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A new technique is presented for construction of Poi-

sson manifolds. This technique is inspired by surgery

ideas used to define Poisson structures on 3-manifolds

and Gompf’s surgery construction for symplectic mani-

folds. As an application of these ideas it is proved that
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modularity of some of the Poisson structures thus con-
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1. Introduction

The use of almost-complex methods in symplectic geometry together
with new surgery techniques has notably increased our understanding
of the topology of symplectic manifolds (see for instance the founda-
tional papers [5, 2, 4]). These results constitute an extraordinary mix-
ture of “soft” and “hard” mathematical ideas in the sense of Gromov
[6]. In spite of all this success very little is known about nontrivial
families of symplectic manifolds. Families of symplectic manifolds lead
naturally to the notion of Poisson manifolds.

A Poisson structure on a manifold M is a Poisson algebra structure
on its sheaf of functions. That is to say, given two local functions f, g
onM we define on their common domain of definition a bilinear bracket
{f, g} satisfying the following properties:
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1) skew symmetry, {f, g} = −{g, f}.
2) Leibniz rule, {f, gh} = g{f, h} + {f, g}h.
3) Jacobi identity, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Alternatively, a Poisson structure on a manifold M is given by
a bivector Λ such that [Λ,Λ] = 0, where [·, ·] denotes the Schouten
bracket (see for instance [10] and references therein). The Poisson
bracket {f, g} of two functions is given in terms of Λ by Λ(df, dg).
Moreover, the Poisson tensor Λ defines a natural bundle morphism
#: T ∗M → TM whose range defines an involutive distribution SΛ

whose integral leaves are equipped with a canonical symplectic struc-
ture. Conversely, any foliation S by symplectic manifolds of a manifold
M such that for any smooth function the hamiltonians of the restric-
tion of the function to each leaf glue into a smooth vector field, induces
a unique Poisson structure whose symplectic foliation is precisely S
[10]. This makes precise the idea mentioned above, that Poisson struc-
tures on manifolds provide the geometrical setting for the description
of smooth families of symplectic structures.

Looking at the known examples of Poisson manifolds, we see that
in most occassions we start with an algebraic structure (a Lie algebra,
a cocycle, etc.) and then we construct a manifold whose Poisson struc-
ture is related to the initial algebraic one. However it would be most
interesting to explore the converse viewpoint. Given a manifold M ,
determine the nontrivial Poisson structures that it supports. This is of
course an extremely difficult task because of the intrinsic non-linearity
of Poisson structures. Some work in this direction has been already
done by M. Bertelson who has studied in [1] the problem of character-
izing regular foliations which arise from Poisson structures. In order to
accomplish part of this task, another step worth taking is to check the
possibility of extending smooth topological constructions to the Poisson
category. Some of them have already been carried over to the symplec-
tic setting: D. McDuff [8] has defined the blowing up of a symplectic
submanifold and R. Gompf [4] has used the normal connected sum
to construct symplectic manifolds with arbitrary fundamental group.
In this sense symplectic geometry is “flexible”, in sharp contrast to
Kähler geometry. Of course, trivial families of symplectic manifolds
can be constructed just by taking the product of a symplectic manifold
M with an arbitrary compact manifold Q. Such trivial product Poi-
sson structures will have the same fundamental group as M provided
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that π1(Q) = 0. Hence unless we are looking for one-parameter fam-
ilies of symplectic manifolds, the existence of families with arbitrary
fundamental group is trivial (which is not to say that their classifi-
cation is also trivial, of course). Thus the problem of constructing
Poisson manifolds with arbitrary fundamental group is reduced to the
particular situation of codimension one symplectic foliations, and more
concretely to the search for 5-dimensional compact Poisson manifolds
of constant rank 4 with arbitrary fundamental group. In the process of
constructing them, we will introduce a surgery operation for Poisson
manifolds that naturally extends Gompf’s construction. We will show
in addition some properties of some of the Poisson manifolds obtained
in this way which are characteristic of the Poisson category, like the be-
havior of its modular class [12]. We will also provide various examples
exhibiting some of these properties.

We will start by recalling in section 2 how one can endow any com-
pact orientable 3-manifold with a rank 2 regular Poisson structure.
This construction, which depends on well-known results on foliations
of orientable 3-manifolds, will be adapted in sections 3 and 4 to de-
fine a surgery technique that extends Gompf’s to the Poisson category.
Section 5 is devoted to the study of the modular class of some Poisson
manifolds constructed by surgery, and in section 6 we will prove that
any finitely presentable group can be realized as the fundamental group
of a compact regular Poisson manifold of dimension n and even rank d
with n ≥ d ≥ 4.

2. Poisson structures on 3-dimensional manifolds

A regular Poisson structure on a 3-manifold M 3 is just a foliation by
surfaces with a leafwise smooth area form. In particular, if M 3 is
orientable, finding such a structure turns out to be an easy problem of
differential topology, whose non-trivial part is to endow the manifold
with the foliation. The problem of finding a codimension one foliation
on an oriented 3-manifold is a classical one which is already solved. We
now give an outline of a solution (in which we do not ask much of the
foliation), because it essentially contains the ideas that give rise to a
surgery construction for Poisson manifolds.

Recall that every orientable compact 3-manifold M can be obtained
from S3 by surgery on a link whose components kj can be chosen as
close to the unknot as we want. Moreover, the framings are of the form
(mj±1lj), where mj, lj are the meridian and longitude of the boundary
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tori. Since the components of the link can be chosen to be very close
to the unknot, they can be made transversal to the Reeb foliation R of
S3, i.e., the knots are submanifolds transversal to the leaves inheriting
the trivial Poisson structure. Once open tubular neighbourhoods of
kj have been removed from the solid tori Tj = D2 × S1 to be glued,
the boundaries of the leaves of R will be non-separating curves on ∂Tj,
cutting the meridian once. These curves are non-trivial in the homology
of Tj, so we cannot hope to add a punctured surface to get closed
leaves. However, if we remove a small tubular neighbourhood Nj of the
longitude αj = {0}×S1 we can find a map φj : Tj −Nj → S1 × I ×S1

such that the image of the curve mj on Tj goes to S1 × {0} × {e},
the meridian of S1 × I × S1 ⊂ D2 × S1. Hence, pulling back the
Reeb foliation of S1 × I × S1 we get a foliation except inside a solid
torus, where we again put a Reeb component. We have thus proved
the following proposition.

Proposition 1. Every oriented compact 3-manifold admits a regular
rank 2 Poisson structure.

Using the ideas above we see that any fibrered knot of a 3-manifold
gives a foliation with a Reeb component and a “modified” Reeb com-
ponent, where instead of having disks approaching the torus we have
punctured oriented surfaces (the Seifert surfaces of the knot). How-
ever, the previous argument does not allow us to construct for instance
a Poisson structure on a 3-manifold realizing as a fundamental group
an arbitrary finitely presented group G.

