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1. Introduction

We consider systems

Ax = b (1.1)

of linear equations where A is a real n×n matrix and b is a real vector with n com-
ponents. Both are allowed to vary within bounds A, A, b, b, respectively, which
form an interval matrix [A] = [A,A] and an interval vector [b] = [b, b]. One writes

[A]x = [b] (1.2)

for the set of such systems and speaks of interval linear systems [50] or of linear
interval systems [41], where linearity only refers to the single systems (1.1) contained
in (1.2) and not to an algebraic interpretation of (1.2). In fact, [A] · x is generally
not a linear mapping even when restricting x to real point vectors. Leontief’s static
open input-output model with varying input coefficients reduces to (1.2), e.g., and
a Taylor expansion of nonlinear functions f : Rn → Rn at a given approximation
x̃ of a zero x∗ of f also results in it, when the intermediate points ξi should be
enclosed by given bounds; cf. [1].

Defining the solution set

Σ = {x | (∃A ∈ [A]) (∃b ∈ [b]) (Ax = b)}, (1.3)

we are interested in interval methods which produce an output vector [x] with
Σ ⊆ [x]. Sometimes only systems with matrices in [A] of a certain structure are of
interest. Then we look for interval methods with an output vector [x]struc containing
the corresponding structured solution set

Σ struc = {x | (∃A ∈ [A]) (∃b ∈ [b]) (Ax = b, A structured in a prescribed way)}
⊆ Σ .
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In particular, we will consider the symmetric solution set

Σ sym = {x | (∃A ∈ [A]) (∃b ∈ [b]) (Ax = b, A = AT)},

where [A] is assumed to satisfy [A] = [A]T, and the Toeplitz solution set

ΣToep = {x | (∃A ∈ [A]) (∃b ∈ [b]) (Ax = b, A Toeplitz matrix)},

where similarly [a]ij is assumed to be constant for |i− j| = const .
In this paper we briefly characterize selected solution sets. We also cite results

for the complexity of computing the interval hull of Σ . Moreover, we consider direct
interval methods for enclosing Σ , Σ sym and ΣToep by interval vectors. In partic-
ular, we give a survey of theoretical results for the interval Gaussian algorithm,
the interval Cholesky method and interval algorithms for systems with Toeplitz
matrices. We also investigate connections between the first two algorithms. In
the whole paper we tacitly assume that [A] is regular, i.e., each system (1.1) with
A ∈ [A] is uniquely solvable.

We have organized our paper as follows: In Section 2 we present our notation,
in Section 3 we study selected solution sets, in Section 4 we consider the interval
hull and results on complexity. Section 5 is devoted to the interval Gaussian al-
gorithm while Section 6 refers to the interval Cholesky method. In Section 7 we
modify Garloff’s results on interval Toeplitz matrices and in Section 8 we list some
additional expressions which enclose Σ .

2. Notation

By Rn, Rn×n, IR, IRn, IRn×n we denote the set of real vectors with n com-
ponents, the set of real n× n matrices, the set of intervals, the set of interval
vectors with n components and the set of n× n interval matrices, respectively. By
“interval” we always mean a real compact interval. We write interval quantities
in brackets with the exception of point quantities (degenerate interval quantities)
which we identify with the element which they contain. Examples are the vector
e = (1, 1, . . . , 1)T, the zero matrix O, the identity matrix I with its k-th column e(k),
and the matrix E which has ones along the counter-diagonal and zeros otherwise.
We use the notation [A] = [A,A] = ([a]ij) = ([aij , aij ]) ∈ IRn×n simultaneously
without further reference, and we proceed similarly for the elements of Rn, Rn×n,
IR and IRn. For an interval [a] we write ǎ for the midpoint, rad([a]) for the radius,
|[a]| for the absolute value, and 〈[a]〉 for the minimal absolute value. For n× n

interval matrices [A] we apply these operators entrywise with the exception of the
last one. Here, the comparison matrix (Ostrowski matrix) 〈[A]〉 = (cij) is defined
by cij = −|[a]ij | if i �= j and cij = 〈[a]ii〉 if i = j. For interval vectors we proceed
similarly. Since real numbers can be viewed as degenerate intervals, | · | and 〈 · 〉
can also be used for them. So a diagonal matrix D ∈ Rn×n is a signature matrix
if |D| = I. If S ⊆ Rn is an arbitrary bounded set the tightest interval vector S

which encloses S is called interval hull of S.
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By A≥O we denote a non-negative n×n matrix, i.e., aij ≥ 0 for i, j = 1, . . . , n.
For vectors x∈Rn we proceed analogously. We call x positive writing x > 0 if xi > 0,
i = 1, . . . , n. We use Zn×n for the set of real n× n matrices with non-positive off-
diagonal entries. As usual we call A ∈ Rn×n an M -matrix if A is non-singular with
A−1 ≥ O and A ∈ Zn×n. It is an H-matrix if 〈A〉 is an M -matrix. By ρ(A) we
denote the spectral radius of A and for a given vector v ∈ Rn we write ←−v for the
vector Ev = (vn, . . . , v1)T.

An interval matrix [A] ∈ IRn×n is an M -matrix if each element Ã ∈ [A] is an
M -matrix. In the same way the terminology “H-matrix” can be extended to IRn×n.
It is easy to verify that [A] is an H-matrix if and only if 〈[A]〉 is an M -matrix.

