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In order to study the buckled states of an elastic ring under uniform pressure, Tadjbakhsh
and Odeh [14] introduced an energy functional which is a linear combination of the total
squared curvature (elastic energy) and the area enclosed by the ring. We prove that the
minimizer of the functional is not a disk when the pressure is large, and its curvature
can be expressed by Jacobian elliptic cn( · ) function. Moreover, the uniqueness of the
minimizer is proven for certain range of the pressure.
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1. Introduction

Let S denote the set of all smooth closed curves in the plane of length L and of
rotation number one. We fix an orthogonal coordinate system (x, y) in the plane.
For Γ ∈ S, let ΩΓ be the domain surrounded by Γ . Moreover, let s be the arc-
length parameter and κ(s) the curvature of Γ . As to the geometric inequalities
involving the total squared curvature, Gage’s inequality

πL

Area(ΩΓ )
≥
∫
Γ

κ2(s) ds (1)

is known to hold if Γ is a closed convex curve of class C2 [8]. The equality holds
if and only if Γ is the circle of radius L/2π. Another example is the well-known
classical variational problem called “elastica” [15]: Minimize

1
2

∫
Γ

κ2(s) ds, (2)

subject to the constraint that the length of Γ is equal to L. If Γ is restricted
to the set S, then by the Cauchy–Schwarz inequality, we immediately see that
the minimizer of (2) is unique up to translation, and it is the circle of radius
L/2π again.

In this paper, we are interested in a geometric functional which involves the
total squared curvature and the area, but has the non-disk type minimizer:
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Problem 1. Minimize

E(Γ ) :=
1
2

∫
Γ

κ2(s) ds + p Area(ΩΓ ) (3)

over S, where Γ = {(x(s), y(s)) | 0 ≤ s ≤ L}, p is a positive number, and Area(ΩΓ )
is defined by

Area(ΩΓ ) :=
1
2

∫
Γ

(xys − yxs) ds. (4)

We remark that the functional E(Γ ) was first considered by Tadjbakhsh
and Odeh [14] to study the equilibrium states of an elastic inextensible ring (see
Antman [2, pp. 101–110] for related studies of this subject). In particular, they
showed the existence of the minimizer Γγ (Lemma 1 below). The purpose of this
paper is to derive an explicit formula for the critical points of the functional E(Γ )
and to prove the uniqueness of the minimizer when 0 < p ≤ 120π3/L3. The main
result is stated as follows:

Theorem 1.

(i) If p satisfies 0 < p ≤ 24π3/L3, then the functional E(Γ ) has a unique mini-
mizer (up to translation), which is the circle of radius L/2π (trivial solution).

(ii) If 24π3/L3 < p ≤ 120π3/L3, then E(Γ ) has a unique minimizer Γγ and it is
not a circle. Indeed the curvature κ(s) of Γγ has the expression

κ(s) =
1

a cn(hs,m) + b
+ c, (5)

where cn( · ,m) is the Jacobian elliptic cosine function, h = 8K(m)/L,
(K(m) is the complete elliptic integral of the first kind; see Definition 1) and
for each p in this range, (a, b, c,m) is uniquely determined by the following
set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) a=−
√

−1+4b2h2(1−2m)+
√

(1−4b2h2(1−2m))2+64b4h4m(1−m)
8h2(1−m)

,

(ii) c=−1+
√

(1−4b2h2)2+16b2h2m

2b
,

(iii) 2bh4
√

(1−4b2h2)2+16b2h2m=p,

(iv)
∫ L

4

0

κ(s)ds=
π

2
.

(6)

As a matter of fact, we prove this theorem by obtaining the representation
formula for all critical points of the functional E(Γ ); see Theorem 2. In particular,
we obtain all the critical points for each value of p. By making use of the represen-
tation formula we might be able to investigate the local dynamics of the gradient
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flow of the Tadjbakhsh–Odeh functional in detail, and hence our results may be
regarded as a first step to understand the global behavior of the gradient flow of
this functional. See, e.g., [12] for recent development in this direction.

Fig. 10 illustrates the shapes of the minimizers for various values of p (see (b),
(c), (d), (e) of Fig. 10). On the other hand, Theorem 1 does not guarantee the
minimality of case (f) of Fig. 10, because 120π3/L3 = 15 < 17 holds when L = 2π.
Therefore, the problem of the uniqueness and the structure of the minimizer for
p > 120π3/L3 still remains open.

We mention here another variational problem related to Problem 1: Mini-
mize (2) subject to the constraints Γ ∈ S and Area(ΩΓ ) = M , where M is a given
positive constant. We call this problem the 2-D Canham problem; see Canham [5].
The minimizer of this problem describes the equilibrium states of a lipid mem-
brane (see, e.g., Arreaga et al. [4], and Satake and Honda [13] for its dynamical
aspects). In addition, the minimizer presents an example of domains which are
determined by the eigenvalues of the Laplace operator, a positive result for Mark
Kac’s problem [10]; see [16]. Lately, Matsumoto, Murai and Yotsutani [11] studied
the structures of critical points of this problem and announced that the critical
point of mode n is unique.

2. Structure of critical points

We begin by recalling some known facts on the existence of minimizers and
critical points of the functional E(Γ ). Let θ(s) be the angle between a tangent
(dx(s)/ds, dy(s)/ds) at the point (x(s), y(s)) ∈ Γ and the positive x-axis. Without
loss of generality, we may assume that (x(0), y(0)) = 0 and θ(0) = 0. Then

x(s) =
∫ s

0

cos θ(t) dt and y(s) =
∫ s

0

sin θ(t) dt. (7)

Moreover κ(s) = θ′(s) and x(s)y′(s) − x′(s)y(s) =
∫ s

0
sin(θ(s) − θ(t)) dt. Hence,

E(Γ ) can be expressed in terms of θ and θ′ only. The following existence result
was obtained by Tadjbakhsh and Odeh [14].

Lemma 1 ([14, Proposition 2]). Let F be the set of all functions θ∈H1(0, L)
satisfying

x(0) = x(L) = 0, y(0) = y(L) = 0, (8)

θ(0) = 0, θ(L) = 2π. (9)

Then the functional

E(θ) :=
1
2

∫ L

0

(θ′)2(s) ds +
p

2

∫ L

0

∫ s

0

sin(θ(s) − θ(ξ)) dξ ds (10)

attains its minimum in F .
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Thus Problem 1 has at least one minimizer in some subset F of H1(0, L),
where H1(0, L) is the usual Sobolev space of first order. As for the smoothness of
the minimizer, we have the following result.

Lemma 2 ([16, Lemma 3.4]). Let θ0 ∈F be a minimizer of the functional E.
Then θ0 is a smooth periodic function with period T =L/n. More precisely,
(i) θ0 ∈ C∞[0, L

n

]
,

(ii) θ
(m)
0+ (0) = θ

(m)
0−
(

L
n

)
for all m ∈ N,

where θ
(m)
0+ and θ

(m)
0− denote the right and left derivatives of order m, respectively.

Moreover, κ = ∂sθ0 satisfies the following Euler–Lagrange equation:

κss +
1
2
κ3 − q1κ − p = 0, (11)

which has the first integral

1
2
(κs)2 +

1
8
κ4 − 1

2
q1κ

2 − pκ = q2. (12)

Here, q1 and q2 are the constants to be chosen so that the following conditions are
satisfied:

κs(0) = κs

(
L

2n

)
= 0, (13)

∫ L
2n

0

κ(s) ds =
π

n
(14)

for some positive integer n.

Proof. See, Tadjbakhsh and Odeh [14, p. 61, p. 64] or Watanabe [16,
pp. 453–457] (In [14, p. 61], conditions (13) and (14) are shown without proof. We
remark that the smoothness and periodicity of θ0 are necessary for the derivation
of (13) and (14)). �

By the general property of the equation (12) (see Arnold [3, Section 12]),
any solution κ is symmetric about the half period T/2 = L/(2n). Hence possible
shapes of the minimizers are like Fig. 1. We obtain also from (12) that for any
p > 0, equations (12) to (14) always have the trivial solution κ = 2π/L, by suitably
choosing q1 and q2. For p > 24π3/L3, the trivial solution is unstable:

Lemma 3 ([14, Theorem 2]). For p > 24π3/L3, the trivial solution κ = 2π/L

is always unstable, i.e., the circle x2 + (y − 2π/L)2 = (2π/L)2 is not a minimizer.
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Fig. 1. Possible shapes of minimizers for T = L/2 and T = L/4. (a) ΩΓγ is convex
(k(0) > 0 and k(T/2) ≥ 0), (b) ΩΓγ is non-convex (k(0) > 0 and k(T/2) < 0),
(c) ΩΓγ is not simple.

The following lemma is deduced from the smoothness of minimizers:

Lemma 4. Let θ0 be a minimizer of the functional E. Then the period T of
θ0 must be either L/(2k) (k ∈ N) or L. Hence the region, ΩΓ0 generated by θ0

must have an even number (or only one) of the axes of symmetry.

Proof. Suppose that θ0 has the period T = L/(2k + 1), k ∈ N, and let us
define θ̃0 by

θ̃0(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ0(s), if 0 ≤ s ≤ L

2
,

π + θ0

(
s − L

2

)
, if

L

2
≤ s ≤ L.
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Since θ̃0 is continuous at s = L/2 and s = 0, it is easy to see that θ̃0 ∈ F . Moreover,
E(θ̃0) = E(θ0), because∫ L

L
2

(∂sθ̃0)2(s) ds =
∫ L

L
2

(∂sθ0)2(s) ds,

and∫ L

L
2

∫ s

0

sin(θ̃0(s) − θ̃0(ξ)) dξ ds =
∫ L

L
2

∫ L
2

0

sin
(

π + θ0

(
s − L

2

)
− θ0(ξ)

)
dξ ds

+
∫ L

L
2

∫ s

L
2

sin
(

θ0

(
s − L

2

)
− θ0

(
ξ − L

2

))
dξ ds

=
∫ L

2

0

∫ u

0

sin(θ0(u) − θ0(v)) dv du

=
∫ L

L
2

∫ s

0

sin(θ0(s) − θ0(ξ)) dξ ds.