3. Fibrered Poisson structures

We have seen in the previous section that to perform surgery in an
oriented Poisson 3-manifold we do not need to worry about the Poi-
sson tensor itself but only about extending the symplectic foliation
we had. It is not difficult to propose a surgery technique for Poisson
manifolds which is indeed an extension of the normal connected sum
for symplectic manifolds. Roughly speaking, we will use a transversal
submanifold that intersects symplectically the leaves of the symplec-
tic foliation. This will allow us to perform the normal connected sum
along the symplectic submanifolds and we will show that the resulting
manifold admits a Poisson structure determined by the ones we had
initially. We will see that with the appropriate setting the proofs will
be natural generalizations of those of Gompf [4].
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3.1. Poisson structures compatible with fibre bundle struc-

tures. Let π : P → Q be a fibre bundle. We call a Poisson structure
ΛP on P compatible with the fibre bundle structure if the symplectic
leaves of ΛP are the fibres of π (hence the fibres are connected). We
will also call the triple (P, π,ΛP ) a fibrered Poisson manifold. If P is
compact this is equivalent to saying that the space of leaves is a smooth
manifold Q such that the projection π : P → Q is a submersion.

We begin by noticing that whenever one has a foliation, one can do
the usual exterior calculus in the bundles associated to the distribution.
In our case we will have a locally trivial fibration π : P → Q and
the bundle we are interested in is the one of vertical vectors, i.e. the
kernel of π. We will speak of vertical vector fields and k-forms, Lie
derivatives in the direction of vertical vector fields and the exterior
derivative of vertical k-forms. We shall denote the set of vertical k-
forms by Ωk

fib(P → Q), and by dπ the exterior vertical derivative (or
just d if there is no risk of confusion). Recall that one can pull-back
vertical forms by fibre bundle morphisms and that any known relation
involving Lie derivatives also holds for vertical vector fields and forms
(it holds fibrewise and defines a smooth section of the corresponding
bundle).

Let us denote the cohomology groups of the complex (Ω∗
fib(P →

Q), dπ) by Hk
fib(P → Q). We have the corresponding forgetful maps

f : Ωk(P ) → Ωk
fib(P → Q), and f : Hk(P ) → Hk

fib(P → Q).

Now it is straightforward to check that a Poisson structure ΛP on
P compatible with the fibration π : P → Q is determined by a closed
non-singular vertical 2–form ωP ∈ Ω2

fib(P → Q) (and hence [ωP ] ∈
H2

fib(P → Q)). We will call ωP the Poisson 2-form (or just the Poisson
form) of ΛP .

There are some results about the cohomology H∗
fib(P → Q) that

will be used later. We start by recalling that for a closed manifold with
a metric, Hodge theory allows one to obtain for any k-form α a unique
decomposition:

(1) α = dβ ⊕ δη ⊕ ρ

where β is coexact, η exact and ρ harmonic, and all three are images of
α by smooth operators. Moreover we also have relative Hodge theory
for a pair (N,K), where N is a compact manifold and K a closed
set (that is to say for forms with support contained in N − K). This
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implies that we also have the above results for a compact manifold N
with non-empty boundary and forms with support in the interior on N
(to show that this is so it is enough to double the manifold and apply
relative Hodge theory).

When π : P → Q is a locally trivial fibration and P is closed, we
can also apply Hodge theory to get the same decomposition above, eq.
(1), for vertical k-forms. We observe that any metric on P restricts
to a metric on each fibre and there we can apply the usual Hodge
theory. After gluing what we construct in this way fibrewise, we get
again smooth projection operators because in a trivialization we are
just working in a fibre with a smooth family of forms and metrics. If
P is compact and ∂P 6= ∅, the relative Hodge theory (P, ∂P ) (where
we use forms each of whose support does not intersect ∂P ) also holds,
because on each trivialization that we use to see that the construction
is smooth, the boundaries are setwise identified. As a consequence, for
π : P → Q locally trivial and P closed a vertical closed form on P is
exact if and only if it is fibrewise exact. Similarly, if P is compact
and ∂P 6= ∅, a vertical closed form whose support does not intersect
∂P , so that the form vanishes on a neighbourhood of the boundary,
it is exact if and only if it is exact with potential form vanishing in a
neighbourhood of the boundary.

The result also implies that for a smooth family of exact vertical k-
forms on a compact manifold, one can find a smooth family of vertical
(k− 1)-forms whose exterior derivative is the initial family: to see this
consider the vertical forms on the direct sum of the initial bundle and
the trivial bundle with rank the number of parameters of the family. If
all the k-forms of the family vanish in a neighbourhood of the boundary,
the (k − 1)-forms will also vanish in that neighbourhood.

3.2. Transversal Poisson fibrered submanifolds. A smooth Poi-
sson submanifold [11] of a Poisson manifold (M,ΛM) is defined as a
triple (P,ΛP , j) where j : (P,ΛP ) → (M,ΛM) is a Poisson morphism
embedding P into M . Besides this there are submanifolds P of a Poi-
sson manifold M which inherit a Poisson structure because the foliation
of M induces a foliation of P by symplectic submanifolds which fit into
a Poisson structure, but where the natural inclusion map is not a Poi-
sson morphism. We will consider submanifolds of Poisson manifolds
from this more general perspective. Thus, a Poisson submanifold of a
given Poisson manifold (M,ΛM) will be a submanifold intersecting the
leaves in symplectic submanifolds and inheriting a Poisson structure
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from ΛM . The inherited Poisson structure is necessarily unique. These
Poisson submanifolds generalize, in a natural way, the symplectic sub-
manifolds of a symplectic manifold. In particular we will be dealing
with a special class of Poisson submanifolds compatible with a given
fibration.

Definition 1. Let (M,ΛM) be an n-dimensional Poisson manifold of
rank d, (P,ΛP ) a Poisson manifold where P is compact and fibrered
over the (n − d)-dimensional manifold Q, and ΛP is compatible with
the fibration. An embedding j : P → (M,ΛM) is said to embed (P,ΛP )
as a transversal Poisson fibrered submanifold of (M,ΛM) if:

i. j(P ) is contained in the regular set of (M,ΛM).

ii. j(P ) cuts the symplectic leaves of (M,ΛM) transversally.

iii. j(P ) inherits a Poisson structure from (M,ΛM) that coincides
with ΛP .

The existence of such a submanifold implies that the symplectic
leaves of (M,ΛM) are nicely arranged in a neighbourhood of the sub-
manifold. To be more precise:

Lemma 1. If j : P → (M,ΛM) embeds the fibrered Poisson manifold
(P,ΛP ) → Q in M as a codimension r transversal Poisson fibrered sub-
manifold of (M,ΛM), then its normal bundle, with the induced Poisson
structure, is also a fibrered Poisson manifold over Q.

