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In this paper the sinc-Galerkin method, as well as the sinc-collocation method, based
on the double exponential transformation (DE transformation) for singularly perturbed
boundary value problems of second order ordinary differential equation is considered. A
large merit of the present method exists in that we can apply the standard sinc method
with only a small care for perturbation parameter. Through several numerical experiments
we confirmed higher efficiency of the present method than that of other methods, e.g., sinc
method based on the single exponential (SE) transformation, as the number of sampling
points increases.
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1. Introduction

Singular perturbations appear in various fields of science and engineering. It
is known that these problems depend on a small positive parameter ε in such a
way that the solution exhibits a multiscale character, i.e., there are thin layers
where the solution changes rapidly, while away from the layers it behaves regularly.
And hence numerical solution of singularly perturbed problems usually presents
difficulties that we have to be careful when choosing numerical method. There exist
a variety of methods for solving singularly perturbed boundary value problems, such
as methods based on the asymptotic analysis, methods based on the non-asymptotic
analysis called boundary value technique [13] and methods based on the initial value
technique [4]. As to research works on numerical solution of singularly perturbed
boundary value problems see [5, 11, 14] and references therein.

The idea of application of the sinc method to singularly perturbed boundary
value problem is discussed by F. Stenger [15], and M. El-Gamel and J.R. Cannon [2]
actually tried to solve numerically a second order singularly perturbed boundary
value problem of ordinary differential equation using the sinc-Galerkin method.
It is known that the sinc method usually gives a result with high accuracy even
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for problems with an algebraic singularity at the end point. They used the single
exponential transformation (SE transformation, see Section 2) [7, 15] in order to
transform the interval (a, b) of the original problem onto the interval (−∞,∞) on
which sinc expansion is defined. It is known from the error analysis of the sinc
method based on the SE transformation that error bound of the approximate solu-
tion is O(exp(−c′√N )), c′ > 0, where N is a parameter representing the number of
terms in the sinc approximation. For more details about the sinc method see [6, 15].

On the other hand, high efficiency of the double exponential transformation
(DE transformation) in numerical integration [16, 19] is well-known and it natural-
ly suggests that DE transformation technique may be useful in other numerical
methods. Indeed, it has been shown in [8, 18] that use of DE transformation
technique in sinc methods results in highly efficient methods for numerical com-
putation. For example, Sugihara applied sinc-collocation method based on the
DE transformation to numerical solution of boundary value problems of second
order ordinary differential equation and found that error bound of the method is
O(exp(−cN/logN)), c > 0 [17] which converges to zero much faster than that of the
method based on the SE transformation as N becomes large. Also, Nurmuhammad
et al. employed the sinc-collocation [9] and the sinc-Galerkin [10] methods based
on the DE transformation for solving boundary value problems of fourth-order
ordinary differential equation and found that the results always exhibit error be-
havior O(exp(−cN/logN)) as long as the DE transformation is used in the sinc
method [9, 10].

The aim of the present paper is to propose a sinc-Galerkin method based on
the DE transformation which we call the DE sinc-Galerkin method, as well as a
sinc-collocation method which we call the DE sinc-collocation method, to solve the
second order singularly perturbed boundary value problem of ordinary differential
equation with homogeneous boundary condition

εy′′(x) + μ1(x)y′(x) + μ0(x)y(x) = σ(x), a < x < b,

y(a) = y(b) = 0,
(1.1)

where ε is a small positive constant called perturbation parameter. Throughout
the present paper we assume that μ1(x), μ0(x) and σ(x) are analytic on a < x < b,
and also that the solution y(x) exists and is analytic on a < x < b.

We apply the DE sinc-Galerkin method also to the semi-linear problem, and
we also propose a sinc-collocation method based on the DE transformation to
the present singularly perturbed problem for comparison with the sinc-Galerkin
method.

The main point of our method exists in the sinc expansion based on the DE
transformation and in the DE quadrature formula [19] for approximation of the
inner product appearing in the sinc-Galerkin method. The reason why we employ
the DE transformation for numerical solution of singularly perturbed problems
is as follows. One of the remarkable characteristics of the DE transformation,
as well as that of the SE transformation, is that sampling points of the method
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based on the DE transformation accumulate to the boundary edge, and hence the
method in itself can get sufficient information in the boundary layer. Indeed, in
the sinc method there are infinite number of sampling points in the boundary
layer from its nature and we can choose as many sampling points as we require
in the neighborhood of the boundary edge when we actually carry out numerical
computation. Also, because of such a distribution of sampling points, the present
DE-sinc method usually gives a result with high accuracy even for a problem which
has both a boundary layer as well as an algebraic singularity at the boundary edge.
See Example 4 in Section 7.

2. Sinc expansion and the DE transformation

As is well known [15] sinc function is defined on −∞ < t <∞

sinc(t) =

⎧⎨
⎩

sinπt
πt

; t �= 0,

1; t = 0.
(2.1)

We fix mesh size h and employ a set which consists of sinc functions

S(j, h)(t) =
sin π

h (t− jh)
π
h (t− jh)

, j = 0,±1,±2, . . . (2.2)

as the basis for the numerical solution of the present problem. It is easy to see that
it satisfies an orthogonal relation

S(j, h)(kh) = sinc(k − j) =

{
1; k = j,

0; k �= j.
(2.3)

Now we consider a function u(t) defined on −∞< t<∞. We assume here that
i) u(t) is analytic on a strip domain

|Im t| < d (2.4)

in the t-plane,
ii) |u(t)| → 0 as t→ ±∞.
Then, if the series

uh(t) =
∞∑

j=−∞
u(jh)S(j, h)(t) (2.5)

converges we call it Whittaker cardinal expansion. Note that uh(t) is an interpola-
tion to u(t) because

uh(kh) = u(kh) (2.6)
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holds from (2.3). Under assumptions (i) and (ii) given above with some additional
mild conditions we can write [15]

u(t) = uh(t) + Esinc(h), Esinc(h) = O

(
exp
(
−πd
h

))
, (2.7)

where d is the half width of the strip domain defined in (2.4). Since the error
Esinc(h) is due to discretization of u(t) we call it discretization error. We see that
as h becomes small Esinc(h) decreases very quickly.

