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A remark about Donaldson’s construction of
symplectic submanifolds

D. Auroux

We describe a simplification of Donaldson’s arguments for the con-
struction of symplectic hypersurfaces [4] or Lefschetz pencils [5]
that makes it possible to avoid any reference to Yomdin’s work on
the complexity of real algebraic sets.

1. Introduction.

Donaldson’s construction of symplectic submanifolds [4] is unquestionably
one of the major results obtained in the past ten years in symplectic topol-
ogy. What sets it apart from many of the results obtained during the same
period is that it appeals neither to Seiberg-Witten theory, nor to pseudo-
holomorphic curves; in fact, most of Donaldson’s argument is a remarkable
succession of elementary observations, combined in a particularly clever way.
One ingredient of the proof that does not qualify as elementary, though, is an
effective version of Sard’s theorem for approximately holomorphic complex-
valued functions over a ball in C* (Theorem 20 in [4]). The proof of this
result, which occupies a significant portion of Donaldson’s paper (§4 and §5
of [4]), appeals to very subtle considerations about the complexity of real
algebraic sets, following ideas of Yomdin [6].

Methods similar to those in [4] were subsequently used to perform various
other constructions, leading in particular to Donaldson’s result that sym-
plectic manifolds carry structures of symplectic Lefschetz pencils [5], or to
the result that symplectic 4-manifolds can be realized as branched coverings
of CP? [2]. It was observed in [3] that, whereas Donaldson’s construction
of submanifolds can be thought of in terms of an estimated transversality
result for sections of line bundles, the subsequent constructions can be in-
terpreted in terms of estimated transversality with respect to stratifications
in jet bundles.

As remarked at the end of §4 in [3], the transversality of the r-jet of a
section to a given submanifold in the bundle of r-jets is equivalent to the non-
intersection of the (r+ 1)-jet of the section with a certain (possibly singular)
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submanifold of greater codimension in the bundle of (r + 1)-jets. This is
of particular interest because the effective Sard theorem for approximately
holomorphic functions from C" to C™ admits a conceptually much easier
proof in the case where m > n [2]. In the case of the construction of
symplectic submanifolds, the formalism of jet bundles can be completely
eliminated from the presentation; the purpose of this note is to present
the resulting simplified argument for Donaldson’s result (§§2-3). We also
observe (see §4) that a similar simplification is possible for the higher-rank
local result required for the construction of symplectic Lefschetz pencils [5].

2. Overview of Donaldson’s argument.

We first review Donaldson’s construction of symplectic submanifolds [4],
using the terminology and notations of [2]. Let (X?",w) be a compact sym-
plectic manifold, and assume that the cohomology class %[w] is integral.
Endow X with an w-compatible almost-complex structure J and the corre-
sponding Riemannian metric g = w(-, J-). Consider a Hermitian line bundle
L over X such that ¢1(L) = 5-[w], equipped with a Hermitian connection
V having curvature —iw. The almost-complex structure J induces a split-
ting of the connection into V = 0 + 9. We are interested in approximately
holomorphic sections of the line bundles L®* (k > 0) satisfying a certain
estimated transversality property: indeed, if we can find a section s such
that |0s| < |0s| at every point where s vanishes, then the zero set of s is
automatically a smooth symplectic submanifold in X (cf. e.g. Proposition
3 of [4]). The philosophical justification of the construction is that, as the
twisting parameter k£ increases, one starts probing the geometry of X at
very small scales, where the effects due to the non-integrability of J become
negligible. This phenomenon is due to the curvature —ikw of the connection
on L% and leads us to work with a rescaled metric g, = kg (the metric
induced by J and kw).

Let (sg)rs0 be a sequence of sections of Hermitian vector bundles Ej
equipped with Hermitian connections over X. We make the following defi-
nitions:

Definition 1. The sections s are asymptotically holomorphic if there exist
constants (Cp)pen such that, for all & and at every point of X, |s;| < Co,
|VP51]g, < Cp and |VP~18sy|,, < Cpk~/2 for all p > 1.

Definition 2. The sections s; are uniformly transverse to 0 if there exists
a constant 1 > 0 independent of k such that the sections sy are 7n-transverse
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to 0, i.e. if at any point x € X where |six(z)| < 7, the linear map Vsg(z) :
T.X — (E)s is surjective and has a right inverse of norm less than n!
w.r.t. the metric gg.