Observe that the last equality results from∫ L

L
2

∫ s

0

sin(θ0(s) − θ0(ξ)) dξ ds

=
∫ L

L
2

∫ s

0

sin(−θ0(L − s) + θ0(L − ξ)) dξ ds (θ0(L − s) = 2π − θ0(s))

=
∫ L

2

0

∫ u

0

sin(θ0(u) − θ0(v)) dv du.

Therefore, θ̃0 is also a minimizer of E. This contradicts the smoothness of the
minimizer (Lemma 2), since ∂sθ̃0(s) is not continuous at s = L/2. �

Here, we recall the definition of the Jacobian elliptic functions.

Definition 1 ([1, p. 569]). Let m be a real number satisfying 0 ≤ m < 1.
The Jacobian elliptic function sn(u,m) of modulus

√
m is defined by the inverse

function of the indefinite integral

s =
∫ z

0

1√
(1 − x2)(1 − mx2)

dx, (−1 ≤ z ≤ 1). (15)

The complete elliptic integral of the first kind K(m) is defined as

K(m) :=
∫ 1

0

1√
(1 − x2)(1 − mx2)

dx.

Hence, sn( · ,m) is defined on the interval [−K(m),K(m)]. Associate func-
tions cn( · ,m) and dn( · ,m) are defined as cn( · ,m) =

√
1 − sn2( · ,m) and

dn( · ,m) =
√

1 − m sn2( · ,m) respectively on the interval [−K(m),K(m)]. The
domain of definition of these elliptic functions is extended to [0, 4K(m)] by using
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the relation sn(z + 2K(m),m) = − sn(z,m), cn(z + 2K(m),m) = − cn(z,m), and
dn(z + 2K(m),m) = dn(z,m). For the sake of simplicity, we write the Jacobian
elliptic functions sn( · ,m), cn( · ,m), dn( · ,m) as sn( · ), cn( · ), dn( · ) respectively
if there is no fear of confusion.

Lemma 5. Any solution of (12) must be one of the following three forms:

κ(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i)
1

a cn(hs) + b
+ c,

(ii)
1

a sn(K(m) − hs) + b
+ c,

(iii) a cn(hs),

(16)

where a, b, c, m ( 0 ≤ m < 1) and h are certain real constants.

Proof. Since it is routine but rather lengthy, we shall give the proof in
Appendix A. �

We observe that the function sn(K(m) − hs) appearing in Case (ii) can be
expressed in terms of the elliptic dn function.

Lemma 6. For arbitrary positive numbers h and m with 0 < m < 1,

sn(K(m) − hs,m) =

(
1 + m− 1

4
)
dn
(

h(1+m
1
4 )2

s

2 , μ(m)
)

+ 1 − m− 1
4

(
1 + m

1
4
)
dn
(

h(1+m
1
4 )2

s

2 , μ(m)
)

+ 1 − m
1
4

, (17)

where

μ(m) :=
8m

1
4
(
1 + m

1
2
)

(
1 + m

1
4
)4 (18)

holds.

Proof. See Appendix B. �

From Lemmas 5 and 6, it turns out that there are essentially two possibilities
to be considered, as stated in the following lemma.

Lemma 7. Any nontrivial solutions of (12) to (14) must be one of the fol-
lowing two forms: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(i)

1

a cn
( 4nK(m)s

L

)
+ b

+ c,

(ii)
1

adn
( 2nK(m)s

L

)
+ b

+ c, (m �= 0),
(19)

where a, b, c, and m ( 0 ≤ m < 1) are certain real constants.
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Proof. If a function of the form (i)–(iii) in (16) satisfies (13), then h equals
4nK(m)/L for some n ∈ N. This shows that (19) (i) is a possible form of a solution.
Next, we assume that κ(s) is of the form (ii) in (16). Because1

K(m)
(
1 + m

1
4
)2 = K

(
8m

1
4
(
1 + m

1
2
)/(

1 + m
1
4
)4)

, (20)

we have

dn

(
2nK(m)

(
1 + m

1
4
)2

s

L
, μ(m)

)
= dn

(
2nK(μ(m))s

L
, μ(m)

)
. (21)

In addition, μ(m) = 8m
1
4
(
1 + m

1
2
)/(

1 + m
1
4
)4 is a bijection from [0, 1] to

[0, 1]. Thus, when m �= 0, Case (ii) of (16) is equivalent to Case (ii) of (19). If
m = 0, then

sn(K(0) − h(0)s, 0) = sn
(

π

2
− 2nπs

L
, 0
)

= − cos
(

2nπs

L

)
. (22)

Therefore, this case is included in (19) (i). Finally, we show that Case (iii) of (16)
is ruled out. Indeed, ∫ L

2n

0

cn
(

4nK(m)s
L

)
ds = 0

implies that (14) is never satisfied. This completes the proof. �

Remark 1. We prefer the expression Case (ii) of Lemma 7 to Case (ii) of
Lemma 5, since it simplifies the study of the behavior of the quantity

∫ L
2n

0

κ(s) ds

as m approaches 1 (see Lemma 29 bellow).

The next theorem clarifies the structure of the critical points of E(Γ ):

Theorem 2.

(i) If n = 1, then for any p > 0, there exists no nontrivial solution of (12)
to (14).

(ii) If n ≥ 2 and 0 < p ≤ 8π3(n2 − 1)/L3, then (12) to (14) have no nontrivial
solution with period L/n.

1We acknowledge that Professor Yoshihiro Ônishi of Iwate University kindly suggested us that
identity (20) can be deduced easily from a formula in collected work of C.G.J. Jacobi [9, p. 521].
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(iii) If n ≥ 2 and 8π3(n2 − 1)/L3 < p, then (12) to (14) have a unique nontrivial
solution. Moreover, the structure of the nontrivial solution is as follows:

κ(s)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

a1cn
( 4nK(m)s

L

)
+b1

+c1 if
8π3

L3
(n2−1)≤p<

8π3

L3
(n−1)(2n−1)(3n−1),

1

a2dn
( 2nK(m)s

L

)
+b2

+c2 if
8π3

L3
(n−1)(2n−1)(3n−1)<p,

where (a1, b1, c1,m) is the unique solution of the equations (6) (i), (6) (ii),
(6) (iii) and ∫ L

2n

0

κ(s) ds =
π

n
, (23)

while (a2, b2, c2,m) is the unique solution of the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) a2 = −
√

1+4(b2)2h2(2−m)−√1+8(b2)2h2(2−m)+16(b2)4h4m2

8h2(1−m)
,

(ii) c2 = −1+
√

1+8(b2)2h2(2−m)+16(b2)4h4m2

2b2
,

(iii) 2b2h
4m2

√
1+8(b2)2h2(2−m)+16(b2)4h4m2 = p,

(24)

together with (23). Here h = 2nK(m)/L.

As an immediate corollary to Theorem 2, we know the exact number of critical
points for each value of p > 0:

Corollary 1. If

8π3

L3
(n2 − 1) ≤ p <

8π3

L3
n(n + 2)

for some positive integer n, then the functional E(Γ ) has exactly one trivial crit-
ical point (i.e., the circle) and n − 1 nontrivial critical points, up to rotation and
translation.

In Section 4, we investigate in detail the question of existence and uniqueness
of solutions to the system of transcendental equations (6) (i), (ii), (iii) and (23)
(also (24) (i), (ii), (iii) and (23)).
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3. Proof of Theorem 1

Assuming Theorem 2, we prove Theorem 1.

Proof. When 0 < p ≤ 24π3/L3, by Theorem 2 (i) and (ii), there is no non-
trivial solution for all n ∈ N. On the other hand, for all p > 0, we always have a
trivial solution κ ≡ 2π/L where q1 and q2 are uniquely determined by (11) and (12).
Moreover, by Lemma 1, this trivial solution is the minimizer for 0 < p ≤ 24π3/L3.
When 24π3/L3 < p ≤ 120π3/L3, the trivial solution is unstable by Lemma 3. Hence
it is not a minimizer. On the other hand, by Theorem 2, for p in this range, non-
trivial solutions exist only for (modes) n = 2 or 3; see Fig. 2. However, by Lemma 4,
nontrivial solutions of mode 3 cannot be a minimizer. Therefore the nontrivial so-
lution of mode 2 is the minimizer, and it has the expression of the form (5). �

Fig. 2. Energy curves of stationary solutions. Bold lines are the energy of nontrivial

solutions which have periods T = L/2, L/3, L/4 (modes n = 2, 3, 4) respectively.

The dotted line represents the energy of the trivial solution.

It thus remains to prove Theorem 2.

4. Proof of Theorem 2

4.1. Case of (19) (i)
First we consider the case where κ(s) is of the form (19) (i).

Lemma 8. Let

κ(s) =
1

a cn(hs) + b
+ c with h =

4nK(m)
L
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satisfy (12) and (13). Then a, b, and c satisfy either

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) a = ±
√

−1+4b2h2(1−2m)+
√

(1−4b2h2(1−2m))2 +64b4h4m(1−m)
8h2(1−m)

,

(ii) c = −1+
√

(1−4b2h2)2 +16b2h2m

2b
,

(iii) 2bh4
√

(1−4b2h2)2 +16b2h2m = p,

(25)

or⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) a = ±
√

−1+4b2h2(1−2m)−√(1−4b2h2(1−2m))2 +64b4h4m(1−m)
8h2(1−m)

,

(ii) c =
−1+

√
(1−4b2h2)2 +16b2h2m

2b
,

(iii) −2bh4
√

(1−4b2h2)2 +16b2h2m = p.