Proof. For each x ∈ P let SM(j(x)) be the symplectic leaf of ΛM

passing through the point j(x), so that ΛM |S(j(x)) is the inverse of a

symplectic form ωM(x) on Tj(x)S(j(x)) and Tj(x)(j(P ) ∩ S(j(x)))⊥ωM ,
the symplectic orthogonal of Tj(x)(j(P ) ∩ S(j(x))), is a symplectic r-
plane transversal to Tj(x)j(P ). The mapping of M to j(P ) along the
symplectic orthogonals gives a model of the normal bundle ν(P ) of the
embedding. Moreover, for each leaf SP ⊂ P , the restriction of this
model of normal bundle is the corresponding model for the embed-
ding of that leaf SP ⊂ SM . In fact, one can choose any compatible
almost-complex structure for the regular set of (M,ΛM) and consider
the leafwise associated metric. Tj(x)(j(P )∩S(j(x)))⊥ωM is then the or-
thogonal complement of Tj(x)(j(P )∩S(j(x))) with respect to this met-
ric. We can use this leafwise metric to identify the normal bundle with
a small enough tubular neighbourhood of j(P ). This open set inherits
a Poisson structure which can be pulled back to the normal bundle
(the Poisson structure depends on the almost-complex structure, but
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different choices give isomorphic structures). The local triviality of the
fibre bundle π̃ : ν(P ) → Q follows from that of the associated sphere
bundle, which is a compact manifold (and the projection is a surjective
submersion). �

4. The main construction: Poisson surgery

Let (M,ΛM) be an n-dimensional Poisson manifold of rank d and let
(P,ΛP ) be a fibrered compact (n − 2)-dimensional Poisson manifold
over the (n − d)-dimensional manifold Q such that ΛP is compatible
with the fibre bundle structure π : P → Q. Suppose we have two
disjoint embeddings ja : P → M , a = 1, 2, that both embed (P,ΛP )
as a transversal Poisson fibrered submanifold of (M,ΛM). Assume
that the normal bundles νa (using the model provided by Lemma 1
and considering the orientation induced by the Poisson bracket) have
opposite Euler class. After identifying νa with a tubular neighbourhood
Va of ja(P ) by means of the maps ̂a : νa → Va, a = 1, 2, any orientation
reversing identification ψ : ν1 → ν2 allows us to get a diffeomorphism
ϕ : V1−j1(P ) → V2−j2(P ) preserving the orientation of the fibres (the
disks) as the composition of ψ with the diffeomorphism h(x) = x/‖x‖2

that turns each punctured normal fibre inside out.

Definition 2. Let #ψM denote the smooth, foliated manifold, obtained
from M − (j1(P )∪ j2(P )) by identifying V1 − j1(P ) with V2 − j2(P ) via
the composition h ◦ ψ. If M is a disjoint union M1

∐

M2 and ja maps
P into Ma, the manifold will be called the normal connected sum of M1

and M2 along P (via h ◦ ψ) and will be also denoted by M1#ψM2.

It is easy to check that the diffeomorphism type of #ψM as a fo-
liated manifold is determined by (j1, j2) and the orientation reversing
identification ψ : ν1 → ν2, up to fibre preserving isotopy. Once one of
these identifications has been chosen, the remaining possibilities are
[P, S1] ∼= H1(P ; Z).

4.1. Topological remarks. An orientation µM on (M,ΛM) deter-
mines, together with the Poisson structure, an orientation on P in
a neighbourhood of ja(P ); this in turn, together with the restricted
Poisson form ωP , determines an orientation on Q. It is clear that if
the orientations on Q obtained in this way from each neighbourhood
Va are the same, then µM induces an orientation on #ψM .
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There are some very well know results about the topology ofM1#ψM2

(see the remarks by Gompf [4]). First of all, #ψM is (oriented) cobor-
dant to M . This is seen after identifying in the cobordism M × [0, 1]
neighbourhoods of j1(P ) and j2(P ) in the level {1}, and then round-
ing corners to get the cobordism manifold X. Hence, the Pontrjagin
numbers (#ψM oriented) behave additively, and in the even dimen-
sional case the formuli for the Euler characteristic and signature are,
respectively,

(2) χ(M1#ψM2) = χ(M1) + χ(M2) − 2χ(P ).

(3) σ(M1#ψM2) = σ(M1) + σ(M2), (#ψM oriented)

As is the case for symplectic manifolds, if #ψM is oriented the
surgery construction is compatible (choosing an appropriate framing)
with spin structures, and we can conclude:

Lemma 2. If M admits a spin structure and H2(P ; Z) has no Z2–
torsion, then there is a choice of ψ such that #ψM admits a spin
structure extending the one on M .

Proof. See [4], proposition 1.2. �

4.2. Remarks regarding the foliation of #ψM . If we start from a
regular transversally orientable manifold M , then #ψM is also regu-
lar transversally orientable (orientability in regular Poisson manifolds
is equivalent to transversal orientability) and its Godbillon-Vey class
GV (#ψM,Λ) can be computed in terms of the one of M . In particular:

Lemma 3. Let M be transversally orientable. Then GV (M,ΛM) = 0
if and only if GV (#ψM,Λ) = 0.

Proof. We know that we can remove disjoint (closed) fibrered neigh-
bourhoods Wa of ja(P ) so as to obtain an inclusion i : M−(W1∪W2) →
#ψM such that both ends of M−(W1∪W2) fibre over P (with fibre an
annulus). The condition GV (M,ΛM) = 0 implies, by naturality, the
vanishing of the Godbillon-Vey class of M − (W1 ∪W2). Since its ends
are fibrered, one can choose a representative β of the class vanishing on
these ends and deduce the existence of a form γ vanishing on the ends
whose exterior derivative is β. Finally, extending β and γ to forms β̃
and γ̃ defined on M we obtain dγ̃ = β̃, where [β̃] = GV (M,ΛM). The
other direction is proven similarly. �
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4.3. Constructing the Poisson form on #ψM . Our final aim is to
put a Poisson structure on #ψM . To do that, we have to modify the
previous construction slightly. Since we have to construct a symplectic
structure on each resulting leaf, it is more convenient to use instead of
the normal bundles, whose fibres have infinite area, the bundles ν0

a of
disks of radius π−1/2. We will compose ψ (which can be assumed to
preserve the area of each fibre) with the map

(4) i(x) =

(

1

π‖x‖2
− 1

)1/2

x

to turn each punctured disk inside out.

We notice that V1, V2 and Y , the image of (V1∪V2)× [0, 1] in X (the
cobordism between M and #ψM), are locally trivial fibre bundles over
Q. Any closed form ω ∈ Ωk

fib(V1∪V2 → Q) satisfying j∗1ω = j∗2ω induces

a form ΩṼ ∈ Ωk
fib(Ṽ → Q), up to a choice of a compactly supported

exact k-form dα, α ∈ Ωk−1
fib (Ṽ → Q), where Ṽ ⊂ #ψM is the image of

V1 ∪ V2 in #ψM . To get a representative ΩṼ of this family we retrac
disjoint neighbourhoods of ja(P ) (containing V 0

a , the image of ν0
a) onto

ja(P ) and extend this map to a smooth retraction ρ : M →M isotopic
to the identity. Then ρ coincides with the identity outside a compact
set of V1 ∪V2, preserves the fibres of Va, and commutes with ̂2 ◦ψ ◦ ̂−1

1

on V1 and V2. The k-form is the restriction to Ṽ of the one induced
on Y by ρ∗ω. Two different choices of the retraction will give rise to
two k-forms whose difference will be a compactly supported element
of Ωk

fib(Ṽ → Q). To see that this compactly supported closed form
is exact, it is enough to check it fibrewise. The procedure is the one
described by Gompf. We recall that when we round corners to get the
cobordism manifold Y , we can think of having added some new levels
(i.e. we now have a map p2 : Y → [0, 1+ ε]) so that the level set 1+ ε is