Sinc expansion (2.7) is defined on −∞< t<∞, while the equation we are going
to deal with is defined on the finite interval a < x < b, and hence we need some
transformation which maps a < x < b onto −∞ < t <∞. In many of applications
of the sinc method transformation

x = ψ(t) =
b− a

2
tanh

t

2
+
b+ a

2
(2.8)

has been used [2, 15]. On the other hand, we employ here transformation

x = ψ(t) =
b− a

2
tanh

(
π

2
sinh t

)
+
b+ a

2
(2.9)

which Takahasi and Mori proposed for numerical integration in 1974 [19]. Note
that inverse transformation to (2.9) can be written explicitly

t = ψ−1(x) = φ(x) = log

(
1
π

log
x− a

b− x
+

√(
1
π

log
x− a

b− x

)2

+ 1

)
. (2.10)

One of the main reasons why we use it is that (2.9) is an optimal transformation
in some sense and hence in the sinc method it usually gives significantly faster
convergence than (2.8) [16, 18, 19].

We substitute t in (2.7) with ψ−1(x) from (2.10) and write

v(x) = u(ψ−1(x)). (2.11)

Then from (2.5) we obtain an approximation to the function v(x) defined on
a < x < b

v(x) = u(ψ−1(x)) = vh(x) + Esinc(h),

vh(x) =
∞∑

j=−∞
v(ψ(jh))S(j, h)(ψ−1(x)),

Esinc(h) = O

(
exp
(
−πd
h

))
.

(2.12)

It is known that for transformation (2.9) d is a positive number satisfying
d ≤ π

2 , while for transformation (2.8) d is a positive number satisfying d ≤ π.
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Corresponding to homogeneous boundary condition y(a) = y(b) = 0 in (1.1)
we generalize the order of zeros and assume that y(x) satisfies

y(x) =

{
O((x− a)β−); x→ a (0 < β−),

O((b− x)β+); x→ b (0 < β+)
(2.13)

in the neighborhood of the boundary points.
Then, from (2.9) we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x− a =

b− a

1 + exp(−π sinh t)
≈ (b− a) exp

(
−π

2
e|t|
)

; t→ −∞,

b− x =
b− a

1 + exp(+π sinh t)
≈ (b− a) exp

(
−π

2
et
)

; t→ +∞.

(2.14)

Therefore from (2.13) we see that y(x)=y(ψ(t)) decays in a double exponential way

y(ψ(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O

(
exp
(
−π

2
β− exp|t|

))
; t→ −∞,

O

(
exp
(
−π

2
β+ exp t

))
; t→ +∞.

(2.15)

In this sense we call (2.9) the double exponential transformation (DE trans-
formation). On the other hand, in case of transformation (2.8) y(x) = y(ψ(t))
decays

y(ψ(t)) =

{
O(exp(−β−|t|)); t→ −∞,

O(exp(−β+t)); t→ +∞,
(2.16)

so that we call it the single exponential transformation (SE transformation).
In the singularly perturbed problem we need to investigate behavior of y(x)

carefully in a very thin region at the boundary edge. For that purpose trans-
formation (2.10) meets the requirement because, as is pointed out in Section 1, it
enables us to use as many sampling points as we require in the close neighborhood
of the boundary edge.

3. Truncation of infinite summation

In (2.12) we think of the solution y(x) for v(x) because we use sinc expansion
for numerical solution over (a, b). And hence we assume hereafter that y(ψ(t)) is
analytic in a strip domain |Im t| < d for some d corresponding to (2.4). From (2.12)
we have

y(x) =
∞∑

j=−∞
y(xj)S(j, h)(ψ−1(x)) + Esinc(h),

xj = ψ(jh), Esinc(h) = O

(
exp
(
−πd
h

))
,

(3.1)
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where each of xj = ψ(jh), j = 0,±1,±2, . . . is called sinc point. Then we replace
y(xj) with its approximation yj and write

ỹh(x) =
∞∑

j=−∞
yjS(j, h)(ψ−1(x)). (3.2)

In actual computation, however, we must truncate infinite sum (3.2) into a finite
one. Suppose that we truncate sum (3.2) at j = −n− on the negative side of j.
Then, since we assume that y(x) decays as (2.15) and |S(j, h)(t)| ≤ 1 from (2.1),
the error due to truncation will be approximately bounded from above as

exp
(
−π

2
β−e(n−+1)h

)
+ exp

(
−π

2
β−e(n−+2)h

)
+ · · ·

= δe
h

+ δe
2h

+ · · · , δ = exp
(
−π

2
β−en−h

)

< δ1+h + δ1+2h + · · · = δ
δh

1 − δh
< δ = exp

(
−π

2
β−en−h

)
, (3.3)

where we assume that δh < 1/2 because δ is small [7]. Situation is the same when
we truncate at j = n+ on the positive side of j.