(26)

Proof. Recall that κ(s) satisfies the Euler–Lagrange equation (11). Substi-
tuting (19) (i) to (11), and using the relations

sn2(hs) = 1 − cn2(hs),

dn2(hs) = (1 − m) + m cn2(hs),

we obtain the following system of algebraic equations by putting the coefficients of
cnk(hs) (k = 0, 1, 2, 3) zero:

3ac + 6abc2 + 3ab2c3 + 2abh2 − 4abh2m − 6ab2p − 4abq1 − 6ab2cq1 = 0, (27)

3a2c2 + 3a2bc3 − 2a2h2 + 4a2h2m − 6a2bp − 2a2q1 − 6a2bcq1 = 0, (28)

a3c3 + 4abh2m − 2a3p − 2a3cq1 = 0, (29)

1 + 3bc + 3b2c2 + b3c3 + 4a2h2 − 4a2h2m − 2b3p − 2b2q1 − 2b3cq1 = 0. (30)

We here remark that this system of equations was first considered by G.F. Carrier [6]
more than half a century ago, but further analysis, as we see in the following, does
not seem to have been carried out. Since we know b �= 0 from the expressions for
κ(s) (see (110), (114), (116), (B-1), (B-2), and (B-3) of Appendix A), solving (27)
and (28) with respect to (p, q1), we have

p = − 1
2b

(c + 3bc2 + 2b2c3 + 2bh2 + 4b2ch2 − 4bh2m − 8b2ch2m), (31)

q1 =
−(−3c − 3bc2 − 4bh2 + 8bh2m)

2b
. (32)
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Substituting these into (29) and (30), we have

a(a2c + 2a2bh2 − 4a2bh2m + 4b3h2m)
b2

= 0, (33)

1 + bc − 4a2h2(−1 + m) + 2b2h2(−1 + 2m) = 0. (34)

A solution (a, c) with a �= 0 of (33) and (34) satisfies either (i), (ii) of (25) or (i),
(ii) of (26). Substituting it into (31) leads to (25) (iii) or (26) (iii). �

Clearly, the following lemma holds.

Lemma 9. For 0<m<1, the right-hand side of (26) (i) is not a real number.

Therefore, we have only to consider (25) (i), (25) (ii), (25) (iii). Moreover,
without loss of generality, we may assume a ≤ 0 because of cn(z + 2K(m)) =
− cn(z). It is easy to check that b > 0 and b + a > 0, hence κ(s) is defined for
all s ∈ [0, L]. Let us put u := b2h2. Then by (25) (iii), we see that u may be a
triple valued function of m. Hence, a = a(m), b = b(m) and c = c(m) are considered
to be multi-valued functions of m.

Lemma 10. If a(m) = 0, then m = 0.

Proof. First, we observe that b �= 0 (by Appendix A), and moreover m �= 1.
For, if m = 1, then h(1) = 4nK(1)/L = ∞, so κ(s) never satisfies (12)–(14) of
Lemma 2. Now, let a = 0. Then by (25) (i), we have 64b4h2m(1 − m) = 0 and
hence, m = 0. �

Definition 2. Let κ(s;m) be given by

κ(s;m) =
1

a(m) cn
( 4nK(m)s

L

)
+ b(m)

+ c(m). (35)

Using (35), we define a multi-valued function F of m by

F (m) :=
∫ L

2n

0

κ(s;m) ds. (36)

Our next job is to find positive m∗ satisfying (14), i.e., F (m∗) = π/n. If such
m∗ exists, we have a nontrivial solution by Lemma 10. Here, let us take a look
at numerical examples to see how the function F behaves for various values of p.
Fig. 3 shows the behavior of F for various p when n = 2 and L = 2π. From Fig. 3,
we guess that equation F (m) = π/2
(i) does not have any solution, if 0 < p < 3 (Fig. 3 (a)),
(ii) has a unique solution, if 3 ≤ p ≤ 15 (Fig. 3 (b)–(g)),
(iii) again does not have any solution, if 15 < p (Fig. 3 (h)).
Note that we have in this case 24π3/L3 = 3 and 120π3/L3 = 15. In the following
we prove that y = F (m) behaves like Fig. 3 for arbitrary n ∈ N. We begin by
expressing F in terms of the complete elliptic integrals of the first and third kind.
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Fig. 3. The behavior of y = F (m) for various p when n = 2 and L = 2π.
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Lemma 11. Let F (m) be given by (36). Then, we have

F (m) =
Lb

2n(b2 − a2)

(
Π
(

a2

b2−a2 ,m
)

K(m)
+

(b2 − a2)c
b

)
, (37)

where Π ( · , · ) is the complete elliptic integral of the third kind ( [1, p. 590]) de-
fined by

Π (l,m) :=
∫ 1

0

1
(1 − lx2)

√
(1 − x2)(1 − mx2)

dx. (38)

Proof. By a straightforward computation we obtain∫ L
2n

0

1
a cn(hs) + b

ds

=
1
h

∫ 2K(m)

0

1
a cn(t) + b

dt

= − 1
h

∫ 1

−1

1
(ax + b)

√
(1 − x2)(1 − m + mx2)

dx (putting x = cn(t))

=
1
h

∫ 1

0

(
1

ax + b
+

1
−ax + b

)
1√

(1 − x2)(1 − m + mx2)
dx

=
1
h

∫ 1

0

2b

b2 − a2 + a2z2

1√
(1 − z2)(1 − mz2)

dz (with x2 = 1 − z2)

=
Lb

2n(b2 − a2)
Π
(− a2

b2−a2 ,m
)

K(m)
. �

We can estimate how fast b(m) vanishes as m → 1 by the following lemma.

Lemma 12. Suppose 1/2 ≤ m < 1. Then, the following estimate holds:

b(m) ≤ p

2h4(m)
. (39)

In particular, we obtain

lim
m→1

(b2h2)(m) = 0 and lim
m→1

(bh2)(m) = 0. (40)

Proof. Let u(m) := (bh)2(m). Then, taking the square of the both sides of
(25) (iii), we have

64u3 + 32(2m − 1)u2 + 4u = p2h−6. (41)

When u ≥ 0 and m ≥ 1/2, it holds that

4u ≤ 64u3 + 32(2m − 1)u2 + 4u = p2h−6,

and hence we obtain (39). Since h = 4nK(m)/L and limm→1 K(m) = ∞, we
have (40). �
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Using this lemma, we obtain:

Lemma 13.

lim
m→1

F (m) = 0.

Proof. Put l = −a2/(b2 − a2). Since

b

b2 − a2
=

8bh2(1 − m)
1 + 4b2h2 −√(1 + 4b2h2)2 − 16b2h2(1 − m)

=
1 + 4b2h2 +

√
(1 + 4b2h2)2 − 16b2h2(1 − m)

2b
> 0

and
1

1 − l
≤ Π (l,m)

K(m)
≤ 1,

we have from (37)

b

b2 − a2

(
1

1 − l
+

(b2 − a2)c
b

)
≤ 2n

L
F (m) ≤ b

b2 − a2

(
1 +

(b2 − a2)c
b

)
. (42)

Letting m → 1, we see that

lim
m→1

b

b2 − a2

(
l

1 − l
+
(

1 +
(b2 − a2)c

b

))

= lim
m→1

1 + 4b2h2 +
√

(1 + 4b2h2)2 − 16b2h2(1 − m)
2b

×
(

l

1 − l
+

4b2h2

1 + 4b2h2 +
√

(1 + 4b2h2)2 − 16b2h2(1 − m)

)

= lim
m→1

1 + 4b2h2 +
√

(1 + 4b2h2)2 − 16b2h2(1 − m)
2

×
(

1
1 − l

· l

b
+

4bh2

1 + 4b2h2 +
√

(1 + 4b2h2)2 − 16b2h2(1 − m)

)
. (43)

On the other hand, we have

l =
1 + 4b2h2(2m − 1) −√(1 − 4b2h2)2 + 16b2h2m

−1 − 4b2h2 +
√

(1 − 4b2h2)2 + 16b2h2m

=
1
2
(−1 + 4b2h2 +

√
(1 − 4b2h2)2 + 16b2h2m

)
=

8b2h2m

1 − 4b2h2 +
√

(1 − 4b2h2)2 + 16b2h2m
.

Thus, by (40), limm→1 l(m) = 0 and limm→1(l/b)(m) = 0. Therefore, the left hand
side of the inequality of (42) tends to 0 as m → 1. Substituting l = 0 to the left
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hand side of (42), we have the right hand side. Hence, we can conclude that the
right hand side of (42) also tends to 0. This completes the proof. �

The following formula is elementary.

Lemma 14. Assume b > a ≥ 0. Then

∫ L
2n

0

(
1

a cos
(

2nπs
L

)
+ b

+ c

)
ds =

L

2n

(
1√

b2 − a2
+ c

)
. (44)

The next lemma studies the behavior of F (0).

Lemma 15. F (0) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

triple-valued, if 0 < p <
16π3n3

3
√

3L3
,

double-valued, if p =
16π3n3

3
√

3L3
,

single-valued, if
16π3n3

3
√

3L3
< p.