Ṽ , where the punctured disks of radius π−1/2 are identified. As we go
from 1+ε to 1 we identify punctured disks of smaller and smaller radius
until we reach the level set 1 where j1(P ) and j2(P ) are identified. The
level sets corresponding to the values smaller than 1 are diffeomorphic
to V1∪V2. Given another retraction ρ′, to evaluate the difference of the
k-forms ρ∗ω|Ṽ −ρ′∗ω|Ṽ , we push down homotopically the corresponding

(possibly singular) oriented k-manifold Mk ⊂ p−1
2 (1+ε] so that it lies in

p−1
2 ([0, 1]) and the level 1 is contained in j1(P )×{1}. We then cut open
Y and project (V1∪V2)× [0, 1] → V1∪V2×{0}, and in the zero level set
integrate ρ∗ω − ρ′∗ω over the correspondent manifold with boundary
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M ′
k. But since the retractions were homotopic to the identity, both ρ∗ω

and ρ′∗ω represent the same homology class as ω. This, together with
the fact that j∗1ω = j∗2ω, implies that

∫

M ′

k

ρ∗ω − ω = 0 =
∫

M ′

k

ρ′∗ω − ω.

Hence their difference integrates to 0.

Now we will show that this construction works in the Poisson cat-
egory.

Theorem 1. Let (M,ΛM) be an n-dimensional Poisson manifold of
rank d ≥ 2 and let (P,ΛP ) be a compact (n − 2)-dimensional Poi-
sson manifold such that ΛP is compatible with the fibre bundle struc-
ture π : P → Q, where Q is an (n − d)-dimensional manifold. Let
ja : (P,ΛP ) → (M,ΛM), a = 1, 2, be two disjoint embeddings of (P,ΛP )
as a transversal Poisson fibrered submanifold of (M,ΛM). Suppose that
there is an orientation-reversing isomorphism of the normal bundles
ψ : ν1 → ν2. Then #ψM , the normal connected sum along the nor-
mal bundles of ja(P ), can be given a canonical Poisson structure Λ,
characterized as follows:

Suppose given disjoint identifications ̂a : νa → Va of normal bundles
with tubular neighbourhoods Va of ja(P ) that send fibres into leaves. We

denote by Ṽ the image of V1∪V2 in #ψM ; then Ṽ is a locally trivial fibre
bundle with base space Q. Then there exists a unique fibre isotopy class
of Poisson forms on Ṽ containing elements ω satisfying the following
characterization:

1) Let ΩṼ be any of the 2-forms induced in Ṽ by ωM . Then the closed

form ω − ΩṼ ∈ Ω2
fib(Ṽ → Q) has compact support and is exact.

2) The identification ̂1 : ν1 → V1 ⊂M can be chosen in such a way
that the Poisson 2-form ωM is SO(2)-invariant on V 0

1 = ̂1(ν
0
1),

with ν0
1 the open disk bundle of radius π−1/2, and on the closure

of each fibre of V 0
1 it is symplectic with area t0 independent of the

fibre. Moreover, the forms (1 − s)ωM + sπ∗ωP , 0 ≤ s < 1, are all
Poisson on the closure of V 0

1 .
3) There is a closed vertical 2-form ζ with compact support in V 0

2 =
̂2(ν

0
2), with ν0

2 the open disk bundle of radius π−1/2, such that for
all t ∈ [0, t0] the form ωM + tζ is Poisson on both V1 ∪ V2 and
j2(P ).

4) There is a disk preserving map χ : ν2 → ν2 isotopic to the identity
by an isotopy with support in ν0

2 , such that outside of a compact
subset K of V 0

1 , the map ϕ = ̂1 ◦ψ ◦ i◦χ◦ ̂2 : V 0
1 − j1(P ) → V 0

2 −
j2(P ) is Poisson with respect to the Poisson form ω̃M = ωM + t0ζ
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on M . The manifold #ψM is obtained from (M−(K∪j2(P )), ω̃M)
by gluing via ϕ.

Moreover, different choices of embeddings of the normal bundles are
connected by an isotopy that preserves the isotopy class described above.

Finally, the form ω depends smoothly on ωM , ωP (and hence on
j1, j2) and it can be constructed with each Va, a = 1, 2 lying inside any
preassigned neighbourhood of ja(P ).

Now we will devote the next few paragraphs to proving Theorem 1.

4.4. The contraction operator. We recall that ν(P ) is an SO(2)-
bundle. Let τs : ν(P ) → ν(P ), 0 ≤ s ≤ 1, denote multiplication by s on
each disk and let Xs denote the corresponding vector field. Since Xs is
a vertical vector field with respect to the fibre bundle structure ν(P ) →
Q, we can define the operator I : Ωk

fib(ν(P ) → Q) → Ωk−1
fib (ν(P ) → Q)

by

(5) I(ρ) =

∫ 1

0

τ ∗s (iXs
ρ)ds.

As usual, if ρ is closed and j∗ρ = 0, then dI(ρ) = ρ; moreover I
commutes with any action preserving the SO(2)-bundle structure.

Corollary 1. Let ω1, ω2 be two Poisson forms on ν(P ) compatible with
the fibre bundle structure ν(P ) → Q satisfying j∗ω1 = j∗ω2 and induc-
ing the same orientation on ν(P ). There exist neighbourhoods U1, U2

of P in ν(P ) and an isomorphism φ : ν(P ) → ν(P ) isotopic, relative
to P , to the identity by an isotopy with compact support, such that
φ : U1 → U2 satisfies φ∗ω2 = ω1. If both forms already coincide over a
compact subset C of P , we may assume the isotopy to have support on
a preassigned neighbourhood of the closure of P − C.

The isomorphism φ can be chosen to depend smoothly on ω1 and
ω2. In fact, if we are given smooth families ω1,r, ω2,r, b ≤ r ≤ c,
coinciding on a fixed neighbourhood of a given compact set C, and we
construct isomorphisms φb, φc as in the proof that follows satisfying
φ∗
bω2,b = ω1,b and φ∗

cω2,c = ω1,c, then there exists a smooth family φr
such that φ∗

rω2,r = ω1,r on a fixed neighbourhood of P and φr equals the
identity in the chosen neighbourhood of the closure of P − C.
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Proof. As in the proof of the Darboux-Weinstein theorem, we consider
the vertical closed 2-form η = ω1 − ω0 and the family ωt = ω0 +
tη (consisting also of vertical closed 2-forms). We can find a small
neighbourhood of P in which the ωt are non-degenerate (because on P
both forms ω0 and ω1 induce the same orientation on the normal disk
and because of the compactness of P ). There, we know that η = dα,
with α = I(η), and we can find a family of vertical vector fields Yt
characterized by the equation iYt

ωt = −α. After using a suitable bump
function, this 1-parameter family defines a global flow Ψt on ν(P ),
leaving P stationary. Computing d

dt
(Ψ∗

tωt) we conclude that Ψ∗
tωt does

not depend on t near P . If the forms coincide in a neighbourhood
of C, η vanishes on that neighbourhood. For families the proof is
trivial observing that the bump functions chosen at the ends b, c can
be smoothly joined. �

Corollary 2. Let (M,ΛM) be an n-dimensional Poisson manifold of
rank d. Let (P,ΛP ) be a regular compact Poisson manifold of dimension
n − 2 which fibres over the (n − d)-dimensional manifold Q and such
that ΛP is compatible with the fibration. Assume that ja : (P,ΛP ) →
(M,ΛM), a = 1, 2, embeds (P,ΛP ) as a transversal Poisson fibrered
submanifold of (M,ΛM). Suppose that both normal bundles are trivial
and let ψ : ν1(P ) → ν2(P ) be a bundle isomorphism identifying them
and preserving the orientation of the fibres. Then #ψM can be given
a Poisson structure Λ.