We call [A] ∈ IRn×n, n > 1, irreducible if 〈[A]〉 is irreducible. If there is a
positive vector x such that 〈[A]〉x ≥ 0 holds then we call [A] generalized diagonally
dominant. Analogously we define generalized strictly diagonally dominant and
generalized irreducibly diagonally dominant. If x can be chosen to be e then the
specification “generalized” can be dropped. Cf. [25] for details. It is well-known that
generalized strictly diagonally dominant matrices are H-matrices and vice versa.

We equip IR, IRn, IRn×n with the usual real interval arithmetic as described
in [1], [32]. We assume that the reader is familiar with the basic properties of this
arithmetic. For [a] ∈ IR we recall the definitions

√
[a] = [a]1/2 = {√a | a ∈ [a]} for

0 ≤ a, and [a]2 = {a2 | a ∈ [a]}.

3. Solution sets

We first consider the general solution set Σ as defined in (1.3). It can
equivalently be characterized as

x ∈ Σ ⇐⇒ [A]x ∩ [b] �= ∅ ⇐⇒ |Ǎx− b̌| ≤ rad([A]) · |x|+ rad([b]), (3.1)

where the second characterization is due to Beeck [10] and the last one due to
Oettli and Prager [36]. From the Oettli–Prager criterion one can see that in each
fixed orthant O the solution set Σ is the intersection of finitely many half-spaces.
In particular, Σ ∩ O is convex, compact, and connected [10], where the latter two
properties also hold for Σ as a whole. (For singular systems this may become
false as Jansson’s example [−1, 1]x = 1 shows immediately.) Thus Σ is nonconvex
in general, while its intersection with each orthant is either empty or a convex
polyhedron.

The symmetric solution set Σ sym behaves differently from Σ . Using a Fourier–
Motzkin like process one can show that Σ sym is bounded curvilinearly. In fact its
boundary is formed by pieces of algebraic hypersurfaces of order 1 and 2; cf. [2], [5].
The skew-symmetric solution set

Σ skew = {x | (∃A ∈ [A]) (∃b ∈ [b]) (Ax = b, A = −AT)}

with [A] = −[A]T and zero diagonal, and the persymmetric solution set

Σper = {x | (∃A ∈ [A]) (∃b ∈ [b]) (Ax = b, EA = (EA)T)}
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with E[A] = (E[A])T are bounded in the same way as Σ sym; cf. [2]. Things change
for ΣToep, where again algebraic hypersurfaces are involved, but without a simple
limitation of the order; see [3].

We now illustrate certain solution sets for the matrix [A] =
(

1 [0,1]

[0,1] [−4,−1]

)
and

the vector [b] = ([0, 2], [0, 2])T.
In Fig. 1 we also mentioned two solution sets which are not described up to

now. While Σ is defined in (1.3) using twice the existential qualifier there are also
situations where one must apply the universal qualifier. In this way the tolerance
solution set Σ∀∃ = {x | (∀A ∈ [A]) (∃b ∈ [b]) (Ax = b)} and the control solution set
Σ∃∀ = {x | (∀b ∈ [b]) (∃A ∈ [A]) (Ax = b)} can be defined. Analogously to (3.1)
one can prove the equivalences

x ∈ Σ∀∃ ⇐⇒ [A]x ⊆ [b] ⇐⇒ |b̌− Ǎx| ≤ rad([b])− rad([A])|x| ([41]),

x ∈ Σ∃∀ ⇐⇒ [A]x ⊇ [b] ⇐⇒ |b̌− Ǎx| ≤ rad([A])|x| − rad([b]) ([58]),

which show that these sets are again bounded by pieces of hyperplanes. For
applications see, e.g., [26], [46] and the literature therein.

Fig. 1. Solution sets

4. Complexity results and interval hull

Verifying whether a given vector x belongs to the solution set Σ can be
performed in polynomial time as can be seen from the Oettli–Prager criterion
(3.1). Computing, however, the boundary of Σ and also of Σ sym, Σ skew, Σper

is NP-hard [22], [46], [47].
In [46] it is mentioned that the problem of checking whether a system [A]x = [b]

has a tolerance solution can be performed in polynomial time while the problem of
checking whether the control solution set Σ∃∀ is non-empty is NP-complete.

By virtue of the somewhat irregular structure of Σ combined with a difficult
description one often contents oneself with interval bounds for Σ . In this section
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we will present results forming optimal interval bounds for Σ , i.e., its interval hull
Σ . First we remark that the computation of this interval vector is NP-hard [46].

Nevertheless, for some particular classes of matrices [A] we have success in poly-
nomial time. We start with a generalization of the Hansen–Bliek–Rohn theorem
([12], [18], [33], [43]).

Theorem 4.1 ([46]). Let [A] = Ǎ + [−R,R] ∈ IRn×n, [b] ∈ IRn, R ≥ O,
ρ(|Ǎ−1|R) < 1, M = (I−|Ǎ−1|R)−1, xc = Ǎ−1b̌, x∗ = M(|xc|+ |Ǎ−1 rad([b])|). For
each i ∈ {1, . . . , n} compute x

˜
i = −x∗

i + mii(xc + |xc|)i, x̃i = x∗
i + mii(xc − |xc|)i,

νi = 1
2mii−1 ∈ (0, 1], xi = min{x

˜
i, νix

˜
i}, xi = max{x̃i, νix̃i}. Then Σ ⊆ [x] with

equality if Ǎ is a diagonal matrix with positive entries.