Proof. Substituting m = 0 to (25) (i), (ii), (iii), and putting v := bh, we
obtain if 1 − 4v2 > 0,

a = −
√

−1 + 4v2 +
√

(1 − 4v2)2

8h2
= 0, (45)

c = −1 +
√

(1 − 4v2)2

2b
= −1 − 2v2

b
, (46)

16π3n3

L3
v(1 − 4v2) = p. (47)

Therefore, by Lemma 14,

F (0) =
L

2n

(
1
b
− 1 − 2v2

b

)
=

Lv2

nb
= 2πv,

because in this case h = 4nK(0)/L = 2nπ/L. The graph of the function f(v) :=
(16π3n3/L3)v(1 − 4v2) is plotted in Fig. 4 (i). Hence the graph of p versus F (0)
looks like Fig. 4 (ii). If 1 − 4v2 ≤ 0, again by substituting m = 0 to (25) (i), (ii),
(iii), we have

a = −
√

4v2 − 1
2h

, (48)

c = −1 + (4v2 − 1)
2b

= −2v2

b
= −2vh, (49)

16π3n3

L3
v(4v2 − 1) = p. (50)
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Thus, b2−a2 = b2−(4v2−1)/(4h2) = 1/(4h2), and hence F (0) = (L/2n)(2h−2vh) =
2π(1 − v). The graph of the function f(v) := (16π3n3/L3)v(4v2 − 1) looks like
Fig. 5 (i), therefore the graph p versus F (0) is as in Fig. 5 (ii). �

Fig. 4. The graphs of functions v versus f(v) and p versus F (0) when 1 − 4v2 > 0.

Fig. 5. The graphs of the functions v versus f(v) and p versus F (0) when 1 − 4v2 ≤ 0.

Definition 3. Let us denote by F1(0), F2(0) and F3(0) the value of F (0)
for fixed p, according to the following three cases:

⎧⎪⎨
⎪⎩

F1(0), if 0 < p ≤ 16π3n3/3
√

3L3, 1 − 4v2 > 0 and F (0) ≤ π/
√

3,

F2(0), if 0 < p ≤ 16π3n3/3
√

3L3, 1 − 4v2 > 0 and F (0) > π/
√

3,

F3(0), if 0 < p, 1 − 4v2 ≤ 0.
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Corollary 2. From Figs. 4 and 5 we have the following relations for F1(0),
F2(0) and F3(0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) F1(0) < F2(0), if 0 < p <
16π3n3

3
√

3L3
,

(ii) F1(0) = F2(0), if p =
16π3n3

3
√

3L3
,

(iii) F1(0) <
π

n
< F2(0), if p <

8π3(n2 − 1)
L3

, n ≥ 2,

(iv)
π

n
= F1(0) < F2(0), if p =

8π3(n2 − 1)
L3

, n ≥ 2,

(v)
π

n
< F1(0) ≤ F2(0), if

8π3(n2 − 1)
L3

< p ≤ 16π3n3

3
√

3L3
, n ≥ 2,

(vi) F3(0) >
π

n
, if p <

8π3(n − 1)(2n − 1)(3n − 1)
L3

,

(vii) F3(0) =
π

n
, if p =

8π3(n − 1)(2n − 1)(3n − 1)
L3

,

(viii) F3(0) <
π

n
, if

8π3(n − 1)(2n − 1)(3n − 1)
L3

< p.

Proof. Assertions (i) and (ii) are obvious. When 2πv = π/n, we have v =
1/(2n), so p = 2v(1 − 4v2)(2nπ/L)3 = 8π3(n2 − 1)/L3. Since F1(0) is monotone
increasing we have (iii), (iv) and (v). If 2π(1− v) = π/n, we have v = 1−1/(2n), so
p = 2v(4v2−1)(2nπ/L)3 = 8π3(n−1)(2n−1)(3n−1)/L3. Since F3(0) is monotone
decreasing we have (vi), (vii) and (viii). �

We prepare differentiation formulas for complete elliptic integrals.

Lemma 16 (Differentiation formulas). The following formulas hold:

∂Π
∂l

(l,m) =
lE(m) + (m − l)K(m) + (l2 − m)Π (l,m)

2l(1 − l)(l − m)
, (51)

∂Π
∂m

(l,m) =
E(m) − (1 − m)Π (l,m)

2(l − m)(−1 + m)
, (52)

dK

dm
(m) =

E(m) − (1 − m)K(m)
2m(1 − m)

, (53)

dE

dm
(m) =

E(m) − K(m)
2m

, (54)

where E( · ) is the complete elliptic integral of the second kind ( [1, p. 590]).

Proof. For (53) and (54), see Whittaker and Watson [17, p. 521]. For (51)
and (52), see [18]. �
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By making use of (51) and (52), we obtain the following lemma.

Lemma 17. Let u satisfy (41). Then

dF

dm
(m)=

−L6p2{3E2(m)+(−5+4m)E(m)K(m)+2(1−m)K2(m)}
212m(1−m)n6K7(m)

√
u{48u2 +16(2m−1)u+1}√(1−4u)2 +16mu

.

(55)

Proof. Substituting b = u
1
2 /h to (25), we have

a = − L

8
√

2nK(m)

√
−1 + 4(1 − 2m)u +

√
(1 − 4u)2 + 16mu

1 − m
, (56)

c = −2nK(m)
(
1 +

√
(1 − 4u)2 + 16mu

)
Lu

1
2

. (57)

Using (56), (57) and Lemma 16, we have

dF (m)
dm

=
2

(1−m)mu
1
2
√

(1−4u)2 +16mu

×
{

((1−2m)E(m)−(1−m)K(m))u+(−4E(m)+4(1−m)K(m))u2

+(2m(1−m)E(m)−m(1−m)K(m)−4m(1−m)K(m)u)
du(m)

dm

}
.

(58)

By differentiating both sides of (41) with respect to m, we obtain

du(m)
dm

=
−3L6p2(E(m)−(1−m)K(m))

214m(1−m)n6K7(m) − 16u2

48u2 + 16(2m − 1)u + 1
.

Substituting this into (58) and eliminating u3 and u4 by using the relations

u3 =
1
64

(
p2

h6
− 4u + 32(1 − 2m)u2

)
,

u4 =
1

128h6
{(1 − 2m)p2 + 2(−2h6(1 − 2m) + p2)u + 8h6(3 − 16m + 16m2)u2},

and after lengthy (but elementary) computations, we obtain the result. �

To determine the sign of dF (m)/dm, we prepare the following two lemmas.

Lemma 18. If m �= 0, then

(−1 + 2m)E(m) + (1 − m)K(m) > 0. (59)
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Proof. Noting that

(1 − m)K(m) =
∫ 1

0

1 − mx2 − m + mx2√
(1 − x2)(1 − mx2)

dx

= E(m) − m

∫ 1

0

√
1 − x2

1 − mx2
dx, (60)

we obtain

(−1 + 2m)E(m) + (1 − m)K(m)

= m

∫ 1

0

2

√
1 − mx2

1 − x2
−
√

1 − x2

1 − mx2
dx = m

∫ 1

0

1 + (1 − 2m)x2√
(1 − x2)(1 − mx2)

dx

> m

∫ 1

0

1 − x2√
(1 − x2)(1 − mx2)

dx = m

∫ 1

0

√
1 − x2

1 − mx2
dx > 0,

which is positive, if m �= 0. �

Lemma 19. Put

G(m) := 3E2(m) + (−5 + 4m)E(m)K(m) + 2(1 − m)K2(m). (61)

Then there exists mz ( 0 < mz < 1), such that{
G(m) > 0 if 0 < m < mz,

G(m) ≤ 0 if mz ≤ m < 1.
(62)

Proof. Using (53) and (54), we have

dG

dm
(m) =

1
2m(1 − m)

{(1 − 2m)E2(m) − 2(1 − m)(1 − 4m)E(m)K(m)

+ (1 − m)(1 − 4m)K2(m)},
d2G

dm2
(m) = − ((−1 + 2m)E(m) + (1 − m)K(m))2

2m2(1 − m)2
< 0 (if m �= 0).

Applying l’Hospital’s rule, we obtain also that

lim
m→0

dG

dm
(m) = lim

m→0

K(m)(8(1 − 2m)E(m) − (5 − 8m)K(m))
2 − 4m

=
3π2

8
,

and

lim
m→1

dG

dm
(m) = −∞.

Therefore there exists mc ∈ (0, 1) such that dG(m)/dm is positive if 0 ≤ m < mc

and negative if mc < m < 1. Since K(0) = E(0) = π/2, we have G(0) = 0. It
is known that K(m) ∼ log(1

√
1 − m) as m → 1 [1, p. 591], and E(1) = 1, hence

G(1) = −∞. Consequently G(m) changes its sign exactly once in the interval
0 < m < 1. �
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In order to know the sign of dF (m)/dm, we need to investigate the sign of
48u2 + 16(2m − 1)u + 1 which appears in the denominator of (55). Let us now
define a function ϕ by

ϕ(u) := 64u3 + 32(2m − 1)u2 + 4u − p2

h6(m)
. (63)

Then, the equation (41) can be rewritten as ϕ(u) = 0.

Lemma 20. The quadratic equation ϕ′(u) = 0 has two positive roots α and
β ( 0 < α ≤ β), if and only if 0 ≤ m ≤ (2 −√

3)/4. Moreover, let f0(m) :=√
h6(m)ϕ(α) + p2 and f1(m) :=

√
h6(m)ϕ(β) + p2. Then f0 and f1 behave as

in Fig. 6. In particular, it holds that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) f0 and f1 are monotone increasing and f0(m) > f1(m),
for all m satisfying 0 ≤ m < (2 −√

3)/4,

(ii) f0(0) = 16n3π3/3
√

3L3, f1(0) = 0,

(iii) f0((2 −√
3)/4) = f1((2 −√

3)/4) = 64n3K3((2 −√
3)/4)

/(
3

3
4 L3

)
.

Fig. 6. y = f0(m) and y = f1(m).

Proof. Substituting α and β in ϕ, we obtain

f0(m) = h3(m)
{

2
27
(
64m3 − 96m2 + 30m + 1 + (16m2 − 16m + 1)

3
2
)} 1

2

,

f1(m) = h3(m)
{

2
27
(
64m3 − 96m2 + 30m + 1 − (16m2 − 16m + 1)

3
2
)} 1

2

.
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It is easy to check the monotonicity of f0 and f1. Moreover, since ϕ(β) ≤ ϕ(α) by
definition, so f1(m) ≤ f0(m). The remaining parts are easy to verify. �

The next lemma clarifies the sign of 48u2 + 16(2m − 1)u + 1 = ϕ′(u)/4.