We first review the standard strategy to truncate sinc expansion. For simplicity
we assume here that β− = β+ = β and that n− = n+ = n. Truncation of the sum
should be carried out in such a way that error (3.3) due to truncation is equal to
discretization error exp(−πd/h) due to sinc expansion (3.1), i.e.,

exp
(
−π

2
βenh

)
= exp

(
−πd
h

)
. (3.4)

From this equation we obtain a relation between h and n

h =
1
n

log
(

2dn
β

)
. (3.5)

If we replace h in exp(−πd/h) with (3.5) we have the well-known form of error
expressed in terms of n [18]:

EDE (= Esinc(h)) = O

(
exp
(
− n

log(2dn/β)

))
. (3.6)

Similarly, in case of the SE transformation (2.8) we have

ESE = O(exp(−
√
π2dβn/2)) (3.7)

if we choose h =
√

2d/n. If we compare (3.6) with (3.7) we see that convergence
by the DE transformation as n becomes large is much faster than that by the SE
transformation. In fact it is proved that DE-sinc approximation is optimal in some
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sense in the sinc approximation [16, 18]. This is one of the significant reasons why
we employed the DE transformation in the present method.

However, from the standpoint of applications, it is usually difficult to know in
advance the value of d, half width of the domain defined in (2.4) in which y(ψ(t))
is analytic. Therefore, we propose here another strategy which does not require the
value of d in advance instead of the standard strategy stated above.

Usually it is reasonable to assume that the maximum value of |y(x)| in appli-
cations is of order 1 and hence we assume here that max0≤x≤1|y(x)| is of order 1.
Note that y(x) = y(ψ(t)) decays as (2.15). Then, the strategy we propose here is
as follows. First we select a small positive number εtr for truncation parameter.
Next we select mesh size h. Then, if |y(xj)| satisfies

|y(xj)| ≤ εtr at j = −n− (3.8)

we regard that y(xj) has decayed sufficiently small at j = −n− on the negative side
of j and stop summation (3.1) at the lower limit j = −n−. That is, we set

exp
(
−π

2
β−et−

)
= εtr, t− = n−h (3.9)

because |y(x)| = |y(ψ(t))| is assumed to decay as (2.15). −t− is the lower limit of
truncation in variable t. This gives a relation between mesh size h and number n−
of terms in the sinc expansion of the solution

n− =
1
h
t−, t− = log

(
2

πβ−
log

1
εtr

)
. (3.10)

Similarly, if |y(xj)| satisfies |y(xj)| ≤ εtr at j = n+ on the positive side of j, we
stop summation at the upper limit j = n+ where

n+ =
1
h
t+, t+ = log

(
2

πβ+
log

1
εtr

)
, (3.11)

and t+ is the upper limit of truncation in variable t.
Choice of εtr depends on user’s requirement for error tolerance and there are

various ways for its choice. A very easy and general way is to select machine epsilon
of the system on which numerical solution is computed for εtr because a very simple
program for computation of machine epsilon or its good approximation is known [3].
Actually, in the numerical examples given in Section 7 we select for εtr machine
epsilon of the system. In any case we should select εtr equal to or larger than
machine epsilon of the system.

So far we have not taken into consideration that ε, perturbation parameter, is
very small. If we should be careful for smallness of ε we can alternatively employ
the following strategy.
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In singularly perturbed problem (1.1) we assume that a = 0 and b = 1 for
simplicity. In the following we assume that μ1(x) and μ0(x) satisfy

μ1(x) = 0, μ0(x) ≤ −α < 0 (α > 0). (3.12)

Then from [5, 11] we see that boundary layers appear at both edge points x = 0 and
x = 1, and that solution y(x) satisfying homogeneous boundary condition y(0) = 0
includes a component y−(x) which dominates in the left boundary layer and has a
bound ŷ−(x) such that

|y(x)| ≈ |y−(x)| ≤ ŷ−(x), ŷ−(x) = C−

∣∣∣∣exp
(
−α x√

ε

)
− 1
∣∣∣∣. (3.13)

In the singularly perturbed problem we assume that
√
ε is itself a very small con-

stant. However, at the left edge point x = 0 we need to investigate behavior
of y(x) in a further thinner region x � √

ε. In such a thin region ŷ−(x) =
C−|exp(−αx/√ε) − 1| ≈ C−αx/

√
ε holds. Therefore, in the close neighborhood

of the left edge point x = 0 we can write ŷ−(x) ≈ C−L−x where L− (= α/
√
ε) is

a large positive constant. Situation is the same in the close neighborhood of the
right edge point x = 1 and we can write ŷ+(x) ≈ C+L+(1− x) where L+ is a large
positive constant.

Now we assume that in such an extremely close neighborhood of the left edge
point bound ŷ−(x) well approximates absolute value of the solution |y(x)|, so that
we can carry out truncation of summation (3.2) based on the bound ŷ−(x) ≈ L−x
(we neglected C−) instead of the left side of (3.9), i.e., we set

L− exp
(
−π

2
β−et−

)
= εtr, t− = n−h (3.14)

because x decays as (2.14). Then we have

n− =
1
h
t−, t− = log

(
2

πβ−
log

L−
εtr

)
, (3.15)

and, similarly,

n+ =
1
h
t+, t+ = log

(
2

πβ+
log

L+

εtr

)
. (3.16)

In Examples 1, 2 and 3 in Section 7 we use (3.15) and (3.16).
We should note that L− and L+ are used only to determine truncation point

of the sinc expansion and do not appear in the algorithm of numerical solution.
In addition L− appears inside double logarithm in n− in the right side of (3.15),
so that effect of L− on n− or on t− is very small. Situation is the same for L+.
See change of t− and t+ in Table 1 in Example 1, for example. And hence, their
influence to accuracy of numerical approximation is small.
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What we should emphasize is that the present sinc method based on the DE
transformation is by itself capable of solving singularly perturbed problems even
without paying particular care for the abnormal situation that ε is very small. And
hence, if it is difficult to select a suitable value of L− we recommend to use L− = 1
as an alternative value which will give a useful result in many cases. Situation is
the same for L+. See Example 3 and 4 in Section 7.