In [46] vectors d, d are computed such that the enclosures x ≤ xH ≤ x + d

and x − d ≤ xH ≤ x hold for [x]H = Σ and [x] from Theorem 4.1. Moreover it
is mentioned that the bounds x, x in this theorem are at least as good as the
componentwise Bauer–Skeel bounds (cf. [59]) and better in each entry provided
that (|Ǎ−1|R)ii > 0 holds for each i.

Theorem 4.2 ([35]). Let [A] ∈ IRn×n be an H-matrix, [b] ∈ IRn, u =
〈[A]〉−1|[b]|. For each i ∈ {1, . . . , n} compute di = (〈[A]〉−1)ii, αi = 〈[a]ii〉 − 1/di,
βi = ui/di − |[b]i|. Then

( Σ )i ⊆ [x]i =
[b]i + [−βi, βi]
[a]ii + [−αi, αi]

, i = 1, . . . , n,

with Σ = [x] if Ǎ is diagonal.

Note that for Ǎ = I (which occurs, e.g., when preconditioning (1.2) with Ǎ−1)
the Theorems 4.1 and 4.2 are equivalent in contrast to general midpoints Ǎ as the
example A = Ǎ =

(
2 1
−1 2

)
, b = b̌ =

(
3
1

)
shows.

Theorem 4.3 ([4], [9], [11], [16]). Let [A] ∈ IRn×n be an interval M -matrix
and let [b] ∈ IRn satisfy b ≥ 0 or 0 ∈ [b] or b ≤ 0. Then each of the algorithms in
the Sections 5–7 yields the interval hull Σ, where we assume [A] = [A]T for the
interval Cholesky method in Section 6 and [a]i,i+k =[τ ]k, k=−n+1, . . . , 0, . . . , n−1
for the interval Toeplitz methods in Section 7. In particular we get

Σ =

⎧⎪⎪⎨
⎪⎪⎩

[A
−1

b, A−1b], if b ≥ 0,

[A−1b, A−1b], if 0 ∈ [b],

[A−1b, A
−1

b], if b ≤ 0.

(4.1)

Moreover, under the above-mentioned restrictions on [A] we have Σ = Σ sym and
Σ = ΣToep, respectively.

The representation in (4.1) remains true if [A] is weakened to be inverse
positive, i.e., A−1 ≥ O for all A ∈ [A] (without the restriction A ∈ Zn×n).
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Now we address Rohn’s sign accord algorithm [32], [42] in order to find a
solution xD of the nonlinear system

Ǎx− b̌ = D(rad([A])|x|+ rad([b])), (4.2)

where D ∈ Rn×n is an arbitrarily given signature matrix. Taking absolute values on
both sides one sees at once by virtue of the Oettli–Prager criterion (3.1) that each
solution of (4.2) is in Σ . Moreover, knowing the solution of (4.2) for all signature
matrices D leads to Σ by the following theorem.

Theorem 4.4 ([42]). Let [A] ∈ IRn×n, [b] ∈ IRn and X = {xD | |D| = I,
xD solves (4.2)}. Then the convex hulls of X and Σ coincide and xH = inf X,
xH = supX, where [x]H = Σ and where inf and sup are applied componentwise.
At most 22n linear systems have to be solved for computing Σ.

The complexity in Theorem 4.4 is essentially based on the following algorithm.

Algorithm 1. Rohn’s sign accord algorithm [32], [42], [46]

Step 0. Select D′ ∈ Rn×n with |D′| = I. (Recommended: D′ such that D′(Ǎ−1(b̌+
D rad([b]))) ≥ 0.)

Step 1. Solve (Ǎ−D rad([A])D′)x = b̌ + D rad([b]).
Step 2. If D′x ≥ 0 set xD := x and terminate.
Step 3. Find k = min{j | d′jjxj < 0}.
Step 4. Set d′kk := −d′kk and go to Step 1.

Theorem 4.5 ([42]). Let [A] ∈ IRn×n and [b] ∈ IRn. Then the sign accord
algorithm is finite for each signature matrix D and each starting signature matrix
D′. It terminates with a vector xD which satisfies (4.2). The vector xD does not
depend on D′ and is unique. There are at most 2n linear systems to be solved.

This shows that the sign accord algorithm can be used for computing the hull
of Σ . Alternatives are given in [21] and [57].

We mention that the number of linear systems in Theorems 4.4 and 4.5 is very
pessimistic. In practice the amount of work is often much less—in particular, if one
of the following properties holds: (i) Σ is completely contained in the interior of a
single orthant, (ii) rad([A]) = uvT with nonnegative vectors u, v, (iii) [A] is inverse
sign stable, i.e., |A−1| > O for each A ∈ [A]. See [32], [46] for details.

