω, and such that

i) For p ∈ N , N has local equation {z1 = z2 = 0}, and φ(z1, . . . , zn) =
z2/z1.

ii) For finitely many critical points p1, . . . , pΛ ∈ M − N , φ(z1, . . . , zn) =
z2
1 + · · ·+z2

n (the ordinary quadratic singularity in algebraic geometry).
iii) For all other points p ∈ M − N , p 6= p1, . . . , pΛ, φ(z1, . . . , zn) = z1.
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The main result of [10] is

Theorem 2.6 (Theorem 2 in [10]). Given a symplectic manifold (M, ω)
such that the cohomology class [ω]/2π has an integer lift to H2(M, Z), there

exists a symplectic Lefschetz pencil whose fiber is homologous to the Poincaré

dual of k[ω]/2π, for k large enough.

Donaldson’s proof of Theorem 2.6 goes through the following two steps:

Proposition 2.7. Given a sequence of sections s1
k⊕s2

k of L⊗k
⊕

L⊗k which

has C3-bounds c, then for any δ > 0, there exists ε > 0 and a sequence of

sections σ1
k ⊕ σ2

k such that the following conditions are satisfied for k large

i) |sj
k − σj

k|C1 ≤ δ, for j = 1, 2.
ii) σ1

k is ε-transverse to zero over M .

iii) σ1
k ⊕ σ2

k is ε-transverse to zero over M .

iv) Denoting by Zk,ε = {p ∈ M : |σ1
k| ≤ ε}, the map ∂

(

σ2
k/σ1

k

)

is ε-
transverse to zero in M − Zk,ε.

Moreover, given a 1-parametric family of sequences of sections s1
k,t ⊕ s2

k,t,

t ∈ [0, 1], of L⊗k
⊕

L⊗k which have C3-bounds c, then there exists a family

of sequences of sections σ1
k,t ⊕ σ2

k,t satisfying the properties above for each

t ∈ [0, 1]. The result also holds for continuous families of sequences of

sections parametrized by t ∈ S1.

The second step in the proof is

Proposition 2.8. Given ρ > 0 and a sequence of sections s1
k ⊕s2

k satisfying

the last three properties of Proposition 2.7, then the maps

φk : M − Z(s1
k ⊕ s2

k) → CP
1

are well defined and for k large enough there exists a perturbation producing

a map φ̂k which defines a symplectic Lefschetz pencil and verifies ‖φ̂k −
φk‖C1,gk

< ρ.
The same result holds for continuous families of sequences of sections

s1
k,t ⊕ s2

k,t, t ∈ [0, 1] or t ∈ S1, satisfying the conditions of Proposition 2.7.

For proofs of these results we refer the reader to [10]. The 1-parametric
version with parameter space S1 follows easily from the version with param-
eter space [0, 1].

We will call Donaldson’s ε-transverse Lefschetz pencils the Lefschetz pen-
cils yielded by Proposition 2.8. The 1-parametric part of Proposition 2.8
shows that the symplectic Lefschetz pencils obtained by this procedure are
all isotopic for any given k large enough.
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3. Vanishing spheres for symplectic Lefschetz pencils

After blowing-up the symplectic submanifold N , any pencil becomes a fi-
bration M̃ → CP

1. We can define a canonical symplectic connection outside
the critical points in this fibration using the symplectic orthogonal of the
tangent space to the fiber as the horizontal subspace. The parallel trans-
port and geometric monodromy so defined act by symplectomorphisms in
the fibers (cf. [13, Lemma 6.18]).

It is possible to define a parallel transport ending in a singular fiber, and
the local computation of the Picard–Lefschetz formula in algebraic manifolds
(see [1, Vol. 2, Ch. 1]) shows that in this case Lagrangian spheres in the
regular fibers contract to the singular point, forming a Lagrangian disk in
the manifold M . These spheres are called the Lagrangian vanishing spheres

in the regular fiber.
For a basepoint regular value w ∈ CP

1, a Lagrangian vanishing sphere in
the fiber F = p−1(w) is determined by every path from w to a critical value
wi. The choice of a set of non–intersecting paths γ1, . . . , γs from w to the
singular values w1, . . . , ws of the pencil defines a set of vanishing spheres in
F that, together with a choice of isotopy from the product of monodromies
around all critical values to identity, determine the diffeomorphism type of
the pencil, in particular of the total space M̃ ([12]).