4. DE sinc-Galerkin method

Now we are ready to apply the Galerkin method for numerical solution. For
the moment we generalize coefficient of the second derivative in the form of a func-
tion μ2(x) instead of the constant ε and consider the equation with homogeneous
boundary condition

μ2(x)y′′(x) + μ1(x)y′(x) + μ0(x)y(x) = σ(x), a < x < b,

y(a) = y(b) = 0.
(4.1)

We assume here that μ2(x) is analytic on a < x < b as well as μ1(x), μ0(x) and
σ(x) in (1.1).

We first introduce an inner product with a weight function 1/φ′(x) =
1/{ψ−1(x)}′

〈f, g〉 =
∫ b

a

f(x)g(x)ρ(x) dx, ρ(x) =
1

φ′(x)
. (4.2)

Note that

1
φ′(x)

=
1

dψ−1(x)
dx

=
dψ(t)
dt

=
b− a

2

π
2 cosh t

cosh2(π2 sinh t)

≈ π
b− a

2
e|t| exp

(
−π

2
e|t|
)
, t→ ±∞ (4.3)

holds. Then, the inner product of equation (4.1) and the sinc function

Sk ≡ S(k, h)(ψ−1(x)) (4.4)

gives a weak equation

〈μ2y
′′, Sk〉 + 〈μ1y

′, Sk〉 + 〈μ0y, Sk〉 = 〈σ, Sk〉. (4.5)

Integration by parts on each term on the left hand side gives

〈μ2y
′′, Sk〉 =

∫ b

a

y(μ2Sk)′′ dx+ F2, F2 = {y′(μ2Skρ) − y(μ2Skρ)′}|ba (4.6)

and

〈μ1y
′, Sk〉 = −

∫ b

a

y(μ1Sk)′ dx+ F1, F1 = {y(μ1Skρ)}|ba. (4.7)
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We assumed that y(x) vanishes at the boundary as (2.13) and hence F1 and the
second term of F2 vanish there. On the other hand, y′(x) may not vanish at the
boundary as seen from (2.13). However, we defined the weight function ρ(x) as
(4.2) and hence from (4.3) we see that the first term of F2 also vanishes at the
boundary. And we finally have a weak form corresponding to the equation (4.1)
without derivatives of y(x) as follows:

∫ b

a

y(μ2Skρ)′′ dx−
∫ b

a

y(μ1Skρ)′ dx+
∫ b

a

y(μ0Skρ) dx =
∫ b

a

σSkρ dx. (4.8)

Here we carry out numerical integration at each term of (4.8). For that pur-
pose we employ the double exponential formula (DE formula, or DE quadrature
formula) [19]

∫ b

a

f(x) dx =
∫ ∞

−∞
f(ψ(t))ψ′(t) dt = h

n+∑
j=−n−

f(xj)
1

φ′(xj)
+ Eint + Etrunc,

xj = ψ(jh), Eint = O

(
exp
(
−2πd′

h

)) (4.9)

based on the DE transformation (2.9) with the same mesh size h as the one we
employed for sinc expansion (3.1), i.e., the set of the sinc points xj = ψ(jh),
j = 0,±1,±2, . . . is common to the sinc expansion and to the DE formula. d′ is the
half-width of the strip domain

|Im t| < d′ (4.10)

on which f(ψ(t))ψ′(t) is analytic. Eint is the error due to numerical integration,
while Etrunc is the error due to truncation of the summation.

First, for f(x) we think of y(μmSkρ)(m), m = 0, 1, 2 and σSkρ. For each term
d′ is different with each other. Note that, if d ≈ d′ holds the error Eint in (4.9) due
to the DE formula for numerical integration is about as squared small as the one
due to DE-sinc expansion (3.1) with the same mesh size h. And hence, we assume
here that

2d′ ≥ d (4.11)

and, under this assumption, we can ignore Eint compared with Esinc(h) in (3.1).
Next, note that each term of sum (3.1) has a factor 1/φ′(xj) which decays

double exponentially as seen from (4.3) and, consequently, the sum (4.9) is trun-
cated so that the absolute value of the integrand is less than εtr. In view of these
behavior we see that the error Etrunc in (4.9) due to truncation can be ignored in
actual computation.

Now we are ready to write an explicit form of the equation which we solve. If
we apply the DE formula (4.9) to each term in (4.8) and truncate the infinite sum
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according to the strategy discribed in Section 3, we eventually obtain the following
system of linear algebraic equations:

n+∑
j=−n−

{
μ2δ

(2)
jk +h

(
−μ2

(
1
φ′

)′
+μ1

(
1
φ′

))
(xj)δ

(1)
jk

+h2

(
μ2

(
1
φ′

)′′( 1
φ′

)
−μ′

1

(
1
φ′

)2

−μ1

(
1
φ′

)′( 1
φ′

)
+μ0

(
1
φ′

)2)
(xj)δ

(0)
jk

}
yj

=h2σ

(
1
φ′

)2

(xk), k=−n−,−n−+1, . . . , n+, (4.12)

where

δ
(0)
jk =

{
1; j = k,

0; j �= k,
δ
(1)
jk =

⎧⎪⎨
⎪⎩

0; j = k,

(−1)k−j

(k − j)
; j �= k,

δ
(2)
jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−π

2

3
; j = k,

−2(−1)k−j

(k − j)2
; j �= k.