When rank(Ey) > n, uniform transversality means that |sg(z)| > n at
every point of X; on the other hand, when FEj is a line bundle and the
sections sp are asymptotically holomorphic, uniform transversality can be
rephrased as a uniform lower bound on |0sg| at all points where |s| <
n (which by the above observation is enough to ensure the symplecticity
of s;1(0) for large k). With this terminology, Donaldson’s result can be
reformulated as follows (cf. Theorem 5 of [4]):

Theorem 1. For large values of k, the line bundles L®* admit sections sy,
that are asymptotically holomorphic and uniformly transverse to 0.

The proof of Theorem 1 starts with a couple of preliminary lemmas about
the existence of approximately holomorphic rescaled Darboux coordinates
on X and of large families of well-concentrated asymptotically holomorphic
sections of L®*.

Lemma 1. There ezists a constant ¢ > 0 such that near any point x €
X, for any integer k, there exist local complex Darbour coordinates z =
(zy...,20) « (X,z) — (C™,0) for the symplectic structure kw, such that
the following estimates hold uniformly in x and k at every point of the ball
ng(x,(:\/%): |zk(y)| = O(diStgk(xay))’ |azk(y)|gk = O(k*I/Qdistgk(a;,y)),
V" 0zklg, = O(k™Y?), V72|, = O(1) Vr > 1; and denoting by 9y, :
(C™,0) — (X,x) the inverse map, the estimates |0(2)|y = O(k~1/%|2]),
V" 0rlg, = O(k~Y2) and |V™¢rly, = O(1) hold Vr > 1 at every point of
the ball Ber (0, C\/E), where Oy, is defined with respect to the almost-complex
structure J on X and the standard complex structure on C2.

Lemma 1 is identical to Lemma 3 of [2], or to the discussion on pp. 674—
675 of [4] if one keeps track carefully of the available estimates; the idea is
simply to start with usual Darboux coordinates for w, compose them with
a linear transformation to ensure holomorphicity at the origin, and then
rescale them by a factor of V.

Definition 3. A section s of Ej has Gaussian decay in C" norm away from
a point € X if there exist a polynomial P and a constant A > 0 such
that for all y € X, |s(y)], |Vs(¥)|ger ---5 |V"s(y)|g, are all bounded by
P(d(z,y)) exp(=Ad(z,y)?), where d(.,.) is the distance induced by g. The
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decay properties of a family of sections are said to be uniform if P and A
can be chosen independently of k and of the point  at which decay occurs
for a given section.

Lemma 2. Given any point x € X, for all large enough k, there exist
asymptotically holomorphic sections s‘,”ce,; of L®* over X, such that |s§££| > o
at every point of the ball of gi-radius 1 centered at x, for some universal
constant cg > 0, and such that the sections s}”f,; have uniform Gaussian

decay away from z in C? norm.

Lemma 2 is essentially Proposition 11 of [4]. Considering a local triv-
ialization of L®* where the connection 1-form is +>(z1dz] — zldz]), the

sections si°f are constructed by multiplication of the function exp(—|zx|%/4)

by a suitable cut-off function at distance k'/® from the origin.
The central ingredient is the following result about the near-critical sets
of approximately holomorphic functions (used in the special case m = 1):

s . 11
Proposition 1. Let f be a function defined over the ball Bt of radius 10

in C" with values in C™. Let § be a constant with 0 < § < i, and let
n = dlog(671)"P where p is a fized integer depending only on n and m.
Assume that f satisfies the bounds |f|cop+) < 1 and |5f|c1(3+) <mn. Then
there exists w € C™ with |w| < § such that f — w is n-transverse to 0 over

the interior ball B of radius 1.

The case m = 1 is Theorem 20 of [4]; the comparatively much easier case
m > n is Proposition 2 of [2]; the general case is proved in [5]. In all cases
the proof begins with an approximation of f first by a holomorphic function
(using general elliptic theory), then by a polynomial g of degree O(log(n~1'))
(by truncating the power series expansion at the origin). The proof in the
case m = 1 then appeals to a rather sophisticated result on the complexity
of real algebraic sets to control the size of the set of points where Jg is
small (the near-critical points) [4]. Meanwhile, in the case m > n, since
we only have to find w such that |f — w| > n at every point of B, it is
sufficient to observe that the image of the polynomial map ¢ is contained
in a complex algebraic hypersurface H in C™; the result then follows from
a standard result about the volume of a tubular neighborhood of H, which
can be estimated using an explicit bound on the degree of H [2].