Lefschetz pencils on a projective manifold M →֒ CP
N are defined by lines

in the dual projective space CP
1 ∼= l ⊂ (CP

N )∗ intersecting the dual variety
M∗ transversely at smooth points. The hyperplane sections defined by the
line l cover M , are smooth outside the finite intersection l∩M∗, where they
consist of a hyperplane section with an ordinary quadratic singularity (see
[18] XVII, XVIII for a complete discussion).

The conjugacy modulo diffeomorphism of Theorem 1.1 follows from the
irreducibility of the dual variety M∗ for high k: its smooth points form a
connected open set U ⊂ M∗, and given two critical values wi, wj of the
pencil, a path connecting them in U defines a smooth family of hyperplane
sections of M whose parallel transport induces the conjugacy of vanishing
spheres.

In the symplectic case, instead of considering families of pencils inter-
preted as lines in the dual projective space, we consider the families in
abstract. The result we want to prove is

Proposition 3.1. The sequences of pencils provided by Theorem 2.6 satisfy,

for k large enough, that all Lagrangian vanishing spheres of a generic fiber

are equivalent under the action of an orientation-preserving diffeomorphism

of the fiber.

Proof. Choose a sequence of sections sk = s1
k ⊕ s2

k satisfying the conditions

of Proposition 2.7, and let φk = s2
k/s1

k be the associated maps to CP
1.
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For each k select critical points p0 and p1 of the map ∂φk. From [10] we
know that these points will become the critical points of the pencil after
the perturbation performed in Proposition 2.8. Now choose a path pt in M
joining p0 and p1. We can choose this path to avoid a c′-neighborhood of
Z(s1

k) for some uniform c′, since by [10] the ε-transversality implies that p0

and p1 are away from a c′-neighborhood of Z(s1
k), for large k. Also we may

suppose that pt is stationary in [0, β] and [1 − β, 1], for some small β > 0.
Also let λt = φk(pt), which is a uniformly bounded path in C.

Choose a family of sections sref
k,pt

of L⊗k satisfying the properties of Lemma

2.4 for the path pt. We use these sections to trivialize L⊗k in a neighborhood
Ut of fixed gk-radius O(1) of pt. The map φk is given by

fk : Ut → C

q 7→
s2
k

s1
k

(q),

which has C3-bounds c1c (with the obvious adapted definition) where sk has
C3-bounds c and c1 > 0 is a constant depending only on the geometry of
the manifold (not depending on k, the initial sections, etc).

By Lemma 2.3, we may trivialize the neighborhood Ut by a chart Φt :
BCn(0, 1) → Ut, Φt(0) = pt, and

f̂k,t = fk ◦ Φt : BCn(0, 1) → C

has C3-bounds c2c in the unit ball of C
n. Moreover ∂f̂k,j is ε/c2-transverse to

zero for j = 0, 1. Again the constant c2 > 0 depends only on the geometry
of the manifold M . Identifying the tangent space at the origin to C

n we
define ĥk,j , j = 0, 1, as the quadratic form on C

n associated to ∂∂f̂k,j(0).
Moreover, it is possible to construct a path of non-degenerate quadratic
forms ĥk,t starting and ending at the two previous quadratic forms. Also
the eigenvalues of the quadratic forms of the path can be bounded below
and above by the eigenvalues of the two initial quadratic forms. We can
assume that the path ĥk,t is stationary in [0, β] and [1 − β, 1]. Again ∂ĥk,t

is ε/c3-transverse to zero and ĥk,t has C3-bounds c3c on BCn(0, 1), where
c3 > 0 only depends on the geometry of the manifold. On the other hand,
note that ĥk,t is naturally defined all over C

n. Now we define the following

section to the trivialized bundle Φ∗
t

(

L⊗k ⊕ L⊗k
)

on BCn(0, 1):

l̂k,t = (1, λt + ĥk,t).