Proof. We can identify each normal bundle with P ×R2 in such a way
that each disk {z}×D2 has area form dx∧dy. So we have isomorphisms

̂a : P ×D2
ε → Va, a = 1, 2 ,and ψ̃ : P ×D2

ε → P ×D2
ε . The main point

is that since the normal bundles are trivial, j∗aωa + dx∧ dy are Poisson
structures that restrict to j∗aωa on P . Hence, we can find a real number
δ > 0, and diffeomorphisms ̃a : P × D2

δ → Ua with ̃∗1ω1 = j∗1ω1 +

dx ∧ dy, ψ̃∗̃∗2ω2 = j∗1ω1 + dx ∧ dy, Ua ⊂ Va neighbourhoods of ja(P ).

Composing ψ̃ with the area preserving map (r, θ) 7→ (
√
δ2 − r2,−θ)

preserves the Poisson structure and hence allows us to define a Poisson
structure on #ψM . We notice that we could have equally asked our
initial fibre bundle morphism ψ to reverse the orientation of the fibres,
because by composing with the leafwise reflection (r, θ) 7→ (r,−θ) one
can always reverse the orientation of a trivial bundle. �

In the above construction, the Poisson structure coincides with ΛM

on M − (j1(P ) ∪ j2(P )). But we have to allow perturbations in a
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neighbourhood of one of the embeddings to have uniqueness up to
isotopy.

The main obstruction to finally solving the problem posed in The-
orem 1 in general is that one cannot put a global Poisson structure
on νa induced by j∗aωa and the symplectic structure on the symplectic
orthogonal, unless the normal bundle is trivial. We can overcome this
difficulty in the following way. We consider ν0

a , the bundles of open
disks of radius π−1/2, and identify the punctured disks by composing
i with ψ to get B, an S2-bundle with structural group SO(2) whose
fibres have an SO(2)-invariant area form ωS2 that integrates to 1 on
each of them. We have two embeddings i0 : P → B, i∞ : P → B with
̂1 ◦ i0 = j1, ̂2 ◦ i∞ = j2. Let us put E0 = B−P∞ (resp. E∞ = B−P0).
Using Thurston’s ideas (see [9], Thm. 6.3) we can construct a vertical
2-form η restricting to the above defined area form on each fibre. We
consider a form β on q : B → P representing the Poincaré dual of P0 so
that it integrates to 1 on each fibre (sphere transverse to P0). It can be
chosen to have support in a small neighbourhood of P0, so that it van-
ishes on P∞. We take trivializations hk : q−1(Uk) → Uk × S2 of B and
a partition of unity ρk subordinate to {Uk}. Since h∗kπ

∗
S2ωS2 − β = dαk

on q−1(Uk), η = f(β + d
∑

k(ρk ◦ q)αk), where f is the forgetful map
f : Ω2(B) → Ω2

fib(B → Q), satisfies the requirements. The result of
averaging η − q∗i∗0η (both q, i0 are maps lifting id : Q → Q) under the
SO(2)-action is a vertical SO(2)-invariant 2-form, that we will still call
η, that restricts to the canonical volume form on each sphere and sat-
isfies i∗0η = 0. We can even choose η so that η|E0 extends over ν1 to a
closed vertical form that is symplectic on the planes (fibres). We only
need to pick β with support away of P∞, so that on the intersection of
that neighbourhood with q−1(Ui) (Ui contractible) αk can be chosen to
be h∗kπ

∗
S2α′, for any α′ with dα′ = ωS2 on that neighbourhood. In par-

ticular, the restriction of the 1-form α = 1/2(r2 − 1
π
)dθ ∈ Ω1(R2 −{0})

(given in polar coordinates) to the disk of radius π−1/2 admits an ex-
tension to a form α′ on S2 − {0} with dα′ = ωS2.

The forms ωt = q∗j∗1ω1 + tη are non-degenerate for 0 < t ≤ t1
because, as Thurston observed, q∗j∗1ω1 is non-degenerate on the or-
thogonal to the tangent space of the spheres (which does not depend
on t because it is determined by η), and for a choice of η extending to
ν1 as described above, the forms ωt will be symplectic near the closure
of E0 ∼= ν0

i in ν1 for t1 ≤ t small enough.



A NEW CONSTRUCTION OF POISSON MANIFOLDS 97

4.5. Comparing the Poisson structures on B, E0 and E∞. Now
that we have a family of closed non-degenerate 2-forms on B, we would
like to compare one of them with the ones defined on E0 ∼= ν0

1 and
E∞ ∼= ν0

2 that come from ω1 and ω2. Following Corollary 1, for each t
we could find neighbourhoods (W t

0, ωt) of P0 and (W t
∞, ωt) of P∞ which

are Poisson equivalent to some neighbourhoods (depending on t) of
(j1(P ), ω1) and (j2(P ), ω2). But nothing guarantees that B = W t

0∪W t
∞,

for some t.

Instead, we use Gompf’s construction again. On E0, let ϕ = I(η)
and define the vertical vector fields Yt, 0 < t ≤ t1 by the condition
iYt
ωt = −ϕ (also defined in a neighbourhood of the closure of E0, if

η was chosen to extend to ν1). The key property is that these vector
fields are SO(2)-invariant. For a fixed t0, the flow Ψt, required to be the
identity for t = t0, is SO(2)-invariant and of course satisfies Ψ∗

tωt = ωt0 .
In principle, we know that for any SO(2)-invariant compact set K ∈ E0

there exists an interval J of t0 in (0, t1] where the flow Ψ: K×J → E0

is defined. But in can be shown that Ψ is defined on E0× [t0, t1]. Given
any point x on E0, the action Ψ determines an SO(2)-orbit on its fibre
and hence a disk D(x). We define:

A(x) =

∫

D(x)

η

and

At(x) =

∫

D(x)

ωt ,

where the forms are pulled back to the disk. The map A : E0 → [0, 1) is
a smooth SO(2)-invariant proper surjection and it is clear that At(x) =
tA(x). Given x ∈ E0, t0 ∈ (0, t1] and K = D(x) we obtain a flow
as above on D(x). Let D(Ψt(x)) be the disk whose boundary is the
SO(2)-orbit of Ψt(x) (it is also Ψt(∂D(x))). Then we have:

tA(Ψt(x)) = At((Ψt(x))) =

∫

D(Ψt(x))

ωt

=

∫

Ψt(D(x))

ωt =

∫

D(x)

Ψ∗
tωt =

∫

D(x)

Ψ∗
t0
ωt0 = t0A(x),

So we can conclude that A(Ψt(x)) = t0
t
A(x). Since A, which is proper,

decreases with the flow lines (with t increasing), these flow lines can-
not leave E0 and hence Ψ is defined in E0 × [t0, t1]. The inequality
A(Ψt1(x)) <

t0
t1

implies that choosing t0 small enough, Ψt1 sends E0
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into any initially fixed tubular neighbourhood of P0. In particular,
we choose t0 so that Ψt1(E

0) ⊂ W t1
0 . Hence ̂1Ψt1 sends (E0, ωt0) into

(̂1Ψt1(E
0), ω1). Actually, the Poisson morphism Ψt1 extends to a neigh-

bourhood of the closure of E0, for suitably chosen η and thus it can
further be extended to a diffeomorphism Ψt1 : ν1 → ν1 isotopic to the
identity by an isotopy with compact support (but Poisson only in a
neighbourhood of the closure of E0 ∼= ν0

1) .