(4.13)

Explicit form of each derivative term which appears in (4.12) can be written as
follows:(

1
φ′

)
(x) =

(
1
φ′

)
(ψ(t)) =

b− a

2

π
2 cosh t

cosh2(π2 sinh t)
, (4.14)

(
1
φ′

)′
=

d

dx

(
1
φ′

)
= ψ′(x)

d

dt

(
1
φ′

)
= tanh t− π cosh t tanh

(
π

2
sinh t

)
, (4.15)

(
1
φ′

)′′( 1
φ′

)
=

1
cosh2 t

− π sinh t tanh
(
π

2
sinh t

)
− π2

2
cosh2 t

cosh2(π2 sinh t)
. (4.16)

We summarize here the procedure for computing numerical solution

ỹntot(x) =
n+∑

j=−n−

yjS(j, h)(ψ−1(x)) (4.17)

of the boundary value problem of second order ordinary differential equation (4.1)
including singularly perturbed problem (1.1). ntot which appears in the subscript
of the left hand side of (4.17) is defined by

ntot = n− + n+ + 1 (4.18)

and denotes the total number of terms in (4.17) actually computed in (4.12).
1. Select a small number εtr for truncation (machine epsilon, for example).
2. Select a mesh size h.
3. Determine n− and n+ using (3.10) and (3.11), or using (3.15) and (3.16),

repectively.
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4. Solve system of linear algebraic equations (4.12) with μ2(x) = ε for yj , j =
−n−,−n− + 1, . . . , n+. yj is the value of approximate solution at the sinc
point x = ψ(jh), i.e., yj = ỹntot(xj).

5. The value of approximate solution at an arbitrary x is obtained by computing
the right hand side of (4.17).

Let Emax be the error of approximate solution. If we plot a graph of Emax in
logarithmic scale, i.e., logEmax vs. ntot, we find an approximately linear relation
logEmax ≈ −cntot. The reason is as follows. From (3.10) and (3.11), or from (3.15)
and (3.16), we see that

h ≈ ttot/ntot, ttot = t− + t+ (4.19)

holds, so that from (3.1) we have

Emax ≈ |Esinc(h)| = O

(
exp
(
−πd
h

))
= O(exp(−cntot)), c =

πd

ttot
.

Note, however, that this relation holds only for such h or ntot that satisfies
|Esinc(h)| ≥ εtr.

5. Numerical solution of semi-linear problem

The method described in the preceding sections can be applied to numerical
solution of semi-linear boundary value problems with homogeneous boundary con-
dition of the following form including singularly perturbed problem with μ2(x) = ε:

μ2(x)y′′(x) + μ1(x)y′(x) + F [x, y] = σ(x), a < x < b,

y(a) = y(b) = 0.
(5.1)

F [x, y] is a non-linear term and we assume that F [x, y] does not include derivatives
of y(x). We also assume that F [x, y] is a function of x and y analytic on a ≤ x ≤ b.
We again assume solution of the form (4.17) and repeat the same analysis. Then
we finally obtain the following system of nonlinear algebraic equations:

n+∑
j=−n−

[{
μ2δ

(2)
jk +h

(
−μ2

(
1
φ′

)′
+μ1

(
1
φ′

))
(xj)δ

(1)
jk

+h2

(
μ2

(
1
φ′

)′′( 1
φ′

)
−μ′

1

(
1
φ′

)2

−μ1

(
1
φ′

)′( 1
φ′

))
(xj)δ

(0)
jk

}
yj

+h2F [xj ,yj ]
(

1
φ′

)2

(xj)δ
(0)
jk

]
=h2σ

(
1
φ′

)2

(xk), k=−n−,−n−+1, . . . ,n+.

(5.2)

If we solve (5.2) for yj , j = −n−,−n− + 1, . . . , n+ we get approximate solution
yj = ỹntot(xj) at the sinc point xj = ψ(jh), and from (4.17) we obtain approximate
solution at an arbitrary x. If we start from a good initial guess we usually can
obtain a solution of (5.2) using Newton’s method. In Section 7 we give an example
of numerical solution of a semi-linear problem.
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6. DE sinc-collocation method

We can derive a sinc-collocation method based on the DE transformation,
which we call the DE-sinc collocation method, for solving the boundary value prob-
lem of second order ordinary differential equation (4.1) with homogeneous boundary
condition, singularly perturbed problem when μ2(x) = ε , in a similar way as in
the case of the sinc-Galerkin method. In (4.1) we replace y(x) with ỹh(x) given
by (3.2), multiply h2/{φ′(x)}2 on both sides and substitute x with xk = ψ(kh).
Then we obtain an approximate equation based on the collocation:

h2μ2ỹ
′′
h

(
1
φ′

)2

(xk) + h2μ1ỹ
′
h

(
1
φ′

)2

(xk) + h2μ0ỹh

(
1
φ′

)2

(xk) = h2σ

(
1
φ′

)2

(xk).