The goal now is to go back to the manifold. First, note that by Lemma
2.3 the chart Φt may be extended as

Φt : BCn(0, k1/2) → Vt,
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where Vt is a neighborhood of pt of gk-radius O(k1/2), pt ∈ Ut ⊂ Vt. Also

sref
k,pt

is supported in a ball of gk-radius O(k1/6). Then

uk,t =































β − t

β
sk +

t

β
(l̂k,0 ◦ Φ−1

0 ) ⊗ sref
k,p0

, t ∈ [0, β]

(l̂k,t ◦ Φ−1
t ) ⊗ sref

k,pt
, t ∈ [β, 1 − β]

t − 1 + β

β
sk +

1 − t

β
(l̂k,1 ◦ Φ−1

1 ) ⊗ sref
k,p1

, t ∈ [1 − β, 1]

is a well-defined section of L⊗k ⊕ L⊗k. It is easy to check that uk,t has C3-
bounds c4c, where c4 depends only on the geometry of the manifold, using
that |∂̄Φt(z)| = O(k−1/2|z|) and that sref

k,pt
has Gaussian decay. Now in a

small neighborhood of pt the map

φk,t =
u2

k,t

u1
k,t

=











































(1 − µ)s2
k + µ sref

k,p0
(λ0 + ĥk,0 ◦ Φ−1

0 )

(1 − µ)s1
k + µ sref

k,p0

, µ = t
β ∈ [0, 1]

λt + ĥk,t ◦ Φ−1
t , t ∈ [β, 1 − β]

(1 − µ)s2
k + µ sref

k,p1
(λ1 + ĥk,1 ◦ Φ−1

1 )

(1 − µ)s1
k + µ sref

k,p1

, µ= 1−t
β ∈ [0, 1]

is well-defined, ∂φk,t has a zero in pt and is ε/c4-transverse to zero in that
small neighborhood. This is clear in the second interval. In the first and
third intervals it is easy to check if we have previously normalized sref

k,pt
to

be a positive real multiple of s1
k at the point pt. Note that s1

k is uniformly
bounded below since we are working off a neighborhood of Z(s1

k).
Now we apply Proposition 2.7 to the family uk,t choosing δ = min{ ε

4c4
, ε

2}.
We obtain a new family ûk,t which satisfies the required transversality condi-

tions with a constant ε′ depending on δ. The map φ̂k,t =
û2

k,t

û1

k,t

is well defined

outside Z(ûk,t). It is clear that there is a path of zeroes of ∂φ̂k,t which is
C0-close to pt. Moreover, choosing α > 0 small, we define the family

s̃k,t =



























α − t

α
sk,0 +

t

α
ûk,0, t ∈ [0, α]

ûk, t−α
1−2α

, t ∈ [α, 1 − α]

t − 1 + α

α
sk,1 +

1 − t

α
ûk,1, t ∈ [1 − α, 1]

This defines a family of sections that are min(ε′, ε)-transverse to zero in the
sense that they satisfy the various properties of Proposition 2.7.
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Therefore the points p0 and p1 are joined by a path of zeroes of ∂φ̃k,t,

where φ̃k,t is the map associated to s̃k,t. After applying Proposition 2.8,
this path becomes a path of critical points of the family of Lefschetz pen-
cils. By the same arguments as in the algebraic case the vanishing spheres
associated to the two critical points are conjugated through the action of
an orientation-preserving diffeomorphism. The last point is to recall that
the C3-bounds and the estimated transversality constants obtained along
the way are independent of the chosen points p0 and p1. This implies that
the constructions begin to work for a given k for all possible pairs of points.
This concludes the proof. ¤

Remark 3.2. The above argument may be continued to prove that the
Lagrangian vanishing spheres are conjugated by symplectomorphisms of the
fiber. To check this, it suffices to use the parallel transport defined by the
symplectic orthogonal horizontal space in the family of Lefschetz pencils
on M . We skip this refinement to prove directly the stronger statement of
Theorem 1.3.