The restriction of each ωt to E∞ also induces a Poisson structure,
but in general i∗∞ωt 6= j∗2ω2. But we can modify ω2 in a neighbourhood
of j2(P ) (ω2 has not been involved in any of the previous work) so
that the above equality holds. We choose an SO(2)-equivariant map
µ : B → B lifting id : P → P such that µ fixes a neighbourhood of
P∞ and collapses a neighbourhood of P0 to P0. The composition of
the restriction of ̂−1

2 to V 0
2 with µ can be extended to a map λ from a

closed neighbourhood U2 of V 0
2 in V2 (a neighbourhood of ∂U2 is sent to

P0). We can then modify the Poisson structure of (U2, ω2) ⊂ (V2, ω2),
without modifying the symplectic foliation, by adding to ω2 a closed
vertical 2-form ζ such that ω2+ζ is non degenerate (and hence Poisson)
and ζ vanishes in a neighbourhood of ∂U2 in U2. We set ζ = λ∗η. By
the compactness of P there exists t2 > 0 such that for all 0 ≤ t ≤ t2,
ω̃M = ω2 + tζ is non degenerate. To solve the problem we just need to
pick our previous t0 smaller than t2 (and use of course ω̃M = ωM + t0ζ).

So by gluing we can define a Poisson form ω on Ṽ that satisfies all the
requirements of Theorem 1. To be more precise, we can find a map
χ : E∞ → E∞ isotopic to the identity by an isotopy (relative to P∞)
with support in ν0

2 and Poisson, with respect to the forms ωt0 and
ωM + t0ζ, in a neighbourhood U∞ of P∞; the map can actually be
extended to a diffeomorphism of ν2 isotopic to the identity. We glue
using the map ̂2 ◦ χ ◦ i ◦ ψ ◦Ψ−1

t1 ◦ ̂−1
1 : V 0

1 → V 0
2 , where Ψt1 and χ are

thought as diffeomorphisms of the normal bundles (instead of having
domain in the sphere bundle B). The embeddings we finally use are
̂1◦Ψt1 and modified ̂2 by composing on the right with χ : ν2 → ν2. The
only condition that needs to be checked is that the difference [ω−ΩṼ ]
(which by construction has compact support) is exact. As we saw
above, it is enough to check this fibrewise. Thus, it is enough to show
that

(6) 〈ω − ΩṼ , F 〉 = 0, ∀F ∈ H2(Ñ ,Z),
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for all the fibres Ñ of Ṽ → Q. This time we will not write the proof
of equation 6 because it is, word for word, Gompf’s proof ([4] pages
547-548).

Concerning uniqueness, for any smooth family of Poisson forms
ωt ∈ H2

fib(Ṽ → Q), t ∈ [0, 1] such that the forms ωt − ΩṼ are exact
and compactly supported, the forms ωt − ω0 are exact in compactly
supported cohomology (we can find a common compact set W of Ṽ
containing all the supports). Hence we can find a family of compactly
supported 1-forms αt with d

dt
ωt = d

dt
(ωt−ω0) = dαt and apply Moser’s

theorem to show that there is an isotopy with support inW ⊂ Ṽ pulling
back all the forms of the family to ω0. The isotopy class of the form con-
structed using the procedure just described is fixed. A different choice
of t ≤ t0 can be absorbed by using the parametrized version of corollary
1. Equally, for any other choice η̂ the family ηs = sη+ (1− s)η̂ is valid
for the construction and we can again apply the same corollary to the
family Ψs,t. Any other choices can be connected by smooth families,
and the same happens when we change the embeddings of the normal
bundles (preserving the foliations) and the choice of ψ (preserving the
fibre bundle structure) by isotopic identifications.

Any Poisson 2-form ω satisfying the four conditions of theorem 1 is
isotopic to one constructed using the procedure described above. We
use ψ to recover the sphere bundle B and the modified embeddings
to put in B a SO(2)-invariant Poisson form ωt0 that agrees with ωM
on V 0

1 and with ω̃M near j2(P ). This is also the result of applying
the construction of the theorem with η = 1

t0
(ωt0 − q∗ωP ) and t1 = t0.

SO(2)-invariance implies that the fibres are ωt0-orthogonal to P∞, so
η is actually non-degenerate on the fibres at P∞. Non degeneracy
of ωt at P∞, t ≤ t0, follows from condition 3, applied first to TP∞.
We can extend η to ν1 after shrinking the embedding ̂1 : ν1 → M
relative to E0 (non-degeneracy is an open condition). If we apply the
construction to the embedding of condition 2 (shrunk (relative to E0), if
necessary), when t = t0 we get the same embedding (Ψt0 = id) because
it was already Poisson. The same happens for the second embedding
(the correction χ equals the identity), provided we chose the given ζ
defining ω̃M , rather than setting ζ = λ∗η. Hence, the gluing map equals
ϕ−1 near j2(P ). The only price to pay is that ζ may not be λ∗η, for λ
extending the restriction of ̂−1

2 to V 0
2 (but we have that j∗2ζ = i∞η, and

ζ can be assumed to vanish outside ̂2(B − P0) = V 0
2 ). We will show
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that ω and ω′, constructed using ζ ′ = λ∗η, are isotopic by an isotopy
fixing the complementary of a compact set in Ṽ . It will be enough to
show that the the Poisson forms constructed using ζs = sζ ′ + (1 − s)ζ
satisfy the condition 1 of the theorem. But that can be proven using
the ideas that proved 〈ΩṼ − ω, F 〉 = 0 ∀F ∈ H2(Ñ ,Z) (see [4] page
549). �

5. The modular class of #ψM

Let (M,ΛM) be a Poisson manifold; we assume for simplicity that M is
orientable. One of the first invariants of the Poisson structure one has
is the modular class [12]. Roughly speaking, the modular class mea-
sures to what extent the Poisson manifold admits a transverse measure
(transverse to the leaves) invariant by all the hamiltonian vector fields.
The modular class belongs to the first Poisson cohomology group of
(M,ΛM) (see [10]). For each volume form µ, a vector field represent-
ing the modular class is defined by the formula

(7) φµ : f 7→ divµXf ,

where Xf is the Hamiltonian vector field associated to f and divµ the
divergence with respect to µ.