Given asymptotically holomorphic sections s, of L®* and a point z € X,
one can apply Proposition 1 to the complex-valued functions fi = si/ sfcei
(defined over a neighborhood of z) in order to find constants wy such that
the functions fr — wy are uniformly transverse to 0 near x; multiplying by
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sfcei, it follows that the sections s; — wksfi are uniformly transverse to 0

near x. Therefore, we have:

Proposition 2. There exist constants c, ¢/, p, do > 0 such that, given
a real number 6 € (0,00), a sequence of asymptotically holomorphic sec-
tions s of L%* and a point x € X, for large enough k there exist asymp-
totically holomorphic sections Ty, of L®% with the following properties:
(a) |Thelo1,g, <O, (b) the sections §7k, have uniform Gaussian decay away
from z in C' norm, and (c) the sections sy, + Ty 5 are n-transverse to 0 at
every point of the ball By, (z,c), with n = ¢'dlog(d 1) 7.

This result lets us achieve estimated transversality over a small ball
in X by adding to s a small well-concentrated perturbation. Uniform
transversality over the entire manifold X is achieved by proceeding iter-
atively, adding successive perturbations to the sections in order to obtain
transversality properties over larger and larger subsets of X. The key obser-
vation is that estimated transversality is an open property (preserved under
C'-small perturbations). Since the transversality estimate decreases after
each perturbation, it is important to obtain global uniform transversality
after a number of steps that remains bounded independently of k; this is
made possible by the uniform decay properties of the perturbations, using
a beautiful observation of Donaldson. The reader is referred to §3 of [4] or
to Proposition 3 of [2] for details.

3. The simplified argument.

Keeping the same general strategy, the proof of Theorem 1 can be simplified
by appealing to a result weaker than Proposition 1, namely the following
statement:

s , |
Proposition 3. Let f be a function defined over the ball BT of radius 1o

i C™ with values in C. Let § be a constant with 0 < § < Tlu and let
n= 5log(5_1)_p’ where p' is a fived integer depending only on n. Assume
that f satisfies the bounds |f|c1p+) < 1 and |5f|cz(3+) < n. Then there
exists w = (wo, w1, ..., wy) € C**1 with |w| < & such that the function

f—wo — > wiz; is n-transverse to 0 over the interior ball B of radius 1.

Proof. Let g = (go,...,gn) : Bt — C"! be the function defined by g; =
0f/0z for 1 <i<nandgg=f—) " 2gi The bounds on f immediately
imply that |g|lcog+) < Cn and [9g|c1p+) < Cpn, for some constant C,
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depending only on the dimension. We can safely choose the constant p’
appearing in the definition of 1 to be larger than the constant p appearing
in Proposition 1. Therefore we can apply Proposition 1 in its easy version
(m = n+1) to the function g, after scaling down by the constant factor C,,.
This gives us a constant w = (wp, ..., w,) € C**! bounded by d, and such
that |g — w| > « at every point of B, where a = §log((6/Cy) 1) P.

Define f = f —wo— Y. wiz and § = g—w, and observe that df/9z = §;
for1 < i<n and f—Z?Zl ziGi = go. Let z € B be a point where |0f] < ia.
Since 0f /02 = gi, and since |§(2)| > a by construction, we have the inequal-
ity |go(2)] > Ja. However, |f(2) — go(2)| = | X 24i(2)| < |2110f(2)| < 3
(recall that z belongs to the unit ball). Therefore |f(z)| > la.

Conversely, at any point z € B where [f| < %a we must have

10f(2)] > 1a. However, because of the bound on df = df, if we assume
that n < éa then this inequality implies that V f (z) is surjective and ad-
mits a right inverse of norm at most (%a)*l. Hence we conclude from the
previous discussion that f is %a—transverse to 0 over B. Finally, we ob-
serve that, because § < ;IL, if the constant p’ is chosen large enough then
n=2dlog(6 ) < sa = £61log((6/Cr) 1) P, so that f is n-transverse to 0
over B. |

Although it is weaker, Proposition 3 is in practice interchangeable with
the case m = 1 of Proposition 1, in particular for the purpose of proving
Proposition 2.