Lemma 21. Let m0, m1 be the solutions of f0(m) = p, and f1(m) = p,
respectively (see Fig. 6) and let u1, u2 and u3 be the roots of ϕ(u) = 0 satisfy-
ing u1 ≤ α ≤ u2 ≤ β ≤ u3. Then the sign of ϕ(ui) (i = 1, 2, 3) is as in Table 1.

Table 1. Sign of ϕ′(ui)

p m Sign of ϕ′(ui)

0 ≤ p <
16n3π3

3
√

3L3

0 ≤ m ≤ m1 ϕ′(u1) > 0, ϕ′(u2) < 0, ϕ′(u3) ≥ 0

m1 < m ≤ 1 ϕ′(u1) > 0, u2, u3: not exist

16n3π3

3
√

3L3
≤ p <

64n3K3
(

2−√
3

4

)
3

3
4 L3

0 ≤ m < m0 ϕ′(u3) > 0, u1, u2: not exist

m0 ≤ m ≤ m1 ϕ′(u1) ≥ 0, ϕ′(u2) ≤ 0, ϕ′(u3) ≥ 0

m1 < m ≤ 1 ϕ′(u1) > 0, u2, u3: not exist

64n3K3
(

2−√
3

4

)
3

3
4 L3

≤ p 0 ≤ m ≤ 1 ϕ′(u3) ≥ 0, u1, u2: not exist

Proof. We shall prove the case

(16n3π3)/(3
√

3L3) ≤ p <

(
64n3K3

(
2 −√

3
4

))/(
3

3
4 L3

)

only, for the other cases are treated similarly. Since ϕ(α) = (f2
0 − p2)/h6 and

ϕ(β) = (f2
1 − p2)/h6, we see that ϕ(α) > 0 if and only if p < f0(m), while ϕ(β) < 0

if and only if p > f1(m). Thus, we obtain:
(i) If 0 ≤ m < m0, then ϕ(α) < 0, and hence ϕ(u) = 0 has only one real root

u = u3 satisfying β < u3. Therefore ϕ′(u3) > 0; see Fig. 7 (i).
(ii) If m0 ≤ m ≤ m1, then ϕ(α) ≥ 0, ϕ(β) ≤ 0. Hence ϕ(u) = 0 has three real

roots; see Fig. 7 (ii). Therefore ϕ′(u1) ≥ 0, ϕ′(u2) ≤ 0, ϕ′(u3) ≥ 0. The
equality holds when m = m0 (u1 = u2) or m = m1 (u2 = u3).

(iii) If m1 < m, then ϕ(β) > 0, and hence ϕ(u) = 0 has only one real root u = u1

satisfying u1 < α. Therefore ϕ′(u1) > 0; see Fig. 7 (iii) and (iv). �

The next lemma asserts that mz is greater than m1.

Lemma 22. It holds that

m0 ≤ m1 <
2 −√

3
4

< mz. (64)

Proof. Since G((2 −√
3)/4) > 0.241 > 0, from Lemma 19 we obtain the

assertion. �
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Fig. 7. The graph of ϕ.

Lemma 23. Let u1, u2, u3 be the roots of ϕ(u) = 0, and let κi(s) (i = 1, 2, 3)
be defined by (5), where

b(m) =
√

ui(m)/h(m), (65)

a(m) and c(m) are obtained by substituting (65) in (6) (i) and (6) (ii) respectively.
Further, put

Fi(m) :=
∫ L/(2n)

0

κi(s;m) ds. (66)

Then, y = Fi(m) (i = 1, 2, 3) behaves as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) in Fig. 8 (i) if 0 < p <
16n3π3

3
√

3L3
,

(ii) in Fig. 8 (ii) if
16n3π3

3
√

3L3
≤ p <

64n3K3
(

2−√
3

4

)
3

3
4 L3

,

(iii) in Fig. 8 (iii) if
64n3K3

(
2−√

3
4

)
3

3
4 L3

≤ p.
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Fig. 8. y = Fi(m) (i = 1, 2, 3) for various ranges of p.
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Proof. Let us consider Case (i). By Lemma 17 and Lemma 22, when 0 ≤ m <
mz, the sign of dFi(m)/dm is opposite to that of ϕ′(ui(m)) (i = 1, 2, 3). Noting
this, we prove Case (i) in four steps:
(I) If 0≤m≤m1, then by Lemma 21, F1(m) and F3(m) are monotone decreasing

and F2(m) is monotone increasing. Moreover, since u2(m1)=u3(m1), we have
F2(m1) = F3(m1), and hence the graphs y = F2(m) and y = F3(m) are like
Fig. 8 (i). Moreover, y = F2(m) does not intersect with y = F1(m) because
F1(0) < F2(0) by Corollary 2 (i).

(II) If m1 < m ≤ mz, then it holds that ϕ′(u1(m)) > 0 by Lemma 21, so F1(m) is
monotone decreasing.

(III) If mz ≤ m, then the sign of dF1(m)/dm is the same as ϕ′(u1(m)), because
G(m) ≤ 0. Therefore, F1(m) is monotone increasing.

(IV) From Lemma 13, limm→1 F1(m) = 0.
Summarizing the arguments (I)–(IV), as a consequence, we obtain the result.
Cases (ii) and (iii) can be proven in the same way. �

Now we are in a position to prove the first half of Theorem 2.

Proposition 1. Let n be an arbitrary integer with n ≥ 2. Then a necessary
and sufficient condition for the equations (12)–(14) to have a nontrivial solution of
the form (19) (i) is

8π3

L3
(n2 − 1) < p ≤ 8π3

L3
(n − 1)(2n − 1)(3n − 1).

If n = 1, then (12)–(14) does not have any nontrivial solution of the form (19) (i).

Proof. Note that if n ≥ 2, it holds that

8π3(n2 − 1)
L3

<
16π3n3

3
√

3L3
, (67)

64n3K3
(

2−√
3

2

)
3

3
4 L3

<
8π3(n − 1)(2n − 1)(3n − 1)

L3
. (68)

(I) If 0 < p < 8π3(n2 − 1)/L3, then by (67) and Lemma 23 (i), the graphs of
y = Fi(m) (i = 1, 2, 3) are as in Fig. 8 (i). On the other hand, by Corollary 2 (iii),
F1(0) < π/n < F2(0), hence neither y = F1(m) nor y = F2(m) intersects with F =
π/n. Therefore, in this case, no solution of the form (19) (i) exists.

(II) If p = 8π3(n2 − 1)/L3, then F1(0) = π/n. However, by a result in the
proof of Lemma 15, we see that a(0) = 0, so (19) (i) does not present a nontrivial
solution.

(III) If 8π3(n2 − 1)/L3 < p < 16π3n3/(3
√

3L3), then by Lemma 23 (i), the
graphs of y = Fi(m) (i = 1, 2, 3) are as in Fig. 8 (i). By Corollary 2 (v), F1(0) >

π/n, so there exists a unique m∗ satisfying F1(m∗) = π/n. From Lemma 10, we
see that a(m∗) �= 0. Therefore, in this case a nontrivial solution of the form (19) (i)
uniquely exists.
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(IV) If 16π3n3/(3
√

3L3) ≤ p < 8π3(n−1)(2n−1)(3n−1)/L3, then the graphs
of y = Fi(m) (i = 1, 2, 3) are as in Fig. 8 (ii) or (iii). Since F3(0) > π/n by Corol-
lary 2 (vi), there exists a unique m∗ and i (i ∈ {1, 2, 3}) such that Fi(m∗) = π/n.

(V) If p = 8π3(n − 1)(2n − 1)(3n − 1)/L3, then the graph of y = F3(m) is as
in Fig. 8 (iii). From Corollary 2 (vii), F3(0) = π/n. However, in this case a(0) =
−L
√

(n − 1)(3n − 1)/(4n2π) �= 0, so there exists a unique nontrivial solution of
the form

κ3(s) =
4n2π

L
(−√(n − 1)(3n − 1) cos

(
2nπs

L

)
+ (2n − 1)

) − 2π(2n − 1)
L

.

(VI) If 8π3(n − 1)(2n − 1)(3n − 1)/L3 < p, then by (68) and Lemma 23 (iii),
the graph of y = F3(m) is like Fig. 8 (iii). Since by Corollary 2 (vii), F3(0) < π/n,
so y = F3(m) does not intersect with F = π/n. Therefore, in this case, no solution
of the form (19) (i) exists.

When n = 1, from Figs. 4 (ii) and 5 (ii), we see that for i = 1, 2, 3, Fi(0) < π

hold when p > 0, and hence for i = 1, 2, 3, Fi(m) = π does not have any solution.
This completes the proof. �

4.2. Case of Lemma 7 (ii)
In this subsection, we consider the case where κ(s) is of the form (19) (ii).

Lemma 24. Let

κ(s) =
1

adn(hs) + b
+ c with h =

2nK(m)
L

satisfies (12) and (13). Then a, b and c satisfy either

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) a = ±
√

1 + 4b2h2(2 − m) −√1 + 8b2h2(2 − m) + 16b4h4m2

8h2(1 − m)
,

(ii) c = −1 +
√

1 + 8b2h2(2 − m) + 16b4h4m2

2b
,

(iii) 2bh4m2
√

1 + 8b2h2(2 − m) + 16b4h4m2 = p,

(69)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) a = ±
√

1 + 4b2h2(2 − m) +
√

1 + 8b2h2(2 − m) + 16b4h4m2

8h2(1 − m)
,

(ii) c =
−1 +

√
1 + 8b2h2(2 − m) + 16b4h4m2

2b
,

(iii) −2bh4m2
√

1 + 8b2h2(2 − m) + 16b4h4m2 = p.

(70)
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Proof. This lemma can be proven in a way similar to that in the proof of
Lemma 8. �

The next lemma asserts that it is sufficient to consider only either of (69)
or (70).