5. Interval Gaussian algorithm

One of the well-known direct methods for solving (1.2) is the interval Gaussian
algorithm. It produces an interval vector [x]G which contains Σ and which is the
topic of this section. The explicit formulae are, roughly speaking, the formulae
of the conventional Gaussian algorithm, where the real entries and operations are
replaced by intervals and corresponding interval operations. Since, in general, the



Direct Methods for Linear Systems with Inexact Input Data 285

solution set Σ is not an interval vector, and also due to data dependency, [x]G often
overestimates this set (cf. [30], [45], [54], [61]). But there are also classes of input
data [A], [b] such that [x]G results in the interval hull of Σ—at least if roundings
are excluded; cf. for instance [9]. The conventional Gaussian algorithm without
pivoting may break down by division by zero. If this failure does not occur we call
the algorithm feasible, otherwise infeasible. This terminology is also used for the
interval Gaussian algorithm where “division by zero” is replaced by “division by an
interval which contains zero.”

The algorithm starts with [A](1) = [A] ∈ IRn×n, [b](1) = [b] ∈ IRn and—if it
is feasible—results in a final vector [x]G = IGA([A], [b]) ∈ IRn via intermediate
quantities [A](k), [b](k), k = 2, . . . , n, in the following way:

[a](k+1)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[a](k)
ij , i = 1, . . . , k, j = 1, . . . , n,

[a](k)
ij −

[a](k)
ik [a](k)

kj

[a](k)
kk

, i, j = k + 1, . . . , n,

0 otherwise,

[b](k+1)
i =

⎧⎪⎪⎨
⎪⎪⎩

[b](k)
i , i = 1, . . . , k,

[b](k)
i − [a](k)

ik

[a](k)
kk

[b](k)
k , i = k + 1, . . . , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k = 1, . . . , n− 1,

[x]Gi =

(
[b](n)

i −
n∑

j=i+1

[a](n)
ij [x]Gj

)/
[a](n)

ii , i = n, n− 1, . . . , 1.

For theoretical considerations the multiplicative representation

[x]G=[D](1)([U ](1)([D](2)([U ](2)(...([U ](n−1)([D](n)([L](n−1)(...([L](2)([L](1)[b]))...)

was presented in [55], where

[D](k) = I − e(k)(e(k))T
(

1− 1

[a](k)
kk

)
,

[L](k) = I − (
e(k)

(
0, . . . , 0, [a](k)

k+1,k, . . . , [a](k)
nk

)/
[a](k)

kk

)T
,

[U ](k) = I − e(k)
(
0, . . . , 0, [a](k)

k,k+1, . . . , [a](k)
kn

)
.

In [32] Neumaier obtained [x]G recursively via the partition

[A] =

(
[a]11 [c]T

[d] [A]′

)
, [c], [d] ∈ IRn−1,

and the Schur complement ΣG
[A] = [A]′ − [d][c]T/[a]11 ∈ IR(n−1)×(n−1), provided

that 0 �∈ [a]11. He defines the triangular decomposition ([L̂], [Û ]) of [A] to exist,



286 G. Mayer

if either n = 1, [L̂] = 1, [Û ] = [A] �� 0 or

[L̂] =
(

1 0
[d]/[a]11 [L̂]′

)
, [Û ] =

(
[a]11 [c]T

0 [Û ]′

)
,

where 0 �∈ [a]11 and where ([L̂]′, [Û ]′) is the triangular decomposition of ΣG
[A]. With

the decomposition [b] = ([β], ([b]′)T)T, [β] ∈ IR, [b]′ ∈ IRn−1 he finally ends up with
the recursion

[x]G = IGA([A], [b]) =

(
[x]G1

([x]′)G

)
,

where ([x]′)G = IGA
(
ΣG

[A], [b]
′ − [β][d]/[a]11

)
, [x]G1 = ([β]− [c]T([x]′)G)/[a]11.

If the triangular decomposition ([L̂], [Û ]) exists then [x]G can equivalently be
expressed by [x]G = IGA([Û ], IGA([L̂], [b])).

It is well-known that the feasibility of the conventional Gaussian algorithm is
guaranteed if and only if all leading principal submatrices of A are non-singular.
Unfortunately, a similar criterion is missing for the interval version of the algorithm.
Assuming that the interval Gaussian algorithm is feasible if and only if it is for every
pair (A, b) ∈ [A]× [b] was shown to be false by Reichmann’s counterexample [40]

[A] =

⎛
⎜⎝

1 [0, 2/3] [0, 2/3]
[0, 2/3] 1 [0, 2/3]
[0, 2/3] [0, 2/3] 1

⎞
⎟⎠ (modified as in [31]).

Up to now only necessary or sufficient global criteria are known for the existence of
[x]G unless [A] is specialized. The most famous sufficient one is due to Alefeld [1]:

Theorem 5.1. Let [A] ∈ IRn×n be an H-matrix and let [b] ∈ IRn. Then
[x]G exists.

This theorem applies at once to M -matrices, to generalized strictly dominant
matrices, to generalized irreducibly diagonally dominant matrices and to general-
ized diagonally dominant matrices with 〈[A]〉 being non-singular. All of these are
H-matrices.

In order to formulate a first class of matrices for which a necessary and sufficient
criterion can be stated, we introduce the sign matrix S of [A] by sij = sign(ǎij)
and the extended sign matrix S′ by the following algorithm.

S′ := S

for k := 1 to n− 1 do
for i := k + 1 to n do

for j := k + 1 to n do
if s′ij = 0 then s′ij := −s′iks′kks′kj



Direct Methods for Linear Systems with Inexact Input Data 287

Theorem 5.2 ([28]). Let [A] ∈ IRn×n, n > 1, be irreducible and general-
ized diagonally dominant and let [b] ∈ IRn. Moreover, let S′ be the extended sign
matrix. Then [x]G exists if and only if [A] is generalized irreducibly diagonally
dominant or if

s′ijs
′
iks′kks′kj =

{
1, if i �= j,

−1, if i = j
(5.1)

holds for some triple (i, j, k) with k < i, j.