Proof of Proposition 2.  We use the same argument as Donaldson [4]: we
work in approximately holomorphic Darboux coordinates on a neighbor-

hood of the given point x, using Lemma 1. Using the sections sfcei given

by Lemma 2 to define local trivializations of L®*, the sections s, can be

identified with complex-valued functions f; = si/ sfcei The estimates on s,

and sfcei imply that the functions f; are approximately holomorphic near

the origin (in particular |8f|c2 = O(k~'/2)); after a suitable rescaling of
the coordinates and of the functions by uniform constant factors, we can
assume additionally that |fix|c1 < 1 near the origin, and that the estimates
hold over a neighborhood of the origin that contains the ball B*. Therefore,
the assumptions of Proposition 3 are satisfied provided that k is sufficiently
large to ensure that k= /2 < 7.

By Proposition 3, we can find wg, = (w0, ..., Wgn) € C*, with || <
0, such that fk = fr — wro — Y Wki% is y-transverse to 0 over the unit
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ball, where v = 510g(5‘1)_p’. Define 7, = —wk,osfji — Zwk7i2232fi. The

estimates on z,iC from Lemma 1 and on sfcei from Lemma 2 imply that the

sections zk,is};ei of L®* are asymptotically holomorphic and have uniform

Gaussian decay away from x. Therefore, it is easy to check that the sections
%Tk@ are asymptotically holomorphic and have uniform Gaussian decay.
Moreover, because there exist uniform bounds on s‘,”f; and z};sﬁfi, one easily
checks that |74 .|c1 4, is bounded by some constant fnultiple of § ; decreasing
the required bound on |wg|, we can assume that the constant is equal to
1, to the expense of inserting a constant factor in the above expression for

. Finally, observing that s; + 74, = fksgji over a neighborhood of z,

it is straightforward to check that the ~-transversality to 0 of fk and the
lower bound satisfied by sze; imply a uniform transversality property of the

desired form for the section sj + 7% 4. [l

Remark 1. Proposition 3 also admits a version for one-parameter families
of functions: given functions f; : BT — C depending continuously on a
parameter ¢ € [0,1] and satisfying the assumptions of Proposition 3 for all
values of t, we can find constants w; € C**!, depending continuously on t,
such that the conclusion holds for all values of . This is because the auxiliary
functions g; : BT — C**! introduced in the proof also depend continuously
on t, which allows us to appeal to the one-parameter version of Proposition
1 (cf. e.g. Proposition 2 of [2]). We can therefore simplify the argument
proving the asymptotic uniqueness of the constructed submanifolds [1] in
the same manner as the construction itself.

Remark 2. The idea behind the modified argument can be interpreted as
follows in terms of 1-jets of sections: let J'L®* = L®* @ (T*X10® L®*), and
define the 1-jet of a section s € ['(L®*) as jls, = (sg,0s;) € T(JLEF).
The jet bundles carry natural Hermitian metrics (induced by those on
L®% and the metrics gp on the cotangent bundle), and natural Hermi-
tian connections for which the 1-jets of asymptotically holomorphic sec-
tions of L®* are asymptotically holomorphic sections of J'L®*. It is
worth noting that the natural connection on J 1L®k is not the connec-
tion V induced by the connection on L®* and the Levi-Civita connec-
tion, because 0V (sg, Osg) = (Os, 00sy,) differs from (Osy, —09sy,) (which is
bounded by O(k~1/2)) by the curvature term —ikwsy. Therefore, we must
instead work with the Hermitian connection V characterized by the formula
oV (0% o) = 0V (09 01)4(0,ikwao?), where w is viewed as a (0, 1)-form with
values in T*X 10,
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Observe that the 1-jets jlak,x,o,...,jlak,x,n, where oy .0 = s}”:i and
Okai = z,’cs];:i for 1 < ¢ < n, are asymptotically holomorphic sections of
J'L®* with uniform Gaussian decay away from z, which form a local frame
of the jet bundle over a neighborhood of . Therefore, given asymptotically
holomorphic sections si and a point z € X, there exist local complex-valued
functions g, ..., gk, such that glsp = ng,ijlakvx’i. Moreover, remark
that a section of L®* is uniformly transverse to 0 if and only if its 1-jet
satisfies a uniform lower bound. Therefore, our argument actually amounts
to a local perturbation of j'sg, using the given local frame {j'oy .}, in
order to bound it away from 0; because the rank of the jet bundleis n+1 >
n, the easy version of Proposition 1 is sufficient for that purpose. The
curious reader is referred to [3] for a more detailed discussion of estimated
transversality using the formalism of jet bundles.