4. Topology of the space of ε-transverse sections

In the case of a complex projective manifold, where Lefschetz pencils arise
from lines in the dual projective space, the embedding into it of the dual
variety has a further property that facilitates the study of its complement:

Theorem 4.1 (Lefschetz hyperplane section theorem, Hamm–Lê, see [11]).
Let M →֒ CP

N be a complex projective manifold, M∗ →֒ (CP
N )∗ its dual

variety, and let H ⊂ (CP
N )∗ be a generic linear subvariety of complex di-

mension d. Then the homotopy group morphisms πi(H − (H ∩ M∗)) →
πi((CP

N )∗ − M∗) induced by the natural inclusion of spaces are isomor-

phisms for i < d, and an epimorphism for i = d.

We are specially interested in the symplectic version of a particular case
of Theorem 4.1 in this paper: whether the fundamental group of the space
of regular values of a Lefschetz pencil generates the fundamental group of
the complement of the dual variety. Our Theorem 4.2 is somewhat weaker
than that, due to difficulties arising from the nature of the symplectic dual
variety (see Question 6.1).

Let M be a symplectic manifold of integer class and let L → M be the
associated line bundle. For a compatible almost complex structure J , ε > 0,
and k large enough, define
(1)

M∗

ε,k,J = {s : M → L⊗k : s is ε-transverse, s has C3-bounds 1 (for J)},

with the natural C3-topology. Observe that M∗

ε1,k,j ⊂ M∗

ε2,k,J , for ε1 ≥ ε2.

Note first that the isotopy result of [3] shows that for k large enough (how
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large depending on ε), the zero sets of the sections sk ∈ M∗

ε,k,J have isotopic

zero sets Wk = Z(sk).
Now we aim to understand better the fundamental group of the spaces

M∗

ε,k,J . We will study a suitably modified version of it. Let Γs(L
⊗k) denote

the subspace of sections of L⊗k whose zero locus is a smooth symplectic
submanifold of M , and let PΓs(L

⊗k) be its projectivization. Therefore the
space M∗

ε,k,J is an open subset of the space Γs(L
⊗k). We denote by ρε,k,J :

M∗

ε,k,J → PΓs(L
⊗k) the natural map and set

(2) πε,k,J = (ρε,k,J)∗(π1(M
∗

ε,k,J)) ⊂ π1(PΓs(L
⊗k)).

Denote Map(Wk) = Diff+(Wk)/Diff0(Wk) the mapping class group of the
fiber, i.e. its oriented diffeomorphisms modulo isotopies. As in the algebraic
case there is a geometric monodromy map

(3) µ : π1(M
∗

ε,k,J , ∗) −→ Map(Wk)

which factors through (ρε,k,J)∗, thus defining a map πε,k,J → Map(Wk).
The proposed way for studying the topology of M∗

ε,k,J is by means of
a Lefschetz hyperplane theorem that allows a finite dimensional reduction.
The idea is to restrict ourselves to a linear subspace of finite dimension.
More specifically, choose sufficiently generic sections s0

k, . . . , s
N
k in M∗

ε,k,J

and let Vk,N be their linear span. Then one may ask whether there is an
isomorphism πj(Vk,N∩M∗

ε,k,J) ∼= πj(M
∗

ε,k,J) for j below the middle dimension
as in Theorem 4.1. In the case of the fundamental group we consider a
symplectic Lefschetz pencil φk = s2

k/s1
k, which defines a natural map:

Ψk : CP
1 − {p1, . . . , pl} → PΓs(L

⊗k)

[q1, q2] 7→ [q1s
2
k − q2s

1
k]

where p1, . . . , pl ∈ CP
1 are the images of the critical points.

Theorem 4.2. Let ε > 0 be small enough. Then there exists k0 such that

for any k ≥ k0 the image of the geometric monodromy map

µ : π1(M
∗

ε,k,J) → Map(Wk)

lies in the subgroup of Map(Wk) generated by the positive generalized Dehn

twists of a single Donaldson’s Lefschetz pencil φk : M − Nk → CP
1.