(6.1)

In equation (6.1) we actually differentiate S(j, h)(ψ−1(x)) in ỹ′h(x) and ỹ′′h(x) of
(3.2) with respect to x and then substitute x with xk = ψ(kh). When we carry out
differentiation we can use the formulas (4.14), (4.15) and (4.16). Finally we obtain

n+∑
j=−n−

{
μ2(xk)δ

(2)
jk + h

(
−μ2

(
1
φ′

)′
+ μ1

(
1
φ′

))
(xk)δ

(1)
jk + h2μ0

(
1
φ′

)2

(xk)δ
(0)
jk

}
yj

= h2σ

(
1
φ′

)2

(xk), k = −n−,−n−, . . . , n+. (6.2)

If we solve this system of linear algebraic equations for yj , j = −n−, . . . , n+ we get
approximate solution yj = ỹntot(xj) at the sinc point xj = ψ(jh), and from (4.17)
we obtain approximate solution at an arbitrary x.

7. Numerical examples

In this section we present numerical examples for singularly perturbed bound-
ary value problems (1.1) and (5.1) with μ2(x) = ε to illustrate the result of anal-
ysis discussed in the preceding sections. In order to highlight high accuracy in
the present method solution of the problems was computed in quadruple precision
arithmetic using Fujitsu Fortran compiler on a Pentium IV personal computer.
Machine epsilon of this system is 1.926×10−34 and we selected εtr = 1.926×10−34

for truncation parameter used in (3.8). When we carry out numerical computa-
tion εtr is computed first in the computer [3] and then is used in the subsequent
computation.

In all the examples the problem is defined on 0 < x < 1, so that we set a = 0
and b = 1, and hence the DE transformation is

x = ψ(t) =
1
2

tanh
(
π

2
sinh t

)
+

1
2

=
1
2

exp(π2 sinh t)
cosh(π2 sinh t)

=
1

1 + exp(−π sinh t)
. (7.1)

In every example we selected h = 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, and supplemented
other suitable values of h if it makes the error behavior clearer. Then we carried
out computation following the procedure described at the end of Section 4.
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For each example we show the maximum of the error of numerical solution
yj = ỹntot(xj) at the sinc points xj = ψ(jh), j = −n−,−n− + 1, . . . , n+, i.e.,

Emax = max
−n−≤j≤n+

|yj − y(xj)|, xj = ψ(jh) (7.2)

since we know the exact solution y(x) in every problem. In each figure ‘max error’
denotes Emax and ‘ntot’ denotes the total number of terms ntot = n− +n+ +1 in the
sinc expansion. Each marker on the curves in the figure corresponds to a data pair
(ntot, Emax) which we obtained in actual computation, and for each ε we connected
adjacent data pairs with a line segment.

Example 1. The first example is a problem of standard type of singular per-
turbation from [1, 2]:

εy′′(x) − y(x) = cos2(πx) + 2επ2 cos(2πx), 0 < x < 1,

y(0) = y(1) = 0.
(7.3)

This equation corresponds to the case a = 0, b = 1, μ1(x) = 0 and μ0(x) = −1 in
(1.1), and hence solution y(x) satisfies (3.12) with α = 1 and we select L− = 1/

√
ε

as well as L+ = 1/
√
ε. Actually the exact solution of this problem is

y(x) =
e−x/

√
ε + e−(1−x)/√ε

1 + e−1/
√
ε

− cos2(πx). (7.4)

We set β− = β+ = 1 and solved this problem using the DE sinc-Galerkin
method and error Emax of numerical solution with ε = 10−10, 10−8, 10−5 and 1 is
shown in Fig. 1. In Table 1 we show a list of t− and t+ defined in (3.15) and (3.16).
In the present example t− = t+ holds for each ε. From Table 1 and from (4.19)
we can easily get the value of h corresponding to ntot. We see that we obtained
a result with almost as high accuracy as quadruple precision using sinc expansion
with a few hundred terms. In every case of ε = 10−10, 10−8 and 10−5 we did not
pay any particular care for smallness of ε as in the case ε = 1 except selection of
values of L− and L+.

Table 1. t− and t+ for each ε in Example 1. t− = t+ in this example.

ε 10−10 10−8 10−5 1
t−, t+ 4.0387 4.0125 3.9719 3.9004

Incidentally, if we use L− = L+ = 1 instead of L− = L+ = 1/
√
ε in Example 1,

we will get almost the same curve as in Fig. 1 for each ε. The reason is that effect
of L− and L+ on numerical solution is not large in general as is mentioned at the
end of Section 3. See also Example 3.
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Fig. 1. Maximum error Emax in Example 1 with ε = 10−10, 10−8, 10−5, and 1.

In Fig. 1 we observe that the error presents almost linear dependence, i.e.,
logEmax ≈ −cntot, or Emax = O(exp(−cntot)) as is mentioned at the end of Sec-
tion 4. If, however, you make h smaller in each case of ε than plotted in Fig. 1 you
will find that the result will stray off the linear dependence due to accumulation of
round-off error.

It is natural to set εtr = 1.926 × 10−34 if a solution with accuracy of about
quadruple precision is required. However, if, for example, a solution with accuracy
of double precision is required selection of εtr = 1.926 × 10−34 seems to be too
severe. In fact this selection results in redundant evaluations of terms in the sinc
expansion. In Fig. 2 we show comparison in the case ε = 10−10 between the solution
with εtr = 1.926 × 10−34 and the one with εtr = 2.220 × 10−16 which is equal to
machine epsilon in double precision arithmetic of the system we used. Solid curve
represents error with εtr = 1.926 × 10−34, while the dashed curve represents the
one with εtr = 2.220 × 10−16. Although computation was carried out in quadruple
precision arithmetic also in the case εtr = 2.220×10−16 the error curve with dashed
line does not change so much if computation is carried out in double precision
arithmetic as long as we select εtr = 2.220 × 10−16. We see that actually we need
a smaller number of terms when we require a result with lower accuracy, although
the differnece is not so large, as seen in Fig. 2. Incidentally, in this comparison
t− (= t+) = 4.0387 when εtr = 1.926×10−34, while t− (= t+) = 3.4103 when εtr =
2.220 × 10−16.