4. The higher-rank local result.

We now formulate and prove an analogue of Proposition 3 for functions
with values in C™ (m < n); as in the case m = 1, the statement differs from
Proposition 1 by allowing the extra freedom of affine perturbations rather
than restricting oneself to constants.

Proposition 4. Let f be a function defined over the ball BY of radius %
in C™ with values in C™, m < n. Let § be a constant with 0 < § < %, and
letn = 510g(5*1)*p' where p' is a fived integer depending only on m and n.
Assume that f satisfies the bounds |f|cop+) < 1 and |5f|01(3+) <mn. Then
there exists w = (wo, w, . ..,wy) € C™™ ) (each w; is an element of C™)
with |w| < § such that the function f—wo— Y w;z; is n-transverse to 0 over
the interior ball B of radius 1.

Moreover, given a one-parameter family of functions f; : BT — C de-
pending continuously on a parameter t € [0,1] and satisfying the above as-
sumptions for all t, we can find constants wy € cmlnt1) depending contin-
wously on t, such that the conclusion holds for all values of t.

This statement is essentially interchangeable with Proposition 1 for all
practical applications, and in particular the case m = n allows us to sim-
plify noticeably the argument for Donaldson’s construction of symplectic
Lefschetz pencils [5]. Indeed, the main problem to be solved is the fol-
lowing: given pairs of asymptotically holomorphic sections (52, s,lc) of L®*,
defining CP!-valued maps f;, = [s : s}] away from the base loci, one must
perturb them so that the differentials Jfr (which are sections of rank n
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vector bundles) become uniformly transverse to 0. This ensures the non-
degeneracy of the singular points of the pencil. The manner in which the
problem reduces to the m = n case of Proposition 1 is explained in detail in
[5], and the reduction to Proposition 4 is essentially identical except that the
resulting perturbations of (32, s,lc) are products of sf:; by quadratic (rather

than linear) polynomials.

Proof. Although for technical reasons we cannot use directly the case m > n
of Proposition 1, the argument presents many similarities with §2.3 of [2];
we accordingly skip the details whenever the two arguments parallel each
other in an obvious manner. As in the case of Proposition 1, we first use
the bounds on f to find an approximation by a polynomial h : C* — C™ of
degree d = O(log(n™')) such that |k — f|c1() < ¢ for some constant c (see
Lemmas 27 and 28 of [4]). Observe that, if we can perturb h by less than
d to make it (c + 1)n-transverse to 0 over B, then because transversality
is an open property the desired result on f will follow immediately. So we
are reduced to the case of a polynomial function h = (h!,... h™) of degree
d = O(log(n™1). |

If w = (wp,...,wy,) is a vector in C™"+1)  denote by (w!)i<j<m the
components of w;, and let @ = (wy,...,wy,) € C™*™. The set of choices to
be avoided for w is

S ={weC™™*Y 3z € Bs.t. h(z)—wo— Y wiz; = 0, A™(8h(z)—w) = 0}.

Indeed, observe that h — wp — Y w;z; is transverse to 0 over B (without
any estimate) if and only if w ¢ S. We now define a polynomial function
g:CN=1 - CV, where N = m(n+1), which parametrizes a dense subset of
S. Given elements z = (Zi)lgign € Cn, 0 = (0{)195”7 1<j<m-1 € C(mfl)n
and A = (\j)1<j<m-1 € C™71 we define g(z,6, \) € Cm(n+1) by the formulas

( oh’ ;
gf(z,ﬂ,)\)za (z) + 67 for1<i<n, 1<j<m-—1,
2q
Oh™ ml. )
g;n(2797 )‘) = (Z) + Z )\]92 for 1 S 7 S n,
j=1

0z;
gg(z,ﬂ, A =h(z) - gf(z,@,)\)zi for 1 <j<m.
=1

\

One easily checks that the image by g of the subset {(z,6,\) € CN~1,
z € B} is contained in S, in which it is a dense subset. Observe that g
is a polynomial map with the same degree d as h (provided that d > 2).
Therefore, the image g(CV~!) is contained in an algebraic surface H C
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CN, of degree at most D = N dV~!. Indeed, denoting by E the space of
polynomials of degree at most D in N variables and by E’ the space of
polynomials of degree at most dD in N — 1 variables, we have dim E =
(Dj\',N) > (dD]j,'iVl_l) = dim E’, so that the map from E to E’ defined by
P — Pog cannot be injective, and a non-zero element of its kernel provides
an equation for the hypersurface H (see §2.3 of [2] for details).