Proof. First we need to introduce some definitions. Abusing notation we
will denote by L the pull-back of the bundle L to the manifold M × S1.
Then we can define C3-bounds of a sequence of sections of L⊗k → M × S1

just by requiring that the restriction to each fiber of π : M×S1 → S1 satisfy
these bounds. In the same way the section s : M ×S1 → L⊗k is ε-transverse
to zero if the restriction to the fiber π−1(z) is ε-transverse for any z ∈ S1.
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We fix, once for all, as a base point, a section s2
k,0 ∈ M∗

ε,k,J , that exists

by [9] for some small ε > 0. Take an element A ∈ π1(M
∗

ε,k,J , s2
k,0). Fix a

representative α : S1 → M∗

ε,k,J , i.e., [α] = A. The map α defines canonically

a section s2
k of L⊗k → M × S1 by the formula

s2
k(x, e2πit) = (α(e2πit))(x).

with the base point condition that s2
k(· , 1) = s2

k,0. It is clear that s2
k has

C3-bounds 1 and it is ε-transverse to zero. Now, choose another ε-transverse
section s1

k of L⊗k → M such that s1
k ⊕ s2

k,t is a section of L⊗k ⊕ L⊗k with

C3-bounds 1 for all t ∈ S1. Moreover we may also assume that s1
k ⊕ s2

k,j is

already an ε-transverse Lefschetz pencil (for ε small enough), for j = 0, 1.
Denote again by s1

k the pull-back of the section to M × S1. Applying the
S1-parametric version of Propositions 2.7 and 2.8 we perturb s1

k ⊕ s2
k into

σ1
k ⊕ σ2

k, a new section that defines a S1-family of ε′-transverse Lefschetz
pencils, for some ε′ < ε.

Note that in the process of Proposition 2.7 it is necessary to perturb only
s2
k,t. This is because the condition (ii) is already satisfied by s1

k,t = s1
k, the

condition (iv) is obtained in [10] only perturbing s2
k,t and the proof of the

condition (iii) can be changed using the alternative proof written in [3] that
does not need to perturb s1

k. So σ1
k = s1

k. Moreover, the perturbation in
s2
k,t can be very small so that the sequence of sections σ2

k,t is isotopic to

the previous one. Also we may assume that σ2
k,j = s2

k,j for j = 0, 1, since

s1
k ⊕ σ2

k,j are already Lefschetz pencils.
Now we want to compute the monodromy associated to the zero set of

σ2
k, which is the same as the one of s2

k.
For each fiber M ×{e2πit} we know that the images of the critical points

of the associated Lefschetz pencil φk,t are a finite number of disjoint points.
For the whole family of pencils over S1 the critical values describe a braid in
CP

1, so we can choose a continuous family of paths λt : [0, 1] → CP
1 joining

0 with ∞, such that each λt avoids the critical values of the pencil φk,t.
Now, the disk bounded by σ2

k,t, λ0, λ1 and the constant path s1
k defines a

base-pointed homotopy between the loops σ2
k,t and λ−1

0 ·λ1. The latter loop

is contained in the regular values of the Lefschetz pencil φk,0 = [s1
k, σ

2
k,0],

therefore the monodromy of the family of sections of M over it is a product
of direct generalized Dehn twists.

As ε′ depends on ε, we may find kε only dependent on ε such that, for
any k ≥ kε, all ε′-transverse pencils are isotopic. Furthermore the isotopy
between two pencils [s1

k, s
2
k,0] and [σ1

k, s
2
k,0] of M may be achieved by a family

of pencils that keeps fixed the section s2
k,0. Thus the image of the geometric

monodromy map µ is contained in the subgroup of Map(Wk) generated by
a single pencil, which may be assumed to be ε-transverse. ¤
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1
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λ λ 10λ t

Figure 1. Homotopy between σ2
k,t and λ−1

0 · λ1 in M∗

ε,k,J .

5. Nontriviality of the vanishing spheres

Now we will prove Theorems 1.3 and 1.4. The first one is an immediate
consequence of Theorem 4.2.

Proof of Theorem 1.3. Recalling the proof of Theorem 1.1, take two van-
ishing spheres S0, S1 in a fiber of a Donaldson Lefschetz pencil and join
them by a path of Lagrangian spheres St such that St ⊂ W ′

t , where W ′
t is a

family of fibers in a family of pencils φk,t. This means that W ′
t = Z(sk,t),

sk,t ∈ M∗

ε,k,J . We can suppose that sk,0 = sk,1 is the base point. Now
sk,t can be homotoped, by Theorem 4.2, to a path inside a Lefschetz pencil
whose zero set we denote by Wt. As usual, parallel transport along the path
generates a family of symplectomorphisms φt,s : Wt → Wt+s. The symplec-
tomorphism φ0,1 is generated by the composition of the generalized Dehn
twists associated to the critical points of the pencil bounded by the path.