Since criterion (3.8) for truncation with εtr = machine epsilon is severe in
general there remain redundant terms without being discarded by truncation. On
the other hand, the double exponential decay not only is steep but also comes on
a sudden, so that the number of these redundant terms is usually not large. See
p. 440 in [7] for detailed discussion.
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Fig. 2. Comparison between εtr = 1.926×10−34 and εtr = 2.220×10−16 when ε = 10−10

in Example 1.

In order to see how smooth the sinc expansion looks we divided the interval
0 ≤ x ≤ 1 into 1000 equal subintervals with mesh size 0.001 and computed approx-
imate solution ỹntot(xi) from (4.17) with h = 0.08 at xi = i/1000, 1 ≤ i ≤ 999 for
the case ε = 10−5, and plotted the numerical solution as a graph in Fig. 3. This
approximate solution is so close to the exact solution that if we overplot the exact
solution on the graph we cannot discriminate these two graphs. The maximum error
Emax = 7.04× 10−8 on the sinc points is attained at j = −14, i.e., x = 1.34× 10−2,
while the maximum error 8.59 × 10−7 on the equi-distributed mesh is attained at
i = 7, i.e., x = 7.00 × 10−3. In this figure we find boundary layers at both ends of
the interval.

We also plotted location of the sinc points at the bottom of Fig. 3. We find that
sampling points based on the DE transformation accumulate to the boundary edge.

We computed numerical solution of the same problem (7.3) with ε = 10−5 by
the DE sinc-collocation method described in Section 6. Selection of h, t− and
t+, so that determination of n− and n+, are the same as in the sinc-Galerkin
method based on the DE transformation. In Fig. 4 the error Emax (DE-col) is
shown together with the error by the sinc-Galerkin method (DE-Gal). Error curve
with the DE sinc-collocation method differes a little from that with the DE sinc-
Galerkin method. We see that, if we compare errors at the same ntot, error by
the DE sinc-Galerkin method is slightly smaller than error by the sinc-collocation
method. This tendency is observed also in other examples. However, it should be
mentioned that the DE sinc-collocation method has a merit that the coefficient of
equation (6.2) is less complicated than that of (4.12).
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Fig. 3. Numerical solution of (7.3) by the DE sinc-Galerkin method for ε = 10−5 with

h = 0.08.

Fig. 4. Comparison between the DE transformation and the SE transformation when
ε = 10−5 in Example 1.

We solved the problem also using the SE sinc-Galerkin method. In this case
we set d = π/2, n = 100 and hence h = π/

√
n in accordance with [2] and followed

the conventional procedure of the SE sinc-Galerkin method. The result is shown
also in Fig. 4 (SE-Gal). We see that convergence by the DE sinc-Galerkin method
or by the DE sinc-collocation method is much faster than convergence by the SE
sinc-Galerkin method as is expected from (3.6) and (3.7).
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Example 2. Next example is a problem from Liu and Xu [5] as one of the
recent results using a conventional method:

εy′′(x) − (2 + sinx)y(x) = f(x), 0 < x < 1,

y(0) = y(1) = 0.
(7.5)

f(x) is chosen so that

y(x) = exp(−x/√ε) + exp(−(1 − x)/
√
ε) + x(1 − x) − (1 + exp(−1/

√
ε)) (7.6)

is the exact solution. This equation corresponds to a = 0, b = 1, μ1(x) = 0 and
μ0(x) = −(2 + sinx) in (1.1), so that it satisfies (3.12) with α = 1. And hence we
select L− = 1/

√
ε and L+ = 1/

√
ε. Liu and Xu solved this singularly perturbed

problem by the Galerkin method based on Hermite splines with knots, or sampling
points, adapted to the singular behavior of the solution. On the other hand we
solved the same problem using the DE sinc-Galerkin method whose sampling points
are defined based on the DE transformation. We set β− = β+ = 1. For the same
reason as in Example 1 we used L− = 1/

√
ε and L+ = 1/

√
ε.

In Fig. 5 error by our method (DE-Gal) together with error by Liu and Xu
directly copied from Table 3 in [5] (Hermite splines) is shown for the case ε =
1.456 × 10−11 (

√
ε = 3.816 × 10−6). ntot denotes total number of the sampling

points, and t− (= t+) is 4.0494 in the present case. In Fig. 5 we find that the
Galerkin method based on Hermite splines with adapted knots by Liu and Xu gives
better result for small ntot. However, as ntot increases the present method beats it
and eventually presents much faster convergence.

Fig. 5. Comparison between the DE sinc-Galerkin method and the Galerkin method

based on the Hermite splines with adapted knots in Example 2.
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Example 3. Next example is a semi-linear problem again from [1, 2]:

εy′′(x) + 2y′(x) + y2(x) = (exp(−x/ε) − 1/ε) exp(−x/ε), 0 < x < 1,

y(0) = 1, y(1) = exp(−1/ε).
(7.7)

The exact solution is

y(x) = exp(−x/ε). (7.8)

This problem is not only of semi-linear equation but also has inhomogeneous bound-
ary condition. In order to use the DE-sinc method we need to modify the problem
into a problem with homogeneous boundary condition. In the present problem we
define a linear function

s(x) = (exp(−1/ε) − 1)x+ 1 (7.9)

which satisfies inhomogeneous boundary condition and write

u(x) = y(x) − s(x). (7.10)

After this modification we see that u(x) satisfies

εu′′(x) + 2u′(x) + u2(x) + 2((exp(−1/ε) − 1)x+ 1)u(x) = f(x),

u(0) = u(1) = 0,
(7.11)

where f(x) is chosen so that

u(x) = exp(−x/ε) − (exp(−1/ε) − 1)x− 1 (7.12)

is the exact solution. We set β− = β+ = 1 and solved equation (7.11) numerically
for u(x) and substitued u(x) in (7.10) with this numerical solution to obtain ỹntot(x)
in (4.17).