From Theorem 5.2 one deduces immediately that [x]G also exists if (5.1) holds
with S instead of S′; cf. [14].

The subsequent result assumes [A] to have the same form as in Theorem 4.1.

Theorem 5.3 ([29]). If [A] = I +[−R,R] ∈ IRn×n, R ≥ O, then [x]G exists
if and only if ρ(R) < 1. This in turn holds if and only if [A] is an H-matrix.

In order to formulate our third if-and-only-if-statement we use the concept
of an undirected graph of a real matrix A ∈ Rn×n with the nodes 1, . . . , n and
the edges {i, j} if aij �= 0 or aji �= 0. We call j a neighbor of the node i (�= j)
if i and j are connected by an edge {i, j}. The number of neighbors of i are the
degree of i in the underlying graph. Let Gk denote the k-th elimination graph of
[A], i.e., the undirected graph of |[A](k)| in which the nodes 1, . . . , k − 1 and the
corresponding edges have been removed and for which we assume that [a](k−1)

ij �= 0

implies [a](k)
ij �= 0, i, j ≥ k (no accidental zeros!). If in Gk the node k has the

smallest degree and if this holds for all k = 1, . . . , n then we say that [A] is ordered
by minimum degree.

Theorem 5.4 ([13]). Let [A] ∈ IRn×n, [b] ∈ IRn. If the (undirected) graph
of |[A]| is a tree (i.e., there are no cycles of length ≥ 3) and if [A] is ordered by
minimum degree then [x]G exists if and only if xG exists for all A ∈ [A].

Theorem 5.4 generalizes results of Reichmann [40] for tridiagonal matrices, of
Garloff [15] for tridiagonal matrices with regular and totally non-negative element
matrices, and of Schäfer [52] for arrowhead matrices. As an illustration of it and
also of Theorem 5.2 we define the matrix [A] as a circulant with the entries [a]11 =
n(n− 1)/2, [a]1j = [0, j− 1], j = 2, . . . , n, in its first row and we let [b] = [A]e. The
matrix [A] is an unsymmetric Toeplitz matrix with 〈[A]〉e = 0. Even when choosing
n = 100 and when taking into account rounding errors the maximal diameter of the
components of [x]G remains less than 8.

Now we address interval Hessenberg matrices.

Theorem 5.5 ([27], [39]). Let [b] ∈ IRn, n ≥ 2, and let [A] ∈ IRn×n be an
upper Hessenberg matrix satisfying 0 �∈ [a]ii, i = 1, . . . , n, and [a]i+1,i �= 0, i =
1, . . . , n− 1. For [a] ∈ IR \ {0} define σ([a]) = sign(ǎ) if 0 �∈ [a] and σ([a]) = 0
otherwise. Then [x]G exists if for each i = 1, . . . , n− 1 and each j = i + 1, . . . , n

one of the following two conditions holds.
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(i) [a]ij = 0 =⇒ [a]pj = 0, p = 1, . . . , i− 1;
(ii) [a]ij �= 0 =⇒ σ([a]ii)σ([a]i+1,j) = −σ([a]i+1,i)σ([a]ij).

We close this section by mentioning that block variants of the interval Gaussian
algorithm can be found in [17], pivoting is considered in [19], [45] and [61], criteria
of infeasibility are presented in [25], perturbation results are stated in [32]. Division
by zero is studied in [30]. For surveys on the algorithm see [13], [23], [27].

6. Interval Cholesky method

In order to enclose the symmetric solution set Σ sym the interval Cholesky
method was introduced in [4]. It is defined analogously to the Cholesky method for
point matrices and uses the square and square root function of interval arithmetic.

The algorithm starts with [A]= [A]T∈ IRn×n, [b]∈ IRn and constructs the lower
triangular matrix [L] and the vectors [y], [x]C = ([x]Ci ) = ICh([A], [b]) ∈ IRn by

[l]jj =

(
[a]jj −

j−1∑
k=1

[l]2jk

)1/2

,

[l]ij =

(
[a]ij −

j−1∑
k=1

[l]ik[l]jk

)/
[l]jj , i = j + 1, . . . , n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

j = 1, . . . , n;

[y]i =

(
[b]i −

i−1∑
j=1

[l]ij [y]j

)/
[l]ii, i = 1, . . . , n;

[x]Ci =

(
[y]i −

n∑
j=i+1

[l]ji[x]Cj

)/
[l]ii, i = n, n− 1, . . . , 1.

Apparently [x]C exists if and only if 0 < lii, i = 1, . . . , n.
As for [x]G there is a representation of [x]C as a multiple product and in a

recursive way. For the first one define the diagonal matrices [Ds], s = 1, . . . , n, and
the lower triangular matrices [Ls], s = 1, . . . , n− 1, by

[ds]ij =

⎧⎪⎨
⎪⎩

1 if i = j �= s,

1/[l]ss if i = j = s,

0 otherwise,

[ls]ij =

⎧⎪⎨
⎪⎩

1 if i = j,

−[l]is if i > j = s,

0 otherwise.