However S0 is not, in general, preserved by φ0,1. Denote by St,s = φt,s(St).
Then we have that the continuous family St,1−t provides a Lagrangian iso-
topy in W0 = W1 between S1 = S1,0 and S0,1. This shows that the spheres
S0 and S1 are conjugated by φ0,1, up to Lagrangian isotopy. ¤

Remark 5.1. The spheres are conjugated only up to Lagrangian isotopy.
We can also claim that they are conjugated up to Hamiltonian isotopy be-
cause the obstruction of a Lagrangian isotopy to be lifted to a Hamiltonian
isotopy lies in the family of groups H1(Lt) (cf. Exercise 6.1.A in [15]). This
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is an infinitesimal condition to be fulfilled for each member of the family.
In our case this cohomology groups vanish in the case of dimension strictly
bigger than 4. In dimension 4, we can check that the spheres at the start-
ing and end points of the family are exact (using the local models close to
critical points) and this is enough to get a Hamiltonian isotopy (recall that
in dimension 4 the fibers are Riemann surfaces).

Theorem 1.3 admits an extension from the symplectomorphism group of
the fiber to that of the total space.

Theorem 5.2. For a Donaldson’s pencil on M with k large enough, fix

a generic fiber W . If S0, S1 ⊂ W are Lagrangian spheres that appear as

vanishing cycles of the pencil then there exists a symplectomorphism Φ :
M → M such that Φ(W ) = W and Φ(S0) equals S1 up to Lagrangian

isotopy in the fiber W .

Proof. It follows from Proposition 3.1 that there exists a loop of approxi-
mately holomorphic sections sk,t such that for t = 0, 1 the zero set Z(sk,t) =
W , and there is a family of Lagrangian spheres St in Wt = Z(sk,t) connecting
the two given vanishing spheres.

Now by Proposition 4 in [3], there is a continuous family of symplectomor-
phisms φt : M → M such that φt(W0) = Wt. Again, we cannot assume that
St is preserved by the family. However, if we construct St,s = φs(St) ⊂ Wt+s,
we have that the family St,1−t defines a Lagrangian isotopy in W1 = W0 be-
tween S1 and S0,1 = φ1(S0). So, we have shown, up to Lagrangian isotopy
in the fiber, that φ1 is the required symplectic map. ¤

Proof of Theorem 1.4. The proof of Theorem 1.4 works looking for a con-
tradiction. Theorem 1.3 implies that all the vanishing spheres are either
homologically trivial or homologically non-trivial. Let us suppose that they
are homologically trivial.

Let φk : M − Nk → CP
1 be the Lefschetz pencil obtained from Theorem

2.6 for k large, and denote by Fk a regular fiber. We blow-up the manifold
M along Nk to obtain a fibration φ̃k : M̃k → CP

1.
Now let us compute the (growth of the) Betti numbers of M̃k. First, by

[3, Proposition 5], χ(Fk) = (−1)n−1 vol(M)kn + O(kn−1), where vol(M) =
∫

M

(

ω
2π

)n
. Now the Lefschetz hyperplane theorem [3] implies that bi(Fk) =

bi(M), which is uniformly bounded for i < n − 1 (i.e., independently of k).
By Poincaré duality, b2n−2−i(Fk) is also uniformly bounded. Therefore

(4) bn−1(Fk) = vol(M)kn + O(kn−1).

A handlebody decomposition of M̃k is obtained as follows: take a tubular
neighbourhood ν(Fk) of a smooth fiber Fk of φ̃k, and attach n-handles along
(n−1)-spheres embedded in the boundary ∂ν(Fk) = Fk×S1 as the vanishing
cycles at different fibers. Since all of these spheres are homologically trivial,
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the homology group Hn−1 does not change. So Hn−1(M̃k − Fk × D2) ∼=
Hn−1(Fk). Finally, we have to attach Fk × D2 to get M̃k. We have a
Mayer-Vietoris exact sequence

Hn−1(Fk × S1) → Hn−1(M̃k − Fk × D2) ⊕ Hn−1(Fk × D2) →

→ Hn−1(M̃k) → Hn−2(Fk × S1)

Using that bn−2(Fk × S1) is uniformly bounded, that Hn−1(Fk × S1) →
Hn−1(Fk ×D2) is surjective with kernel uniformly bounded and (4), we get

(5) bn−1(M̃k) = vol(M)kn + O(kn−1).