We can see from [12] that if μ1 and F [x, u] satisfy

0 < α ≤ μ1(x) (α > 0), 0 ≤ Fu ≤ β(x) (7.13)

in (5.1) with μ2(x) = ε, solution u(x) satisfying homogeneous boundary condition
u(0) = 0 has a boundary layer only at the left edge point x = 0 and includes a
component u−(x) which dominates in the boundary layer with a bound û−(x)
such that

|u(x)| ≈ |u−(x)| ≤ û−(x), û−(x) = C−

∣∣∣∣exp
(
−αx

ε

)
− 1
∣∣∣∣. (7.14)

The right edge point is a regular zero.
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The present equation (7.11) corresponds to a = 0, b = 1, μ2(x) = ε, μ1(x) = 2
and F [x, u] = u2 + 2((exp(−1/ε)− 1)x+ 1)u in (5.1), so that it satisfies (7.13) with
α = 2 (since we know the exact solution (7.12)), and hence we select L− = 2/ε,
L+ =1. In this example we computed numerical solution also with selection L− =1,
L+ = 1. In the latter selection we do not take into consideration smallness of ε at all
except that we just set μ2(x) = ε in (5.2) as a standard boundary value problem.
In Table 2 we show t− and t+ used in numerical solution in the case L− = α/ε

(α = 2), L+ = 1. For L− = 1, L+ = 1 we have t− = t+ = 3.9004.

Table 2. t− and t+ for the non-linear problem in Example 3.

ε 10−10 10−5

t− 4.1670 4.0464
t+ 3.9004 3.9004

In order to solve non-linear system of algebraic equations (5.2) we employed
Newton’s method starting from an initial guess u(0)(x) ≡ 0 which is a linear function
satisfying homogeneous boundary condition. In every case of ε Newton’s method
converged at most with 5 iterations.

In Fig. 6 we show the error Emax of numerical solution of the modified problem
(7.11) for ε = 10−10 and 10−5. Solid curves correspond to the selection L− = 1,
L+ = 1, while dotted curves correspond to the selection L− = 2/ε, L+ = 1. From
Fig. 6 we see that, although accuracy in the selection L− = 1, L+ = 1 is slightly
higher than that in the selection L− = 2/ε, L+ = 1, difference between these two
selections is quite small as is discussed at the end of Section 3.

Fig. 6. Error of nonlinear problem (7.11).
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Example 4. The last example is a problem which has both a boundary layer
and an algebraic singularity at x = 0 and x = 1.

εy′′(x) − y(x) = 1 + ε(
√
x(1 − x))′′ −

√
x(1 − x), 0 < x < 1,

y(0) = y(1) = 0.
(7.15)

The exact solution is

y(x) =
exp(−x/√ε) + exp(−(1 − x)/

√
ε)

1 + exp(−1/
√
ε)

− 1 +
√
x(1 − x). (7.16)

We set β− = β+ = 1/2. We selected L− = L+ = 1 and solved this problem using
the present method. In Fig. 7 the error of the result for ε = 10−6, 10−3, 1 is
shown. From this figure we find that the present method works quite well also for
a singularly perturbed problem with an algebraic singularity at the end point.

Fig. 7. Error of problem (7.15) with end-point algebraic singularity.

8. Estimation of the half width d of the strip domain in which y(ψ(t))
is analytic

As is already mentioned it is usually difficult to get the value of d, the half width
of the domain |Im t| < d on which y(ψ(t)) is analytic, before we start numerical
computation. On the other hand, after computation, we can estimate the value of
d from dependence of the error Emax on 1/h. If we plot − log(Emax) vs. 1/h curve
almost linear dependence is observed as is expected from Esinc(h) = O(exp(−πd/h))
in (3.1). In Fig. 8 we show error curves of numerical solution in Example 1 as a
function of 1/h. Computation was carried out with the same selection of L− and
L+ as that in Example 1, i.e., L− = L+ = 1/

√
ε. In fact, dependence of the error
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in logarithmic scale on 1/h looks almost linear. Since gradient of each curve is
expected to give πd for each ε from (3.1) we applied linear curve fitting. We
assumed that − log(Emax) = A × (1/h) + B holds and calculated A and B by the
least squares method with equal weight for all the data. We used such pairs of data
(1/h,− log(Emax)) that seem to lie consecutively almost on the linear part of each
curve as is plotted in Fig. 8. Values of A, B, and calculated d̃, i.e., A/π, are shown
in Table 3. From this table we see that value of d̃ is considerably different from
π/2. Theoretical analysis for pre-estimation of d is left to the future work.

Fig. 8. Error of problem (7.3) as a function of 1/h.

Table 3. Dependence of − log(Emax) on 1/h.

ε A B d̃

10−10 0.629 0.258 0.200
10−8 0.836 −0.293 0.266
10−5 1.537 −2.394 0.489
1 3.126 −4.943 0.995
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