Then

[y] = [Dn]([Ln−1]([Dn−1](. . . ([L2]([D]2([L1]([D1][b])))) . . .))),

[x]C = [D1]([L1]T([D2](. . . ([Ln−2]T([Dn−1]([Ln−1]T([Dn][y])))) . . .))).

For the recursion we write the matrix [A] = [A]T ∈ IRn×n as

[A] =

(
[a]11 [c]T

[c] [A]′

)
, [c] ∈ IRn−1,
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and use its Schur complement ΣC
[A] = [A]′ − [c][c]T/[a]11 if n > 1, 0 �∈ [a]11, where

this time [c]i[c]i is evaluated as [c]2i . The Cholesky decomposition ([L], [L]T) of
[A] = [A]T ∈ IRn×n is defined to exist if either n = 1, [L] =

(√
[a]11

)
or if n > 1 and

[L] =

( √
[a11] 0

[c]/
√

[a11] [L]′

)
,

where 0 �∈ [a]11 and where ([L]′, ([L]′)T) is the Cholesky decomposition of ΣC
[A].

It is shown in [4] that the matrix [L] for the Cholesky decomposition is the
same as for the interval Cholesky method.

The output vector [x]C generally differs from [x]G and can satisfy [x]C ⊆ [x]G or

[x]C ⊇ [x]G or none of these relations. As an example choose [A] =
(

4 [−1,1]

[−1,1] 4

)
and [b] = (6, 6)T. Then Σ = convex hull

((
6
5 , 6

5

)T
, (2, 2)T,

(
18
17 , 30

17

)T
,
(

30
17 , 18

17

)T) ⊇
Σ sym =

{
γ(1, 1)T

∣∣ 6
5 ≤ γ ≤ 2

}
and [x]G =

(
[1, 2],

[
18
17 , 2

])T ⊇ [x]C =
(
[1, 2],

[
18
16 , 2

])T.
It is well-known that the Cholesky decomposition exists for A = AT ∈ Rn×n

if and only if A is symmetric and positive definite. Reichmann’s example in [40]
shows however again that this criterion has no interval analogue. Therefore, one
has to proceed as in Section 5. In [7] we proved the following result.

Theorem 6.1. Let [b] ∈ IRn and let [A] = [A]T ∈ IRn×n contain a symmetric
and positive definite matrix Ã. If [x]G exists then [x]C exists, too.

For n ≤ 3 this result is reversible, but unfortunately not for n ≥ 4 as was
shown by an example in [7]. One only can prove the following weaker result.

Theorem 6.2 ([7]). Let [b] ∈ IRn and let all symmetric matrices Ã ∈ [A] =
[A]T ∈ IRn×n be positive definite. Then the Gaussian algorithm is feasible for all
matrices A ∈ [A].

Based on Theorem 6.1 one obtains the analogue of Theorem 5.1.

Theorem 6.3 ([4]). Let [A] = [A]T ∈ IRn×n be an H-matrix with aii > 0 for
i = 1, . . . , n and let [b] ∈ IRn. Then [x]C exists.

If one requires [A] = [A]T to satisfy aii > 0 then one can replace [x]G by [x]C

in Theorems 5.2 and 5.3; cf. [7] for details. The criterion in Theorem 5.2 can be
shortened slightly, leading to our next result.

Theorem 6.4 ([7]). Let [b] ∈ IRn and let [A] = [A]T ∈ IRn×n be irreducible
and generalized diagonally dominant with 0 < aii, i = 1, . . . , n. Moreover, let S′

be the extended sign matrix of [A] defined in Section 5. Then [x]C exists if and
only if [A] is generalized irreducibly diagonally dominant or the sign condition
s′ijs

′
iks′kj = 1 holds for some triple (i, j, k) with k < j < i.

Theorem 5.4 can also be adapted.
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Theorem 6.5 ([7]). Let [b] ∈ IRn and let [A] = [A]T ∈ IRn×n contain a
symmetric and positive definite matrix. If the (undirected) graph of |[A]| is a tree
and if [A] is ordered by minimum degree then [x]C exists if and only if [x]G exists.

We also mention Frommer’s paper [13] in which a variant of the interval
Cholesky method is presented, and Schäfer’s paper [53] in which block variants
for the method are considered. Perturbation results are contained in [5].

7. Interval Toeplitz methods

We start this section with real (n + 1)× (n + 1) Toeplitz matrices

A =

⎛
⎜⎜⎜⎜⎝

τ0 τ1 · · · τn

τ−1 τ0
. . .

...
...

. . . . . . τ1

τ−n · · · τ−1 τ0

⎞
⎟⎟⎟⎟⎠, (7.1)

where aij = τj−i and where we assume that all leading principal submatrices Ak ∈
Rk×k of A are regular so that the Gaussian algorithm is feasible. (For ease of
presentation we consider (n+1)× (n+1) matrices instead of n×n ones.) One sees
directly that A is persymmetric, and that its inverse is persymmetric, too. Since A

is a Toeplitz matrix if and only if EA is a Hankel matrix, the subsequent results can
be transferred to Hankel matrices without any problems. A Toeplitz matrix (7.1)
depends only on 2n+1 parameters τi. Therefore, it can be expected that there are
direct methods which solve a Toeplitz system with far less than O(n3) operations.
In fact, for the following algorithm of Trench O(n2) operations are sufficient. The
algorithm as presented here is essentially based on Zohar’s work [62]. See also [60]
and [34]. There are two major steps.