Analogously to the computation of Fk, and using that

χ(Nk) = (−1)n−2(n − 1) vol(M)kn + O(kn−1),

we get that all the Betti numbers of Nk are bounded except for bn−2(Nk) =

(n− 1) vol(M)kn +O(kn−1). In the blow up M̃k, the exceptional divisor Ñk

is a fibration over Nk by CP
1. There is a spectral sequence with E2-term

H∗(Nk) ⊗ H∗(S
2) and abutting to H∗(Ñk). This gives that all bi(Ñk) are

bounded, for i 6= n−2, n, and that bn−2(Ñk) = bn(Ñk) = (n−1) vol(M)kn +
O(kn−1).

Consider the following pieces of long exact sequences in homology,

Hn−1(Ñk)
ĩ∗−→ Hn−1(M̃k)

j̃∗
−→ Hn−1(M̃k, Ñk)

∂̃∗−→ Hn−2(Ñk)
↓ ↓ ↓ ↓

Hn−1(Nk)
i∗−→ Hn−1(M)

j∗
−→ Hn−1(M, Nk)

∂∗−→ Hn−2(Nk)

The kernel of ĩ∗ is uniformly bounded, since bn−1(Ñk) is so. Also im j̃∗ =

ker ∂̃∗ ⊂ ker ∂∗ = im j∗ is uniformly bounded. Therefore, bn−1(M̃k) is uni-
formly bounded. This is a contradiction with (5). ¤

6. Towards a symplectic invariant

In the case of complex projective manifolds, the topology of the space of
smooth sections of the ample bundle L → M is governed by the hyperplane
section theorem of Hamm–Lê (Theorem 4.1), which in particular shows how
the monodromy of generic families of dimension 1 or 2 of hyperplane sections
capture the geometric monodromy of all families of sections.

In order to extend these properties from the complex algebraic to the
symplectic case and define a new set of symplectic invariants, the next nat-
ural step is to prove that the groups πε,k,J defined in (2), are independent
of J and of ε for k large enough. The authors have not been able to prove
this, thus can only pose the following

Question 6.1 (symplectic Hamm–Lê hyperplane sections). Does the mor-
phism πl(CP

j∩PΓs(L
⊗k)) → πl(PΓs(L

⊗k)) induce an isomorphism πl(CP
j∩
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PΓs(L
⊗k)) → (ρε,k,J)∗πl(M

∗

ε,k,J) for l < j and an epimorphism for l = j, for

a (j +1)-dimensional “generic” family of Donaldson’s ε-transverse sections?

An affirmative answer would yield a family of invariants, the ε–transverse
homotopy groups of the complement M∗

ε,k,J of the dual variety, which would

be an extension of the Auroux and Katzarkov invariants of [5]. It must be
warned that the only evidence available for an affirmative answer is the case
of complex algebraic manifolds, and the authors have been able to make
only a modest extension to the general symplectic case:

Corollary 6.2. For ε > 0 small and k large enough, we have

(ρε,k,J)∗(H1(M
∗

ε,k,J)) = Z/mZ ⊂ H1(PΓs(L
⊗k)),

where m is a divisor of the number nk of singular fibers in the Lefschetz

pencil φk : M − Nk → CP
1.

Proof. By Theorem 4.2 the image of H1(M
∗

ε,k,J) is generated by some com-
positions of monodromies around critical points of a single Donaldson’s Lef-
schetz pencil. But the proof of Proposition 3.1 shows that all the loops
around different critical points are freely homotopic. Therefore this abelian
group is cyclic, generated by the 1-cycle γ bounding a small disk D around
a critical value of the pencil.

The inclusion of the regular values of any Donaldson’s Lefschetz pencil in
PΓs(L

⊗k) induces a homology nkγ ∼ 0. ¤

The “natural” value for m above should be the number nk.
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