A Poisson manifold with vanishing modular class is called unimod-
ular. It is clear from what we said above that an orientable Poisson
manifold is unimodular if and only if there exists a volume form invari-
ant by all the hamiltonian vector fields. Since (at least in the regular
set) a volume form is the wedge product of the leafwise Liouville vol-
ume form (which is invariant by the hamiltonian vector fields) and a
transverse volume form, the invariance of this transverse volume form
is equivalent to the invariance of the whole form (which is why we spoke
about measuring the existence of a invariant transverse volume form).

Now let us assume that #ψM is oriented.

Proposition 2. If (#ψM,Λ) is unimodular then (M,ΛM) is also uni-
modular, but the converse is not true.

Proof. We first notice that if we have an oriented Poisson mani-
fold (N,ΛN) and an open set U such that (U,ΛN |U) is unimodular,
then (N,ΛN) will be unimodular if any of the invariant volumes on
(U,ΛN |U) can be extended to an invariant volume on (N,ΛN). We will
see that there are cases where (N,ΛN) is unimodular but not all the
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invariant volumes on a certain open set can be extended to be invari-
ant on (N,ΛN). It is worth noticing that when (N,ΛN) is a Poisson
fibrered manifold and U cuts each leaf in a non-empty open connected
set, then any invariant volume form in (U,ΛN |U) extends to a unique
invariant form on (N,ΛN) [12]. It follows easily that in a general
Poisson manifold (N,ΛN), if we take a closed set V contained in a
connected open one U , such that U is fibrered and V intersects each
fibre in a non-empty set whose complement (in the fibre) is connected,
then (N,ΛN) is unimodular if and only if (N − V,ΛN |N−V ) is unimod-
ular. As a consequence, any perturbation of the Poisson bivector on
V that preserves the foliation does not affect the unimodularity (resp.
non-unimodularity) of (N,ΛN). Hence, the unimodularity of (#ψM,Λ)
implies the unimodularity of (M,ΛM). If we start with (M,ΛM) uni-
modular, since Va fibres over Q, any invariant volume on (M,ΛM) will
determine a couple of volume forms on Q. It is clear that (#ψM,Λ)
will be unimodular if and only if we are able to find an invariant volume
form such that the induced volume forms onQ are the same. Though in
general this not true (and we will end the proof of the proposition by
constructing counterexamples), we will describe now some situations
where it does occur.

Definition 3. Take (M,ΛM), (P,ΛP ) and j1 : (P,ΛP ) → (M,ΛM) as
in theorem 1. Assume that j1(P ) has trivial normal bundle. Then once
we have fixed a trivialization ψ of the normal bundle, we can apply
our construction to the disjoint union of (M,ΛM) with (M,ΛM). We
denote the resulting manifold by (M#ψM,ΛM#ΛM)

Corollary 3. Let (M,ΛM), (P,ΛP ) be as in the above definition. Then
(M,ΛM) is unimodular if and only if (M#ψM,ΛM#ΛM) is unimodu-
lar.

To construct counterexamples we begin by proving the following
lemma:

Lemma 4. There exist Poisson fibrered manifolds (actually symplectic
bundles) with open sets having invariant volume forms which do not
extend to invariant volume forms on the whole manifold.

Proof. The idea is to start with our fibrered open set, and then glue
some of the fibres into a single one (so we are putting restrictions
on the volume form we pull back from the base space). We consider
the Poisson fibrered manifold S2n−1 × D2 → S2n−1, where D2 is the
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corresponding closed unit disk with its usual symplectic form (have in
mind the case n = 1). For each point of S2n−1 we consider its image
by the antipodal map and identify the boundaries of the corresponding
fibres via a reflection (say, on the y-axis) ry : S1 → S1. The resulting
manifold is a symplectic bundle over RP 2n−1 with fibre the sphere with
the usual area form (it can also be constructed by considering S2n−1 ⊂
R2n ⊂ R2n+1, taking a closed tubular neighbourhood of fixed radius of
S2n−1 ⊂ R2n+1 and identifying its boundary using the antipodal map
and then rescaling the area form). If we remove all the equators we
obtain the initial open disk bundle. In this open set, the invariant
volume forms come from volume forms on S2n−1, but only the ones
invariant under the action of the antipodal map on S2n−1 extend to
invariant volume forms on the whole manifold.

There is a third way of constructing these manifolds, starting from
the final Poisson manifold, which gives many more examples. We
choose (Q,G, (F, ω), ρ) where Q is a compact manifold, G is a nor-
mal subgroup of π1(Q) of finite index and ρ is a representation of
K = π1(Q)/G in the group of symplectomorphisms of (F, ω) such that
there are points in F with trivial stabilizers. QG, the cover of Q asso-
ciated to the subgroup G is a principal K-bundle, so we can construct
the associated bundle to the chosen representation ρ by symplectomor-
phisms. Our resulting manifold M is a symplectic bundle and hence
a Poisson manifold, but as a bundle, since it has discrete structural
group, it has the unique lifting property. Thus, if on the fibre over the
base point x0 of Q, we pick a point z with trivial stabilizer, the lifting
to z of all the homotopy classes of paths based on x0 gives us an em-
bedding of QG in M transverse to the fibres. On the fibre over x0, the
points close to z have trivial stabilizer which implies that the normal
bundle to QG is trivial. We can even take as a tubular neighbourhood
the result of pushing a small disk around z using the unique lifting
property which gives us a symplectic subbundle. It is clear that the
invariant volumes on a small tubular neighbourhood of QG that extend
to invariant volume forms on the whole manifold are those which come
from K-invariant volume forms on QG. �

Now we are ready to finish the proof of proposition 2:

To construct the counterexample we take two copies of any of the
symplectic fibrations (Q,G, (F, ω), ρ) → Q of lemma 4 (with F a sur-
face) and consider in both the same embedding of QG. Next we fix
a volume form µ on QG that descends to Q. Then we pick a point
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z ∈ QG and consider a diffeomorphism f : QG → QG homotopic to
the identity (relative to z) which is the identity in a neighbourhood
of the remaining points of the orbit of z and which does not preserve
µ in z. We identify both embeddings of QG in M via f and perform
the fibrered connected sum using any framing ψ to obtain a manifold
(M#ψM,ΛM#ΛM) which is non unimodular. If it were, an invariant
volume form would induce a volume form efµ on QG both invariant by
the action of K and the action of K conjugated by f , but this cannot
happen at the point z. �

6. Poisson manifolds with arbitrary fundamental groups

Using the previous results we can prove the theorem that extends
Gompf’s existence theorem to regular Poisson manifolds.

Theorem 2. Let G be any finitely presentable group. Then for any
integers n ≥ d ≥ 4, d even, there exist an oriented closed regular
Poisson manifold of dimension n and constant rank d (Mn,d,Λ) such
that π1(M

n,d) ∼= G. These manifolds have vanishing Godbillon-Vey
class but the ones with a codimension one symplectic foliation are non-
unimodular. Moreover, they can be chosen to be spin.