In the first step the vectors lk, uk ∈ Rk, k = 1, . . . , n and the corresponding
real numbers δk are computed recursively for the representation

Ak+1 =

(
Ak
←−
tk←−

t T
−k τ0

)
=

(
Ik 0
−lTk 1

)(
Ak 0
0 δk

)(
Ik −uk

0 1

)
, (7.2)

of the leading principal submatrices of A, where tk = (τ1, . . . , τk)T, t−k =
(τ−1, . . . , τ−k)T ∈ Rk and where Ik is the k × k unit matrix.

In the second step the entry δk in (7.2) is used to construct recursively the
vectors x(k), k = 1, . . . , n + 1, which satisfy

Akx(k) = b(k) = (b1, . . . , bk)T. (7.3)

Then the final vector x(n+1) is the solution of the initial Toeplitz system Ax = b.
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For the first step and k = 0, . . . , n− 1 one computes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δk = (det Ak+1)/(det Ak) = τ0 +
←−
t T
−kuk (also for k = n),

γk = −(
tTk uk + τk+1

)/
δk, γ̂k = −(←−

t T
−k

←−
lk + τ−k−1

)/
δk,

uk+1 =
(

0
uk

)
+ γk

(
1
←−
lk

)
,
←−
lk+1 =

(←−
lk

0

)
+ γ̂k

(
uk

1

)
,

(7.4)

where in the case k = 0 we assume that the terms A0, u0,
←−
l0, t0

←−
t T
−0 are not present.

For the second step one starts with

Ak+1

{
x(k+1) −

(
x(k)

0

)}
=

(
0

bk+1 −←−t T
−kx(k)

)

which implies the recursion

ζk =
(
bk+1 −←−t T

−kx(k)
)/

δk,

x(k+1) =
(

x(k)

0

)
+ ζk

(
uk

1

)
⎫⎪⎬
⎪⎭ k = 0, . . . , n. (7.5)

Here again the terms u0,
←−
t T
−0, x(0) are assumed not to be present if k = 0.

Introducing interval brackets in (7.4), (7.5), one obtains the interval Trench
algorithm, which is a modification of Garloff’s algorithm ITA in [16]. In contrast
to there, we do not normalize [A] in the diagonal.

The enclosure ΣToep ⊆ [x]ITA follows immediately, but again Reichmann’s
counterexample from Section 5 applies. The following theoretical results are partly
known for the unmodified variant in [16].

Theorem 7.1. If [A] is a Toeplitz H-matrix, then [x]ITA exists.

Theorem 7.2. Let [A] = I +[−R,R] be a Toeplitz matrix with R ≥ O. Then
[x]ITA exists if and only if ρ(R) < 1 hence if and only if [A] is an H-matrix.

Theorem 7.3. Let [A] = [A]T be tridiagonal and let there exist a symmetric
positive definite matrix Ã ∈ [A] with 〈Ã〉 = 〈[A]〉. Then [x]ITA exists.

As a second algorithm for real (n + 1)× (n + 1) Toeplitz systems, we recall
Bareiss’ algorithm [8]. Starting with A(0) = A, it constructs recursively a sequence
of matrices A(−k), A(k), k = 0, 1, . . . , n, in which the first k subdiagonals below
the main diagonal and above, respectively, are eliminated. For k > 0 the matrices
A(−k), A(k) have the block form

A(−k) =
(

U (−k)

T (−k)

)
, A(k) =

(
T (k)

L(k)

)
,

where U (−k) ∈ R(k+1)×(n+1) consists of the first k + 1 rows of an upper triangular
matrix, L(k) ∈ R(k+1)×(n+1) consists of the last k + 1 rows of a lower triangular



292 G. Mayer

matrix, and T (−k), T (k) ∈ R(n−k)×(n+1) are rectangular Toeplitz matrices with zeros
in position 2, . . . , k + 1 of its first row. For the elimination process, choose α−k

such that the Toeplitz matrix T
(−k)

= T (−k) − α−kT (k) has an additional zero in

position 1 of its first row and define A(−k−1) =
(

U(−k)

T
(−k)

)
. Then adapt αk such that

the Toeplitz matrix T
(k)

= T (k) − αkT
(−k)

has an additional zero in position k + 2

of its first row and hence in position n + 1 of its last row, and set A(k+1) =
(

T
(k)

L(k)

)
.

Now append the first row of T
(−k)

to U (−k) from below to obtain U (−k−1) leaving

T−k−1, and similarly the last row of T
(k)

to the top of L(k) to obtain L(k+1) leaving
U (k+1). Transforming the righthand side b in the same way and replacing k by k +1
finally results in the following recursion

b(0) = b, τ
(0)
j = τj , j = 0,±1, . . . ,±n, (7.6)

and for k = 1, 2, . . . , n:

τ
(−k)
j = τ

(−k+1)
j − τ

(−k+1)
−k

τ0
τ

(k−1)
j+k ,

j = −n,−n + 1, . . . ,−k − 1; 0, 1, . . . , n− k for k < n,

j = 0 for k = n,

τ
(k)
j = τ

(k−1)
j − τ

(k−1)
j

τ
(−k)
0

τ
(−k)
j−k ,

j = −n + k,−n + k + 1, . . . ,−1; k + 1, . . . , n for k < n,

(7.7)

b
(−k)
j = b

(−k+1)
j − τ

(−k+1)
−k

τ0
b
(k−1)
j−k , j = k, k + 1, . . . , n,

b
(k)
j = b

(k−1)
j − τ

(k−1)
k

τ
(−k)
0

b
(−k)
j+k , j = 1, . . . , n + 1− k.