Lemma 25. Let {a, b, c} and {a′, b′, c′} satisfy (69) and (70) respectively.
Then, it holds that

1
adn(hs + K(m)) + b

+ c =
1

a′ dn(hs) + b′
+ c′,

where the sign of a′ is opposite to that of a.

Proof. Using the addition formula for dn( · ) [1, p. 574], we have dn(z +
K(m)) =

√
1 − m/dn(z), so

1
adn(hs + K(m)) + b

+ c =
1

− b2

a
√

1−m
dn(hs) − b

+
1
b

+ c.

Since

− b2

a
√

1 − m
= ∓

√
8b4h2

1 + 4b2h2(2 − m) −√1 + 8b2h2(2 − m) + 16b4h4m2

= ∓
√

1 + 4b2h2(2 − m) +
√

1 + 8b2h2(2 − m) + 16b4h4m2

8h2(1 − m)
= a′,

b′ = −b, and

1
b

+ c =
1 −√1 + 8b2h2(2 − m) + 16b4h4m2

2b

=
−1 +

√
1 + 8(b′)2h2(2 − m) + 16(b′)4h4m2

2b′
= c′,

we have proven the lemma. �

Thus, from now on, we only consider the case (69).

Lemma 26. For any p > 0 and m satisfying 0 < m < 1, (69) (iii) has a unique
positive solution b(m).

Proof. Taking the square of the both sides of (69) (iii), and putting u := (bh)2,
we have

4m4u(16m2u2 + 8(2 − m)u + 1) = p2h−6. (71)

Let us denote the left hand side of (71) by f(u). Since f is monotone increasing
and f(0) = 0, f(∞) = ∞, (71) has a unique positive solution. �
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Definition 4. Assume 0 < m < 1, and b(m) be the unique solution of
(69) (iii) stated in Lemma 26. We define the functions H1(m) and H2(m) as
follows:

H1(m) =
∫ L

2n

0

(
1

a(+)(m) dn
( 2nK(m)s

L

)
+ b(m)

+ c(m)

)
ds, (72)

H2(m) =
∫ L

2n

0

(
1

a(−)(m) dn
( 2nK(m)s

L

)
+ b(m)

+ c(m)

)
ds, (73)

where a(+)(m) is defined by

a(+)(m) =

√
1 + 4b2h2(2 − m) −√1 + 8b2h2(2 − m) + 16b4h4m2

8h2(1 − m)
> 0,

and a(−)(m) = −a(+)(m).

By Lemma 26, both H1(m) and H2(m) are single-valued functions. Before
going to the study of Hi(m), let us take a look at numerical examples to see how Hi

behave for various values of p. Fig. 9 shows the behavior of H1 and H2 for n = 2,
p = 14, 15, 16 and L = 2π. From Fig. 9, we observe that equation H1(m) = π/2
seems to have no solution, while the equation H2(m) = π/2 seems to have
(i) no solution, if p < 15 = 8π3(n − 1)(2n − 1)(3n − 1)/L3,
(ii) a unique solution, if 15 ≤ p.
To study the behavior of H1 and H2 near m = 1, we need the following lemma.

Lemma 27. For the function H1(m), we have

H1(m) = −π +
Lb

2n(b2 − a2)

(
Π
(− a2m

b2−a2 ,m
)

K(m)
+

(b2 − a2)c
b

)
, (74)

while for H2(m), we have

H2(m) = π +
Lb

2n(b2 − a2)

(
Π
(− a2m

b2−a2 ,m
)

K(m)
+

(b2 − a2)c
b

)
. (75)

Proof. Put dn(t) = x. Then we have

∫ L
2n

0

1
adn(hs) + b

ds =
1
h

∫ K(m)

0

1
adn(t) + b

dt

=
1
h

∫ 1

√
1−m

1
(ax + b)

√
(1 − x2)(m − 1 + x2)

dx,
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Fig. 9. The graphs of y = H1 and y = H2 for various p, when n = 2 and L = 2π.
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and again putting x2 = 1 − mz2, we obtain

1
h

∫ 1

0

1
(a
√

1 − mz2 + b)
√

(1 − z2)(1 − mz2)
dz

=
1
h

(
−a

∫ 1

0

dz

(b2 − a2 + a2mz2)
√

1 − z2

+ b

∫ 1

0

dz

(b2 − a2 + a2mz2)
√

(1 − z2)(1 − mz2)

)
.

Since

b2 − a2 =
−1 − 4b2h2m +

√
(1 + 4b2h2m)2 + 16b2h2(1 − m)
8h2(1 − m)

> 0, (76)

we can apply the calculus formula

∫ 1

0

1
(1 + αx2)

√
1 − x2

dx =
π

2
√

1 + α
(α > −1), (77)

and obtain∫ L
2n

0

1
adn(hs) + b

ds

= − aπ

2h
√

(b2 − a2)(b2 − (1 − m)a2)
+

b

h(b2 − a2)
Π
(
− a2m

b2 − a2
,m

)
. (78)

On the other hand,

(b2 − a2)(b2 − (1 − m)a2)

=
1 + 4b2h2(2 − m) −√1 + 8b2h2(2 − m) + 16b4h4m2

32h4(1 − m)
=

a2

4h2
,

so

− aπ

2h
√

(b2 − a2)(b2 − (1 − m)a2)
=
{−π, a > 0,

π, a < 0.
(79)

Substituting this equation to (78), we obtain the result. �

Using Lemma 27 and the next lemma, we can estimate the behavior of H1 and
H2 when m approaches 1.

Lemma 28. Let b(m) be the solution of (69) (iii). Then the following esti-
mate holds:

b(m) ≤ p

2m2h4(m)
. (80)
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Proof. From (71), 4m4u ≤ p2/h6. Hence, we obtain the result. �

Lemma 29. limm→1 H1(m) = −π and limm→1 H2(m) = π.

Proof. Let

J(m) :=
Lb

2n(b2 − a2)

(
Π (l,m)
K(m)

+
(b2 − a2)c

b

)
, (81)

where l = −a2m/(b2 − a2). Because of (76), we have the estimate

b

b2 − a2

(
1

1 − l
+

(b2 − a2)c
b

)
≤ 2nJ(m)

L
≤ b

b2 − a2

(
1 +

(b2 − a2)c
b

)
. (82)

The left hand side of (82) becomes

b

b2 − a2

{
l

1 − l
+
(

1 +
(b2 − a2)c

b

)}

=
1 + 4b2h2m +

√
(1 + 4b2h2m)2 + 16b2h2(1 − m)

2

×
(

1
1 − l

· l

b
+

4bh2m

1 + 4b2h2m +
√

(1 + 4b2h2m)2 + 16b2h2(1 − m)

)
. (83)

By Lemma 28,

lim
m→1

l(m) = lim
m→1

− 8b2h2m

1 − 4b2h2m +
√

(1 − 4b2h2m)2 + 16b2h2
= 0,

and limm→1
l(m)
b(m) = 0. Therefore the left hand side of (82) tends to 0 as m → 1.

The right hand side of (82) is obtained by substituting l = 0 in the left hand side
of (82). Hence the right hand side of (82) also converges to 0 as m → 1. �

The next lemma computes the derivative of H2 (there is no need to compute
the derivative of H1 since H1 = H2 − 2π by Lemma 27).

Lemma 30. Let u satisfy (71). Then the derivative of H2 is

dH2

dm
(m) =

L6p2(−3E2(m) + (2 − m)E(m)K(m) + (1 − m)K2(m))
128m5n6K7(m)(1 − m)u

1
2 D(m)

, (84)

where

D(m) =
√

1 + 8(2 − m)u + 16m2u2(1 + 16(2 − m)u + 48m2u2).

Proof. This can be proven in the same way as in the proof of Lemma 17.
�
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To determine the sign of dH2(m)/dm, we need the following two lemmas.

Lemma 31. If m �= 0,

(−2 + m)E(m) + 2(1 − m)K(m) < 0. (85)

Proof. Let

G(m) := (−2 + m)E(m) + 2(1 − m)K(m).

From (53) and (54), we have, if m �= 0,

dG

dm
(m) =

3
2
(E(m) − K(m)) < 0.

Moreover, it holds that G(0) = 0. Therefore, if m �= 0, then G(m) < 0. �

Lemma 32. Let

I(m) := −3E2(m) + (2 − m)E(m)K(m) + (1 − m)K2(m). (86)

Then I(m) > 0, if m �= 0.

Proof. Using (53) and (54), we have

dI

dm
(m) =

m2E2(m) − (1 − m)(4 − m)(K(m) − E(m))2

2m(1 − m)
,

d2I

dm2
(m) =

((−2 + m)E(m) + 2(1 − m)K(m))2

2m2(1 − m)2
.

By Lemma 31, if m �= 0, d2I(m)/dm2 > 0. Moreover (dI/dm)(0) = 0, hence I is
monotone increasing. Because I(0) = 0, we have proven the lemma. �

From Lemmas 30 and 32, we see that Hi(m) (i = 1, 2) is monotone increas-
ing functions of m. Therefore, by Lemma 29, we see that the equation H1(m) =
π/n does not have any solution. Hence from now on, we consider the equation
H2(m) = π/n only. As for the behavior of H2(m) when m approaches 0, we have
the following lemma.

Lemma 33.

lim
m→0

H2(m)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

>
π

n
if p <

8π3

L3
(n − 1)(2n − 1)(3n − 1),

=
π

n
if p =

8π3

L3
(n − 1)(2n − 1)(3n − 1),

<
π

n
if p >

8π3

L3
(n − 1)(2n − 1)(3n − 1).