Since g(B x Cm~1» »x €™ 1) is dense in S, we conclude that S C H.
From this point on, the argument is very similar to §2.3 of [2], to which
the reader is referred for details. Standard results on complex algebraic hy-
persurfaces, essentially amounting to the well-known monotonicity formula,
allow us to bound the size of S and of its tubular neighborhoods (cf. e.g.
Lemma 4 of [2]). In particular, denoting by B the ball of radius & centered at
the origin in CV and by V; the volume of the unit ball in dimension 2N — 2,
we have voloy o(HNB) < DVpd?V~2, while given any point € H we have
volan_o(HN B(z,n)) > Von*Y 2. Therefore, choosing a suitable covering of
B by balls of radius 7, one can show that H N B is contained in the union of
M = C D §*N-2yp~(2N=2) palls of radius 7, where C is a constant depending
only on N. As a consequence, the neighborhood Z = {w € CV, |w| < 4,
dist(w, S) < (3c+3)n} is contained in the union of M balls of radius (3c+4)n.

A simple comparison of the volumes implies that, if the constant p’ is
chosen suitably large, then the volume of Z is much smaller than that of the
ball B, and therefore B — Z is not empty, i.e. B contains an element w which
lies at distance more than (3¢ + 3)n from S. Moreover, using a standard
isoperimetric inequality we can show that B — Z contains a unique large
connected component; it follows that, in the case where the data depends
continuously on a parameter ¢ € [0, 1], the subset | |[{t} x (B—Z;) C [0,1]x B
contains a preferred large connected component, in which we can choose
elements w; depending continuously on t.

To complete the proof of Proposition 4, we only need to show that, if
w € B lies at distance more than (3c+3)n from S, then f = f —wp— > w;z
is m-transverse to 0 over B. In fact, it is sufficient to show that h=h-—
wo — Y w;z is (¢ + 1)n-transverse to 0 over B, because |h — f|c1(B) =
|h—f |Cl( B) < cn and transversality is an open property. We conclude using
the following lemma:

Lemma 3. If w lies at distance more than 3a from S for some constant

a > 0, then h=h-— wo — > w;z; is a-transverse to 0 over B.

To prove Lemma 3, we first provide an alternative definition of a-trans-
versality:
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Lemma 4. Let L : E — F be a linear map between Hermitian complex
vector spaces, and choose a constant a > 0. The two following properties
are equivalent:

(i) L is surjective and has a right inverse R : F — E of norm at most
-1

(64 J
(ii) for every unit vector v in F, the component (v, L) = v*L of L along v
is a linear form on E such that |[v*L| > «.

Proof. If (i) holds, then given any unit vector v € F, the vector u = Rv is
such that |u| < a~! and (v, Lu) = |v|?> = 1. Therefore the linear form (v, L)
has norm at least «, and (é¢) holds.

Conversely, assume (i¢) holds. Then for any v € F' we have [v*L| > a|v|,
i.e. v*LL*v > o?|v|?. Therefore, the Hermitian endomorphism LL* of F
is positive definite and has eigenvalues > 2. It follows that it admits an
inverse U = (LL*)~! of operator norm at most a~2. We have LL*U = Id,
and |L*Uv|? = (v,ULL*Uv) = (v,Uv) < a~2|v|?, so that R = L*U is a
right inverse of norm at most o *. O

Proof of Lemma 3. Assume that h is not a-transverse to 0 over B: using
the definition and Lemma 4, there exists a point z € B and a unit vector
v € C™ such that |h(2)| < a and |(v,dh(2))| < a. Let u = (ug, u1,...,un) €
C™+1) be such that u; = (v,0h/8z) v and ug = h(z) — 3. ziu;. We clearly
have |(u,...,un)| < @, and |ug| < 2¢, so that |u] < 3a. On the other
hand, if we consider the function h = h — (wp + o) — 3 (w; 4 ;) 2, then by
construction A(z) = 0 and (v, dh(z)) = 0. Therefore w +u € S, and so w is
within distance 3o of S. O
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