Proof. As we remarked in the introduction, we only need to prove
the case n = 5, d = 4 because Gompf already established the result
for all cases except for n odd and d = n − 1, and the odd higher
dimensional cases follow from the 5-dimensional one (by multiplying by
simply connected symplectic manifolds of the appropriate dimension in
the case of a codimension one symplectic foliation).

We first recall Gompf’s proof. He starts with a closed symplectic
manifold T 2 × Σg such that G can be obtained by collapsing some
elements of its fundamental group. The symplectic form is chosen so
that these elements are the simple curves of some trivially embedded
symplectic tori. The key step is that the manifold which is glued along
each of these tori is a rational elliptic surface (along one of its regular
fibres), and the resulting fundamental group, which does not depend on
the chosen framing, is the old one with the homotopy of these tori killed.
It is worth recalling the topology of these rational elliptic surfaces.

They are diffeomorphic to CP 2
9

# (−CP 2) and an example can be
constructed by blowing up the nine points of CP 2 where two generic

cubics intersect. We get in this way a fibration p : CP 2
9

# (−CP 2) →
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CP 1 whose fibres are the pencil of cubics generated by the two given
ones. The general fibre is a smooth cubic (topologically a torus) and we
also have 12 singular fibres each of which is topologically a sphere with
a self intersection point (the result of collapsing a nonseparating regular
curve of the generic fibre). It is easy to check that the complement of a
regular fibre is simply connected. Roughly speaking, the complement
fibres over a disk so we only have to worry about the fibre. Following
[7], we see that this complement can be constructed starting from D2×
T 2, T 2 = 〈a〉×〈b〉, and extending the fibration to a bigger disk (in CP 1)
containing a singular fibre amounts to gluing a two handle (with some
framing) over either a or b (we have 12 singular fibres, and 6 of the
disks go over a and 6 over b). The last step is to glue a neighbourhood
of the regular fibre over ∞. Hence, any curve contained in a fibre is
trivial in p−1(CP 1 − {0,∞}).

To get our Poisson 5-manifold M with π1(M) ∼= G, we consider
one of Gompf’s manifolds (MG, ωMG

) with π1(MG) = G. We can also

assume that MG = NG#CP 2
9

# (−CP 2) and that the fibre removed
is p−1(∞). Let M1 = MG × S1 with the product Poisson structure
(the vertical 2-form p∗1ωMG

, which we rename ωMG
). In MG, the fibre

p−1(0) = T is a trivially embedded symplectic torus with symplectic
form ω0. Now let M2 = T × S3 with the product Poisson structure
coming from ω0 and a Poisson structure of S3 determined by the Reeb
foliation and the usual volume form, and let k ⊂ S3 be the unknot,
which is a Poisson submanifold of S3 transverse to the foliation. We
consider the Poisson submanifolds P1 = T × S1 ⊂ M1, P2 = T × k ⊂
M2. It is clear that both are transversal Poisson fibrered submanifolds.
Moreover, they are trivially embedded and any identification of k with
the factor S1 of P1 identifies P1 and P2 as Poisson manifolds. Any
identification between normal bundles will allow us to construct the
corresponding connected sum along the normal directions. In this case,
we have canonical framings; the one in P1 comes from the projection

p : CP 2
9

# (−CP 2) → CP 1 and the one in P2 from the zero-framing
of the unknot. Using this framing and < a, b, s > as base of H3(T ×
S1; Z) (the choice of s depends on the orientation we pick for M1), any
other framing is given by a triple (l1, l2, l3) ∈ Z3. We will denote the
Poisson manifold so obtained by M1#(l1 ,l2,l3)M2. The computation of
its fundamental group is mere routine, but we will do it anyway because
this is not quite the manifold we are looking for. As usual, we apply
Seifert-Van Kampen’s theorem:
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Let D1 be the unit disk contained in CP 1 and W2 = k × D2 be a
small tubular neighbourhood of k in S3. Let us call V1 = p−1(D1)×S1,
V2 = T ×W2. M1 − V1 = (MG − p−1(D1)) × S1 and π1(MG − p−1(D1)
has the same generators as π1(MG) and the same relations except from
the one that assures that the loop α̂, a lift of α = ∂D1, is vanishing.
π1(M2−V2) is the free group generated by a, b and by the loop β = ∂D̄2

generating the homotopy of S3 − W2. Now we see that the loop s
generating the homotopy of S1 in (MG − V1) × S1 goes to a curve
isotopic to k + l3β. The curves a, b ⊂ T × {x} ⊂ M2 − V2 are seen
as the correspondent simple curves generating the homology of a fibre
over a point in ∂D1 plus some multiple of α̂. Finally, the loops α̂ and
β are the same.

We cannot be sure that the result is desired manifold because we
cannot conclude that α̂ is contractible, but we have turned our initial
problem of killing the generator of the homotopy of S1 in MG×S1 into
a problem that amounts to killing a curve in a manifold whose topology
we know quite well.

In MG, we consider T2, the torus generated by the loops α̂+a, b. T2

is a symplectic torus trivially embedded (the symplectic structure on
p−1(0)×D2

1+ε can be assumed to be the product symplectic structure).
Applying Gompf’s construction to MG and a rational elliptic surface
along the normal directions of T2 and a regular fibre we get a symplectic
manifold M̃G . It is clear that π1(M̃G) = π1(MG), but in M̃G we have
a disk that bounds α̂ lying in M̃G− p−1(D1). Thus, if we construct the

fibre connected sum of M̃G×S1 and T×S3 along P1 and P2 (T = p−1(0)
is of course in M̃G), we get a Poisson manifold M̃1#(l1,l2,l3)M2 such that

π1(M̃1#(l1 ,l2,l3)M2) ∼= G. It is worth noticing that the diffeomorphism

type of M̃1#(l1 ,l2,l3)M2 depends at most on l3. To see this we observe

that M2 − V2 is a tubular neighbourhood of T × β̂, where β̂ is a loop
in the interior of M2 − V2 isotopic to β and thus ∂(M2 − V2) has an

S1-bundle structure (over T × β̂) . Hence the diffeomorphism type of

the connected sum is totally determined by the image in ∂(M̃1 − V1)
of the S1-bundle structure of ∂(M2 − V2) (because M̃1#(l1,l2,l3)M2 is
the result of collapsing to a point the fibres of the described fibration),
and these fibrations are classified by the value of l3 (the authors do
not know whether different values of l3 yield different diffeomorphism
types).
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As we have already observed, if we use Kummer surfaces instead of
rational elliptic ones to construct M̃G, both M̃1 and M2 can be given
spin structures and for any such structures, since H2(Pi; Z) has no
torsion, one can find integers l̄1, l̄2, l̄3 with M̃1#(l̄1,l̄2,l̄3)M2 admitting a
spin structure extending any given ones. �

Remark: In the examples above (dimension 5) there are three kinds
of symplectic leaves. We have a family parametrized by S1 which are
diffeomorphic to M̃G−T1 and hence have G as fundamental group; we
have another S1-family of leaves diffeomorphic to R2 × T1 and both
families fill open connected sets separated by a compact leaf T1 × T ,
where T is the closed torus of the Reeb foliation of S3. Any of the
non-closed leaves has the closed one as set of accumulation points.
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