(87)



Tadjbakhsh–Odeh Functional 363

Proof. From (69) (iii), when m → 0, b(m) seems to diverge with order
O(1/m), so we put b(m) = v(m)/m and substitute this to (69) (iii). This leads
to the equation

p = 2h4v
√

m2 + 8h2v2(2 − m) + 16h4v4, (88)

and we see that (88) has a unique positive solution v(m) for arbitrary m satisfying
0 ≤ m < 1 and p > 0 (since the right hand side of (88) is monotone increasing in v).
Now, we have proven that b(m) diverges to +∞ with the order of 1/m when m

approaches 0. Next, we estimate the function H2. Since

b2 − a2 =
−m − 4h2v2 +

√
16h2v2(1 + h2v2) − 8h2v2m + m2

8h2m(1 − m)
,

we have

lim
m→0

b

b2 − a2
=

8h2
0v0

−4h2
0v

2
0 + 4h0v0

√
1 + h2

0v
2
0

=
2h0

−h0v0 +
√

1 + h2
0v

2
0

(89)

and

lim
m→0

a2m

b2 − a2
=

2h0v0

−h0v0 +
√

1 + h2
0v

2
0

= 2h0v0

(√
1 + h2

0v
2
0 + h0v0

)
,

where we have put h0 = h(0) and v0 = v(0) for simplicity. Using the formula (77)
again, we obtain

lim
m→0

Π
(− a2m

b2−a2 ,m
)

K(m)
=

1√
2h2

0v
2
0 + 2h0v0

√
1 + h2

0v
2
0 + 1

=
1

h0v0 +
√

1 + h2
0v

2
0

.

(90)
Moreover we have

lim
m→0

c(m) = −2h0

√
1 + v2

0h2
0 . (91)

Using (89), (90), (91), we obtain

lim
m→0

H2(m) = π +
L

2n
· (2h0) − L

2n
· (2h0

√
1 + v2

0h2
0

)
= π +

L

2n
·
(

2nπ

L

)
− L

2n
·
(

2nπ

L

√
1 + v2

0h2
0

)

= 2π − π
√

1 + v2
0h2

0 . (92)

The relation limm→0 H2(m) = π/n implies v2
0h2

0 = (3n−1)(n−1)/n2. Substituting
this to

p = 8h5
0v

2
0

√
1 + h2

0v
2
0 , (93)

we have

p =
8π3

L3
(n − 1)(2n − 1)(3n − 1). (94)
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Note that Z1(w) := 2π − π
√

1 + w is monotone decreasing with respect to w and
Z2(w) := 8h3w

√
1 + w is monotone increasing. Therefore we obtain the assertion

of the lemma. �

The following proposition proves the second half of Theorem 2.

Proposition 2. Let n be an arbitrary integer with n ≥ 2. Then a necessary
and sufficient condition for the equations (12)–(14) to have a nontrivial solution of
the form (19) (ii) is

8π3

L3
(n − 1)(2n − 1)(3n − 1) < p.

If n = 1, (12)–(14) does not have any nontrivial solution of the form (19) (ii).

Proof. Let n ≥ 2.
(I) If p < 8π3(n − 1)(2n − 1)(3n − 1)/L3, then, from the inequality

limm→0 H2(m) > π/n (Lemma 33) and the fact that H2(m) is monotone increasing
with respect to m (Lemmas 30 and 32), (12) to (14) do not have nontrivial solutions
of the form (19) (ii).

(II) If p = 8π3(n − 1)(2n − 1)(3n − 1)/L3, then H2(m) = π/n has a unique
solution m = 0. However, if m = 0, then κ(s) = 1/(a sn(K(0) − h(0)s) + b) + c =
1/(a cos(2nπs/L) + b) + c. Therefore this case is included in Case (i) of Lemma 7.

(III) If p > 8π3(n − 1)(2n − 1)(3n − 1)/L3, then from the inequality
limm→0 H2(m) < π/n and the monotonicity of H2(m), there uniquely exists m∗

(0 < m∗ < 1) such that H2(m∗) = π/n. Since by (69), we already know that
a(−) < 0, b, and c are functions of m, so we have proven that there exists a unique
nontrivial solution of the form (19) (ii).

If n = 1, by Lemma 29 and the monotonicity of H2(m) it holds that H2(m) < π

for arbitrary m satisfying 0 ≤ m < 1, and p > 0. Therefore, in this case the equation
H2(m) = π does not have any solution. �

Combining Propositions 1 and 2, we have proven Theorem 2.

5. Numerical experiment

Fig. 10 is the p versus E(Γ ) diagram drawn numerically according to the
argument of Section 4. Each point of curves corresponds to a solution of (12)
to (14). When p = 5.247 and 21.65, which were computed by Flaherty, Keller and
Rubinow [7], the solutions contacts with themselves. In addition, we see that E(Γ )
seems to have the same value when p = 8π3

L3 (n2−1) and p = 8π3

L3 (n−1)(2n−1)(3n−1).
Finally, we prove this fact.

Proposition 3. E(Γ ) takes the same value at p = 8π3(n2 − 1)/L3 and p =
8π3(n − 1)(2n − 1)(3n − 1)/L3.

Proof. When p = 8π3

L3 (n2 − 1), by Proposition 1 Case (2), the stationary
closed curve (which satisfies (12)–(14)) is a disk of radius L/(2π). So, in this
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Fig. 10. The graph of p versus E(Γ ) for n = 2 and n = 3 when L = 2π.

case E(Γ ) = 2π2n2/L. By [16, p. 466], the following equality holds:

pM =
1
4

∫ L

0

κ2(s) ds − q1L

2
. (95)

Hence, E(Γ ) can be obtained without computing Area(Ω) as

E(Γ ) =
3
4

∫ L

0

κ2(s) ds − q1L

2
, (96)

where q1 satisfies (32). When p = 8π3

L3 (n − 1)(2n − 1)(3n − 1), by Proposition 1
Case (V) the curvature of the stationary closed curve takes the form

κ(s) =
1

a cos
(

2nπs
L

)
+ b

+ c, (97)
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where a = −L
√

(n − 1)(3n − 1)/(4n2π), b = L(2n−1)/(4n2π), c = −2π(2n−1)/L.
Using the formula

∫ L

0

(
1

a cos
(

2nπs
L

)
+ b

)2

ds =
3bL

(b2 − a2)
3
2
, (98)

we obtain E(Γ ) = 2π2n2/L. �

Appendix A. Proof of Lemma 5

Let min0≤s≤L/2n κ(s) = κ(0) = α and max0≤s≤L/2n κ(s) = κ(L/2n) = β. Then
(12) is expressed as

(
dκ

ds

)2

=
1
4
(β − κ)(κ − α){κ2 + (α + β)κ + γ}, (99)

and (p, q1, q2) is related to (α, β, γ) by

q1 =
1
4
(α2 + β2 + αβ − γ), q2 = −1

8
αβγ, p =

1
8
(γ − αβ)(α + β).

Putting

P1(x) = x2 − (α + β)x + αβ, P2(x) = x2 + (α + β)x + γ,

we have from (99)

s = 2
∫ κ

α

dx√−P1(x)P2(x)
. (100)

Since P2(x) = 0 should not have any root on the interval [α, β] (if P2(α) = 0 or
P2(β) = 0, the equation (99) has no periodic solution (see Arnold [3, Section 12])),
it holds that

γ + αβ + 2α2 > 0, γ + αβ + 2β2 > 0. (101)

The right hand side of (100) will be reduced to the canonical form of real elliptic
integrals according to the following three cases: (A) α + β > 0, (B) α + β < 0, and
(C) α + β = 0. If (A) or (B), from (101), we see that the quadratic equation

2(α + β)t2 − 2(αβ − γ)t − (α + β)(αβ + γ) = 0 (102)

has distinct real roots t0 and t1, because the discriminant D = (γ + αβ + 2α2)(γ +
αβ + 2β2) is positive. Assuming t0 < t1, we have the following relation among α,
β, t0 and t1: {

t0 < α < t1 < β in Case (A),
α < t0 < β < t1 in Case (B).
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Let us prove only Case (A). In this case, we have

t0 =
αβ − γ −√

D

2(α + β)
, t1 =

αβ − γ +
√

D

2(α + β)
. (103)

So, we obtain t0 < α if and only if −√
D < γ + αβ + 2α2, α < t1 if and only if

γ + αβ + 2α2 <
√

D which is equivalent to α + β > 0, and t1 < β if and only if√
D < γ + αβ + 2β2, which is equivalent to α + β > 0. Keeping this relation in

mind, we change the variable x to y as follows:

⎧⎪⎪⎨
⎪⎪⎩

x =
t1 + t0y

1 + y
in Case (A),

x =
t0 + t1y

1 + y
in Case (B).

(104)

Since t0 + t1 = (αβ − γ)/(α + β) and t0t1 = −(αβ + γ)/2, we have

Pi(x) =
Pi(t1) + Pi(t0)y2

(1 + y)2
(i = 1, 2). (105)

Let y0 ∈ R satisfy α = (t1 + t0y0)/(1 + y0). Then β = (t1 − t0y0)/(1− y0), because

P1

(
t1 − t0y0

1 − y0

)
=

P1(t1) + P1(t0)y2
0

(1 − y0)2
=
(

1 + y0

1 − y0

)2

P1(α) = 0,

and y0 �= 1 by (101). Hence (104) (A) gives a bijection from the interval [α, β]
to [−y0, y0]. For arbitrary κ ∈ [α, β], let y1 ∈ R be the element satisfying κ =
(t1 + t0y1)/(1 + y1). Then we have from (100)

s = 2
∫ y1

y0

(t0 − t1) dy√−(P1(t1) + P1(t0)y2)(P2(t1) + P2(t0)y2)
. (106)

This equation will be further made simpler according to the following three cases:

⎧⎪⎨
⎪⎩

(A-1) P1(t0) > 0, P1(t1) < 0, P2(t1) > 0, P2(t0) > 0,

(A-2) P1(t0) > 0, P1(t1) < 0, P2(t1) > 0, P2(t0) < 0,

(A-3) P1(t0) > 0, P1(t1) < 0, P2(t1) > 0, P2(t0) = 0,

since t0 < α < t1 < β, it holds that P1(t0) > 0, P1(t1) < 0, and P2(x) > 0 on [α, β].
When (A-1) holds, we have from (106)

s =
2(t0 − t1)√
P1(t0)P2(t0)

∫ y1

y0

dy√(−P1(t1)
P1(t0)

− y2
)(P2(t1)

P2(t0)
+ y2

) . (107)
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If 0 ≤ y1 ≤ y0, then putting y =
√−(1 − z2)P1(t1)/P1(t0), we have

s =
1
h

∫ z1

0

dz√
(1 − z2)(1 − mz2)

, (108)

where

m =
−P1(t1)P2(t0)

P1(t0)P2(t1) − P1(t1)P2(t0)
, h =

√
P1(t0)P2(t1) − P1(t1)P2(t0)

2(t1 − t0)
,

y1 =

√
−P1(t1)

P1(t0)
(1 − z2

1).