(7.8)

Here we exploited the fact that τ0 = τ
(1)
0 = · · · = τ

(k)
0 = · · · = τ

(n)
0 .

At the end we get

A(−n) =

⎛
⎜⎜⎜⎜⎜⎝

τ
(0)
0 τ

(0)
1 · · · τ

(0)
n

0 τ
(−1)
0 · · · τ

(−1)
n−1

...
. . . . . .

...

0 · · · 0 τ
(−n)
0

⎞
⎟⎟⎟⎟⎟⎠ and A(n) =

⎛
⎜⎜⎜⎜⎜⎝

τ0 0 · · · 0

τ
(n−1)
−1 τ0 · · · 0

...
. . . . . .

...

τ
(0)
−n · · · τ

(0)
−1 τ0

⎞
⎟⎟⎟⎟⎟⎠.

The solution of the original system can be obtained by the upper half of the system
A(n)x = b(n) and the lower half of the system A(−n)x = b(−n) saving more than one
half of operations as compared with a complete forward resp. backward substitution
of one of these triangular systems.



Direct Methods for Linear Systems with Inexact Input Data 293

The corresponding interval method just plugs in brackets around the items in
(7.6), (7.7) and will not be repeated here. It is an unsymmetric variant of Garloff’s
interval Bareiss method in [17] and results in an interval vector [x]IBA ⊇ ΣToep.
One can show that the Theorems 7.1–7.3 hold for this second interval method,
too. Garloff reports in [17] that for most of his examples he got the inclusion
[x]IBA ⊆ [x]G ⊆ [x]ITA.

8. Further enclosures for Σ

Our final section is devoted to enclosures for Σ which often form the starting
point for iterative methods. These latter ones seem to be applied to interval linear
systems more frequently than direct ones. Under some additional conditions they
do not break down and deliver verification mostly in a few steps. These advan-
tages may hide the fact that they require a stopping criterion when computing on
a machine.

Our first result is based on Richardson’s splitting for [A] and on some arbi-
trary vector x̃ which is usually an approximation of the solution of some particular
system of (1.1).

Theorem 8.1. Let [A] ∈ IRn×n, [C] = I − [A], and [b] ∈ IRn×n. Moreover,
choose x̃ ∈ Rn.
a) If

([C][x] + [b])i � [x]i, i = 1, . . . , n (8.1)

for some vector [x] ∈ IRn then ρ(|[C]|) < 1 and Σ ⊆ [x].

b) If
∥∥|[C]|∥∥∞ < 1 then Σ ⊆ x̃ + ‖|[b]−[A]x̃|‖∞

1−‖|[C]|‖∞
[−e, e], where ‖ · ‖∞ denotes the

usual maximum norm and the row sum norm, respectively.

Condition (8.1) is the key for verification in practice as was demonstrated
intensively by Rump; cf. [48]. It is mostly applied to (1.2) after preconditioning
with some real matrix R. In this way one obtains the following result.

Theorem 8.2 ([20], [49]). Let [A] ∈ IRn×n, R ∈ Rn×n, [b], [x] ∈ IRn, x̃ ∈
[x]. Moreover define [d] = R([b] − [A]x̃), [C] = I − R[A], [x]Δ = [x] − x̃, [y]Δ =
[d] + [C][x]Δ. If ([y]Δ)i � ([x]Δ)i, i = 1, . . . , n, then the following properties hold.
a) The matrices R and [A] are regular, ρ(|[C]|) < 1, Σ ⊆ x̃ + [x]Δ.
b) min(Σi)∈ x̃i +di +([C][x]Δ)i, i = 1, . . . , n, max(Σi)∈ x̃i +di +([C][x]Δ)i, i =

1, . . . , n, where Σi denotes the projection of Σ onto the i-th coordinate axis.
c) If [A] = [A]T and if [d]i, i = 1, . . . , n, is replaced by

[d]sym
i =

n∑
j=1

rij([b]j − [a]jj x̃j)−
n∑

j=1

j−1∑
l=1

(rij x̃l + rilx̃j)[a]jl

then b) holds with Σ sym instead of Σ.
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Items b) and c) are starting points for a sensitivity analysis since they present
error bounds for the overestimation of x̃ + [x]Δ over Σ and Σ sym, respectively.

Sometimes the condition (8.1) or its analogous condition in Theorem 8.2 are
not fulfilled. Then ε-inflation may help; cf. [24], [48], [50] and the literature therein.

We finally recall that singular interval systems (1.3) are defined and studied
in [6], [26], [42], [44], [46]. Cyclic reduction as a direct method for tridiagonal
systems is introduced in [56]. Pagelimit did not allow us to present particular
methods for enclosing the solution of a single linear system. As examples we only
mention [37], [38]. We also could not consider the variety of very efficient iterative
methods for enclosing Σ . Here, starting points might be [1], [32], [48], [51] and the
literature therein.
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