From (108), the range of s becomes [0,K(m)/h] and z1 is represented as z1 =
sn(hs). Therefore,

y1 =

√
−P1(t1)

P1(t0)
cn(hs), (109)

and hence

κ(s) =
t1 + t0

√
−P1(t1)

P1(t0)
cn(hs)

1 +
√

−P1(t1)
P1(t0)

cn(hs)
. (110)

If −y0 ≤ y1 ≤ 0, then

s =
2(t0 − t1)√
P1(t0)P2(t0)

×
⎛
⎝∫ 0

y0

dy√(−P1(t1)
P1(t0)

− y2
)(P2(t1)

P2(t0)
+ y2

) +
∫ y1

0

dy√(−P1(t1)
P1(t0)

− y2
)(P2(t1)

P2(t0)
+ y2

)
⎞
⎠.

Putting y = −√−(1 − z2)P1(t1)/P1(t0), we have

s =
K(m)

h
− 1

h

∫ z1

1

dz√
(1 − z2)(1 − mz2)

=
2K(m)

h
− 1

h

∫ z1

0

dz√
(1 − z2)(1 − mz2)

,

where m and h are the same as in the case 0 ≤ y1 ≤ y0 and

y1 = −
√
−P1(t1)

P1(t0)
(1 − z2

1).

Therefore the range of s becomes [K(m)/h, 2K(m)/h] and z1 is represented as
z1 = sn(2K(m) − hs) = sn(hs). Noting that cn(hs) < 0 on [K(m)/h, 2K(m)/h],
we see that y1 and κ is again represented as (109) and (110) respectively.
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When (A-2) holds, we have from (106)

s =
2(t0 − t1)√−P1(t0)P2(t0)

∫ y1

y0

dy√(−P1(t1)
P1(t0)

− y2
)(−P2(t1)

P2(t0)
− y2

) . (111)

If 0 ≤ y1 ≤ y0, then putting y =
√−P1(t1)/P1(t0)z, we have

s = − 1
h

∫ z1

1

dz√
(1 − z2)(1 − mz2)

, (112)

where

m =
P1(t1)P2(t0)
P1(t0)P2(t1)

, h =

√
P1(t0)P2(t1)
2(t1 − t0)

, y1 =

√
−P1(t1)

P1(t0)
z1.

From (112), the range of s becomes [0,K(m)/h] and z1 is represented as z1 =
sn(K(m) − hs). Therefore,

y1 =

√
−P1(t1)

P1(t0)
sn(K(m) − hs), (113)

and hence

κ(s) =
t1 + t0

√
−P1(t1)

P1(t0)
sn(K(m) − hs)

1 +
√

−P1(t1)
P1(t0)

sn(K(m) − hs)
. (114)

If −y0 ≤ y1 ≤ 0, then as in Case (A-1), dividing the interval of integration
into [y0, 0] and [0, y1], and putting y = −√−P1(t1)/P1(t0)z, we see that (114) also
holds on the interval [K(m)/h, 2K(m)/h].

When (A-3) holds, we have from (106)

s =
2(t0 − t1)√
P1(t0)P2(t1)

∫ y1

y0

dy√
−P1(t1)

P1(t0)
− y2

=
1
h

arccos

(√
−P1(t0)

P1(t1)
y1

)
,

where h =
√

P1(t0)P2(t1)/(2(t1 − t0)). Thus

y1 =

√
−P1(t1)

P1(t0)
cos(hs), (115)

and hence

κ(s) =
t1 + t0

√
−P1(t1)

P1(t0)
cos(hs)

1 +
√

−P1(t1)
P1(t0)

cos(hs)

(
0 ≤ s ≤ π

h

)
. (116)

This is a special case (m = 0) of Case (A-1). Hence, it is not necessary to take
Case (A-3) into account.
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Now we consider Case (B). Let y0 ∈ R satisfy β = (t0 + t1y0)/(1 + y0). Then,
as in Case (A), it holds that α = (t0 − t1y0)/(1 − y0). Let y1 ∈ R be the element
satisfying κ = (t0 + t1y1)/(1 + y1), then we have from (100)

s = 2
∫ y1

−y0

(t1 − t0) dy√−(P1(t0) + P1(t1)y2)(P2(t0) + P2(t1)y2)
. (117)

This equation will be further simplified according to the following three cases⎧⎪⎨
⎪⎩

(B-1) P1(t0) < 0, P1(t1) > 0, P2(t0) > 0, P2(t1) > 0,

(B-2) P1(t0) < 0, P1(t1) > 0, P2(t0) > 0, P2(t1) < 0,

(B-3) P1(t0) < 0, P1(t1) > 0, P2(t0) > 0, P2(t1) = 0,

since α < t0 < β < t1, P1(t0) < 0, P1(t1) > 0, and P2(x) > 0 on [α, β]. Applying
the same argument as Case (A),

κ(s) =
t0 − t1

√
−P1(t0)

P1(t1)
cn(hs)

1 −
√

−P1(t0)
P1(t1)

cn(hs)
, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m =
−P2(t1)P1(t0)

P2(t0)P1(t1) − P1(t0)P2(t1)
,

h =

√
P2(t0)P1(t1) − P1(t0)P2(t1)

2(t1 − t0)
,

(B-1)

κ(s) =
t0 − t1

√
−P1(t0)

P1(t1)
sn(K(m) − hs)

1 −
√

−P1(t0)
P1(t1)

sn(K(m) − hs)
, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m =
P1(t0)P2(t1)
P2(t0)P1(t1)

,

h =

√
P1(t1)P2(t0)
2(t1 − t0)

,

(B-2)

κ(s) =
t0 − t1

√
−P1(t0)

P1(t1)
cos(hs)

1 −
√

−P1(t0)
P1(t1)

cos(hs)
, where h =

√
P1(t1)P2(t0)
2(t1 − t0)

(B-3)

are obtained.
Finally, we consider Case (C). In this case, from (100) it holds that

s = 2
∫ κ

−β

1√
(β2 − x2)(x2 + γ)

, (118)

where γ > 0 (since x2 + γ does not have any root on [−β, β]).
If −β ≤ κ ≤ 0, then putting x = −β

√
1 − z2, we have

s =
2√

β2 + γ

∫ z1

0

1√
(1 − z2)(1 − mz2)

, (119)

where m = β2/(β2 + γ) and κ = −β
√

1 − z2
1 . From (119), the range of s is

0 ≤ s ≤ 2K(m)
/√

β2 + γ, and z1 = sn
(√

β2 + γs
/
2
)
. Thus,

κ(s) = −β cn
(√

β2 + γ

2
s

)
. (120)
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If 0 ≤ κ ≤ β, then putting x = β
√

1 − z2, we have (120) again
(
in this case,

the range of s becomes 2K(m)
/√

β2 + γ ≤ s ≤ 4K(m)
/√

β2 + γ
)
.

Now we have completed the proof of Lemma 5.

Appendix B. Proof of Lemma 6

Let us choose γ = αβ in (99) and assume 0 < α < β. Then (100) becomes

s = 2
∫ κ

α

dx√
(x2 − α2)(β2 − x2)

. (121)

In this case, (102) has two roots t0 = −√
αβ and t1 =

√
αβ. Since P2(t0) =

−√
αβ(

√
β −√

α)2 < 0, this case applies to Case (A-2), so, we have from (114)

κ(s) =

√
αβ −√

αβ
(√

β−√
α√

β+
√

α

)
sn(K(m) − hs,m)

1 +
(√

β−√
α√

β+
√

α

)
sn(K(m) − hs,m)

, (122)

where

m =
(√

β −√
α√

β +
√

α

)4

, h =
(√

β +
√

α

2

)2

. (123)

On the other hand, putting x2 = β2 − (β2 − α2)z2, we see that (121) becomes

s = −2
∫ z1

1

dz

β
√

(1 − z2)
(
1 − β2−α2

β2 z2
) ,

where z1 satisfies κ2 = β2 − (β2 − α2)z2
1 . Therefore,

z1 = sn
(

K(m0) − βs

2
,m0

)
=

cn
(

βs
2 ,m0

)
dn
(

βs
2 ,m0

) ,
where m0 = β2−α2

β2 . Hence

κ2(s) =
β2
(
1 − β2−α2

β2 sn2
(

βs
2 ,m0

))− (β2 − α2) cn2
(

βs
2 ,m0

)
dn2
(

βs
2 ,m0

)
=

α2

dn2
(

βs
2 ,m0

) .
Thus we have

κ(s) =
α

dn
(

βs
2 ,m0

) . (124)
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Comparing (122) with (124), we have

sn(K(m) − hs,m) =
√

β +
√

α√
β −√

α
·
√

β dn
(

βs
2 ,m0

)−√
α√

β dn
(

βs
2 ,m0

)
+
√

α
. (125)

From (123), we have α = h
(
1−m

1
4
)2, β = h

(
1+m

1
4
)2. Substituting these to (125),

we obtain the result.
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